
XEPLD

 ™

DESIGN GUIDE

ONLINER

0401191

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

Contents

Chapter 1 Getting Started with Behavioral Design

Copyright 1994-1995 Xilinx Inc. All Rights Reserved.
XEPLD Design Guide — 0401191 01 i

An Overview of Behavioral Design Methods................................ 1-1
Converting Existing PAL Designs ... 1-2
Using PLUSASM to Create New Designs 1-2
Using Xilinx ABEL to Create New Designs............................. 1-3
Using Third-Party PLD Compilers... 1-3
Converting JEDEC Files ... 1-4

Design Example — Converting a PAL File 1-4
PAL Conversion Procedure .. 1-4

Step 1 — Copy the PAL File.. 1-4
Step 2 — Run XDM ... 1-4
Step 3 — Select the Device Family, Type, and Speed...... 1-6
Step 4 — Convert the PAL Equation File 1-8
Step 5 — Compile the Design ... 1-10
Step 6 — Verify the Design ... 1-11
Step 7 — Program a Device.. 1-11

Chapter 2 Creating Designs with PLUSASM
PLUSASM Overview.. 2-1

PLUSASM File Structure .. 2-2
The Header Section... 2-2
The Declarations Section .. 2-3
The Equations Section .. 2-4

Creating Basic Designs.. 2-4
Design Example.. 2-4
Using Input Pad Structures... 2-7

Registered Inputs .. 2-7
Registered Inputs with Clock Enable................................. 2-8
Latched Inputs ... 2-8
Combinatorial Inputs.. 2-8

XEPLD Design Guide
FastInputs .. 2-8
Input Polarity.. 2-9

Using High-Density Function Blocks....................................... 2-10
Registered Equations .. 2-10
Registered Equation Clock Definition 2-11
Register Preload Values .. 2-11
Macrocell Control Equations.. 2-11
Combinatorial Equations.. 2-12
Manual Placement of Equations .. 2-12

Using the Universal Interconnection Matrix (UIM) 2-13
Using UIM Interconnections... 2-13
Using Wired-AND Functions.. 2-13
Signal Polarity.. 2-14

Using Fast Function Blocks .. 2-15
Combinatorial Equations.. 2-15
Registered Equations .. 2-15
Automatic Placement of Equations.................................... 2-16
Manual Placement of Equations .. 2-16

Using Output Pad Structures .. 2-17
3-State Outputs using Global FOE 2-17
3-State Outputs using Product Term Control..................... 2-17
Direct Outputs.. 2-18
Specifying Feedback Paths ... 2-18
Pin Feedback... 2-18
Macrocell Feedback... 2-18
Specifying 3-State Options .. 2-19
Using both Product Term and FOE 3-State Control 2-20

Chapter 3 Converting PAL Designs
PAL Conversion Methodology Overview...................................... 3-2

Pin and Node Assignment .. 3-2
FASTCLOCK and FOEPIN Assignment 3-4
Signal Polarity Conflict Resolution .. 3-4

PAL Conversion Requirements.. 3-4
Using 22V10 and 20V8 Files .. 3-4
Using Generic PAL Files... 3-5

The PAL Conversion Procedure .. 3-6
Step 1 — Create .PLD or .PDS Files 3-7
Step 2 — Import the PAL Files ... 3-7
Step 3 — Run XDM .. 3-7
Step 4 — Select a Device Type and Speed............................ 3-7
ii Xilinx Development System

Contents
Step 5 — Create a Top-Level File .. 3-8
Step 6 — Edit the Top-Level File.. 3-8
Step 7 — Compile the Design .. 3-9
Step 8 — Verify the Design .. 3-9
Step 9 — Program the Device .. 3-9
Verifying PAL Conversion... 3-10

Editing the Top-Level File .. 3-10
PAL Conversion Example... 3-11
Assigning Nodes to Outputs ... 3-15

Interconnections Between PALs.. 3-15
PAL Outputs Used as Feedback in the Same PAL 3-15
External Bi-Directional — PIN Feedback........................... 3-16
External Bi-Directional — Macrocell and PIN Feedback ... 3-16

Assigning Output Enable Signals to FOE Nets....................... 3-17
Assigning Clock Signals to FastCLK Nets 3-17
Assigning Equations to Fast Function Blocks......................... 3-18

Chapter 4 Using PLD Files in Schematics
Choosing Library Components .. 4-1

Using the PL22V10 or PL20V8... 4-2
Using the PL20PIN, PL24PIN, and PL48PIN 4-2
Using the PLFB9 and PLFFB9 ... 4-3
Creating Custom Component Symbols 4-3

Choosing a PLD Development Method.. 4-4
Using JEDEC Files ... 4-4
Using PLUSASM .. 4-4
Using a PLD Compiler .. 4-5

Design Flow ... 4-6
Step 1 — Choose a PLD Design Method 4-7
Step 2 — Choose PLD Components 4-7
Step 3 — Create Your PLD Files.. 4-7
Step 4 — Convert Your JEDEC Files 4-7
Step 5 — Create Your Schematic Design Files...................... 4-7
Step 6 — Link Your Files to the Schematic 4-8
Step 7 — Integrate the Design ... 4-8
Step 8 — Simulate Your Design (optional) 4-9
Step 9 — Program the Device .. 4-9

Design Example — Using PALs in a Schematic.......................... 4-9
Choosing Library Components ... 4-9
Assigning Clock Signals to FastCLK Nets 4-9
Assigning Output Enable Signals to FOE Nets....................... 4-12
XEPLD Design Guide iii

XEPLD Design Guide
Assigning Functions to Fast Function Blocks 4-12
Using Schematic Attributes.. 4-12
Using the PLFFB9 Component.. 4-13

Assigning Bi-Directional I/O Signals 4-14
Case 1 — Bi-Directional Outputs that Go Off-Chip............ 4-14
Case 2 — Using Both Macrocell and Pin Feedback.......... 4-15

Chapter 5 Advanced Behavioral Design Techniques
Manual Device Pin Assignment ... 5-1

Manual Pin Assignment Precautions 5-2
Using Pin Declaration Statements .. 5-2
Using PARTITION Statements ... 5-3

Logical PARTITION Statements .. 5-3
Physical PARTITION Statements 5-3

Simulating Behavioral Designs .. 5-3
Using Viewlogic Viewsim or OrCAD VST 5-4
Using XNF-Compatible Simulators ... 5-4
Simulating Board-Level Designs... 5-5

Verifying Behavioral Designs ... 5-5
Verifying Design Fit... 5-5
Verifying Design Timing .. 5-8
Timing Calculation Example 1 .. 5-9

Setup and Hold — Signals B and G to Clock 5-9
Clock-to-Output — Signals F, G, H, J, K, L from Clock 5-9
Output Enable/Disable — Signals G, K, L 5-10
Pin-to-Pin Propagation Delay — Signal E to L 5-10
Maximum Frequency — Clock A 5-10

Timing Calculation Example 2 .. 5-12
Setup and Hold — D[0:23] to STROBE 5-13
Clock-to-Output — PULSE .. 5-13
Maximum Frequency — Clock A 5-14

Timing Calculation Example 3 .. 5-18
Clock-to-Output — RESTART ... 5-19
Maximum Frequency ... 5-20

Design Fitting Strategies .. 5-22
Optimizing Device Resources... 5-22

If Your Design is Product Term Constrained 5-23
If Your Design is FB Input Constrained 5-25
If Your Design has Unused Fast Function Blocks 5-26

Design Rules for Arithmetic Design ... 5-28
Arithmetic Logic Architecture (Except XC7272)...................... 5-28

4-Bit Adder Example.. 5-30
iv Xilinx Development System

Contents
Partitioning Arithmetic Equations.. 5-32
8-Bit Adder/Subtracter/Accumulator Example 5-33

XC7272 Arithmetic Logic Architecture 5-35
4-Bit Adder Example (XC7272) ... 5-37
Adder/Subtracter/Accumulator Example (XC7272) 5-39

Index .. Index-1

Trademark Information
XEPLD Design Guide v

XEPLD Design Guide
vi Xilinx Development System

Chapter 1
XEPLD Design Guide — 0401191 01 1–1

Getting Started with Behavioral Design

This chapter will help you quickly understand how to develop a
behavioral design using XEPLD. A brief behavioral design example
is included, illustrating the automatic PAL conversion process.

An Overview of Behavioral Design Methods
A behavioral design defines the functionality of a logic circuit by
using a text-based language rather than a schematic. Using XEPLD, a
behavioral design can be created as a single Top-Level File which
contains all design control information and behavioral equations.
You can also develop your design in a hierarchical format which
contains design equations in one or more Include Files linked
together through a Top-Level File.

An overview of the behavioral design flow is shown in Figure 1-1.

Figure 1-1 Basic Behavioral Design Flow

X4411

Device
Programming

File

Behavioral
Development Tools

XEPLDPLUSASM
PALASM
XABEL
ABEL
CUPL
LogIC

OrCAD PLD

Top-Level
Design File

Include
File

Include
File••

• • •

XEPLD Design Guide
The following sections provide an overview of methods for creating
Top-Level Files and Include Files for behavioral designs.

See Chapter 2 for more information on the structure and require-
ments for behavioral design files.

Converting Existing PAL Designs
XEPLD allows you to automatically use your existing PAL equation
files as Include Files in XEPLD behavioral designs. This design
method has several advantages:

● You can use your existing PLD compiler tools, with which you are
already familiar, to edit your designs.

● You can combine existing PAL designs with designs created in
PLUSASM or with new designs created using a PLD compiler.

An example of the PAL conversion process is included in this chapter.
Chapter 3 provides a complete description of PAL conversion.

Using PLUSASM to Create New Designs
PLUSASM is the Xilinx EPLD development language providing
complete access to all device features. It uses Boolean equation entry
and provides the following capabilities:

● Control of EPLD partitioning, logic placement, pinouts.

● Access to EPLD arithmetic and fast carry features.

● Access to input pad registers and latches including Clock Enable
(CE).

● Automatic support for very wide AND gates (supports an unlim-
ited number of macrocell feedbacks and device pin inputs).

● Support for FastInput signals to Fast Function Blocks (bypassing
the Universal Interconnect Matrix).

● Automatic support for Fast Output Enable (FOE) control.

● Support for ALU functions (such as adders).

● Support for device speed and power control.

Chapter 2 describes how to use PLUSASM.
1–2 Xilinx Development System

Getting Started with Behavioral Design
Using Xilinx ABEL to Create New Designs
The Xilinx ABEL EPLD/FPGA compiler provides high-level
language capability for developing behavioral designs. Xilinx ABEL
can produce both Top-Level Files and Include Files. It can also create
stand-alone files for use with schematic design methods.

Xilinx ABEL features:

● High-Level Design Language (HDL).

● State Machine design capability.

● Support for PLD files in schematic designs.

● Support for multi-module designs.

● Support for functional simulation.

See the Xilinx ABEL User Guide for more information.

Using Third-Party PLD Compilers
Any PLD compiler that produces PLUSASM-compatible output
(or PALASM) can be used to create Include Files for XEPLD designs.
These PLD compilers (such as ABEL, ORCAD PLD, CUPL, LOG/iC,
and so on) may provide a variety of features including:

● Support for a wide range of device types (PALs and EPLDs).

● High-level design language support (HDL).

● State-machine language (SML).

● Bus and vector operations.

● Functional simulation.

● Truth table input.

When using a PLD compiler (other than Xilinx ABEL) it is important
to create your equation files in a device-independent format if
possible or to target one of the specifically supported PAL types
(20V8 or 22V10). These device-independent files are then used as
Include Files. Also, existing designs targeted at one or more PAL
devices and exported in a PLUSASM-compatible format (such as
PALASM) can be used as Include Files.
XEPLD Design Guide 1–3

XEPLD Design Guide
Converting JEDEC Files
XEPLD can disassemble JEDEC files for 22V10 and 20V8 PALs. You
can use the resulting files as Include Files for XEPLD behavioral
designs or as PLD files included in a schematic design. However, it is
usually easier to work with the original design source files, if avail-
able. The JEDEC file conversion process is described in Appendix B of
the XEPLD Reference Guide.

Design Example — Converting a PAL File
This section provides a behavioral design example demonstrating
how to automatically convert an existing PAL design for use in a
Xilinx EPLD. It consists of a 4-bit counter originally designed for use
in a 22V10 PAL. The equation file is shown in Figure 1-2.

XDM must be properly installed before you can execute the
commands contained in this example design. See the XEPLD 5.0
Release Notes (DS-550) for software installation instructions.

Note: This example is intentionally brief. For the complete details of
PAL conversion, see Chapter 3.

PAL Conversion Procedure

Step 1 — Copy the PAL File

For your convenience, the PAL equation file used in this example has
been created for you. The name of the file is “counter.PLD”. It is
located in the XACT/Tutorial directory of the Xilinx software.

Copy this file into your working directory.

Step 2 — Run XDM

From the DOS or UNIX prompt, type:

XDM

The XDM Main Menu appears as shown in the Preface.

Use the mouse to highlight menu items and select using the left
mouse button. Press F1 for help.
1–4 Xilinx Development System

Getting Started with Behavioral Design
Figure 1-2 4-Bit Counter Equation File (counter.PLD)

TITLE COUNTER EXAMPLE FILE
CHIP COUNTER 22V10;
;Pins (not in pin number order)
 HCLK REGWR SELECT COUNTEN OUTPUTEN DD3 DD2 DD1 DD0 CARRY COL3
GND COL2 COL1 COL0
;Nodes
 LOAD HOLD COUNT
;COUNTER
EQUATIONS
LOAD = (REGWR * /COUNTEN);
HOLD = (REGWR * COUNTEN
 + /REGWR * /COUNTEN);
COUNT = (/REGWR * COUNTEN);
COL0 := (DD0 * LOAD
 + HOLD * COL0
 + COUNT * /COL0);
COL0.CLKF = (HCLK);
COL0.TRST = (SELECT * /OUTPUTEN);
COL1 := (DD1 * LOAD
 + HOLD * COL1
 + COUNT * /COL1 * COL0
 + COUNT * COL1 * /COL0);
COL1.CLKF = (HCLK);
COL1.TRST = (SELECT * /OUTPUTEN);
COL2 := (DD2 * LOAD
 + HOLD * COL2
 + COUNT * COL2 * /COL1
 + COUNT * /COL2 * COL1 * COL0
 + COUNT * COL2 * /COL0);
COL2.CLKF = (HCLK);
COL2.TRST = (SELECT * /OUTPUTEN);
COL3 := (DD3 * LOAD
 + HOLD * COL3
 + COUNT * COL3 * /COL2
 + COUNT * COL3 * /COL1
 + COUNT * /COL3 * COL2 * COL1 * COL0
 + COUNT * COL3 * /COL0);
COL3.CLKF = (HCLK);
COL3.TRST = (SELECT * /OUTPUTEN);
CARRY := (DD3 * DD2 * DD1 * DD0 * LOAD
 + /LOAD * COL3 * COL2 * COL1 * COL0);
CARRY.CLKF = (HCLK);
XEPLD Design Guide 1–5

XEPLD Design Guide
Step 3 — Select the Device Family, Type, and Speed

From the XDM menu, select the PROFILE➝FAMILY command. XDM
displays the devices available in the XC7000 series, as shown in
Figure 1-3.

Select “XC7300”.

Figure 1-3 Device Family Menu

XDM then displays the part type selection menu as shown in
Figure 1-4.

Select “7354PC44”.

Figure 1-4 Part Type Selection Menu
1–6 Xilinx Development System

Getting Started with Behavioral Design
XDM then displays the speed selection menu as shown in Figure 1-5.

Select “-10”.

Figure 1-5 Speed Selection Menu

Notice that the “Family:” and “Part:” sections of the XDM main
menu (lower left) are now changed to reflect your selections, as
shown in Figure 1-6.

Figure 1-6 XDM Menu after Device Selection

You can also click on these fields directly to change the information.
XEPLD Design Guide 1–7

XEPLD Design Guide
Step 4 — Convert the PAL Equation File
a) Use the mouse to select the FITTER➝PALCONVT command.

You are prompted for a design name, as shown in Figure 1-7.

Figure 1-7 PALCONVT Design Name Prompt

b) Enter the design name: “n_design”. This design name is used
throughout this example. PALCONVT displays all PAL files in
the working directory (all files with a .PLD or .PDS extension),
as shown in Figure 1-8.

Figure 1-8 PAL File Selection Menu

c) Select “counter.PLD” and click DONE.

You are prompted to select one of two options as illustrated in
Figure 1-9.
1–8 Xilinx Development System

Getting Started with Behavioral Design
Figure 1-9 PALCONVT Target Selection Prompt

d) Click DONE. (“Create new PLD and PAL Interconnect Report”
is the default option.)

PALCONVT automatically creates a Top-Level file for your design
and includes the PAL equations (counter.PLD) as an Include File.
Figure 1-10 illustrates the result.

Figure 1-10 Top-Level File Created by PALCONVT

PATTERN n_design.PLD - file made by PALCNVT command

CHIP n_design XEPLD

INCLUDE_EQN 'counter.pld'

INPUTPIN HCLK REGWR SELECT COUNTEN OUTPUTEN DD3 DD2 DD1 DD0
OUTPUTPIN CARRY

NODE COL3 COL2 COL1 COL0 LOAD HOLD COUNT

EQUATIONS
XEPLD Design Guide 1–9

XEPLD Design Guide
Step 5 — Compile the Design
a) Use the mouse to select the FITTER➝FITEQN command.

XEPLD displays the FITEQN_popup menu as shown in
Figure 1-11.

Figure 1-11 FITEQN_popup Menu

b) Select “n_design.PLD” and click DONE.

XEPLD displays the option selection menu as shown in
Figure 1-12.

Figure 1-12 FITEQN Option Selection Menu

c) Click DONE. (“Ignore pin assignments” is the default option.)

XEPLD processes your design file, checks for errors, and cre-
ates reports. The compiled design is named
“n_design.VMH”.
1–10 Xilinx Development System

Getting Started with Behavioral Design
Step 6 — Verify the Design

Use the mouse to select the UTILITIES➝BROWSE command. You
can review the following key reports to verify your design.

● n_design.ERR — the error log. All warning and error messages
generated by XEPLD are listed here.

● n_design.INT — the PAL interconnect report showing each signal
name and how it was used. Use this report to verify that each sig-
nal is connected properly.

● n_design.RES — the device logic and pin resource usage report.
Use this report to verify that your design is placed into a device
with the proper amount of resources.

Step 7 — Program a Device
a) Generate a programming bit-map file using the XDM

VERIFY➝MAKEPRG command (for Intel Hex format) or the
VERIFY➝MAKEJED command (for JEDEC format). The
resulting menus are illustrated in Figure 1-13.

Figure 1-13 Device Programming Menus

b) Select “n_design.VMH” and click DONE.
You are prompted for a signature.

c) Enter “testprg.a” (or any unique identifying text of 8 characters
or less). The “.a” extension identifies the signature as ASCII.

XEPLD creates a bit map file named “n_design.JED” or
“n_design.PRG” containing the information required to program
your design into the selected device.

Refer to your device programmer documentation for instructions on
how to download the bit-map file.

n_des i gn.vmh n_design.vmh
XEPLD Design Guide 1–11

XEPLD Design Guide
1–12 Xilinx Development System

Chapter 2
XEPLD Design Guide — 0401191 01 2–1

Creating Designs with PLUSASM

This chapter demonstrates how to create behavioral designs using
PLUSASM, the Xilinx native EPLD design language based on the
PALASM2 equation syntax.

All files that come from PLD compilers or schematic entry tools,
eventually get translated into PLUSASM by the XEPLD software
prior to the fitting process. The fitter can optimize the PLUSASM
code and achieve excellent results, or you can generate optimized
PLUSASM source code that specifies exactly how the fitter should
allocate resources by using attributes and property statements in
your high-level design file.

PLUSASM Overview
Using an ASCII text editor, you can create a complete PLUSASM
design within a single file, which contains both design control infor-
mation and behavioral equations. However, it is often convenient to
develop your design as separate Include Files and link them together
within a Top-Level File to form a complete design. These two design
approaches are illustrated below in Figure 2-1.

Figure 2-1 PLUSASM Design Approaches

Top-Level File Top-Level File

Include File

Single File Hierarchical

Include File . . .

XEPLD Design Guide
PLUSASM File Structure
The basic structure of the PLUSASM Top-Level File and Include Files
is illustrated in Figure 2-2. This figure shows a hierarchical design
composed of a Top-Level File containing both embedded equations
and three Include Files referenced by INCLUDE_EQN statements.

The file structure is identical for both the Top-Level File and the
Include Files. However, the Include Files have a different CHIP state-
ment syntax and they can contain only a limited subset of declaration
statements. For detailed information on each PLUSASM command,
see Chapter 4 of the XEPLD Reference Guide.

Figure 2-2 PLUSASM File Structure

The Header Section

The header section is used for design documentation only; these
commands are ignored by XEPLD and do not affect your design. The
header can contain the following statements in any order:

● TITLE any_text

● AUTHOR any_text

● DATE any_text

AUTHOR J. Jones
DATE 11/12/92
REVISION 1.2.1.5

CHIP test_1 XEPLD
INPUTPIN A B C
OUTPUTPIN C D E
NODE A1 A2 A3 X
INCLUDE_EQN ‘file_1.PLD‘
INCLUDE_EQN ‘file_2.PLD‘
INCLUDE_EQN ‘file_n.PLD‘

EQUATIONS
D = B * C
X = Q1 + Q2 + Q3
...

Header
Section

Declarations
Section

Equations
Section

Header
Section

Declarations
Section

Equations
Section

file_1.PLD

file_2.PLD

file_n.PLD

design_name .PLD

Top-Level File
Include Files
2–2 Xilinx Development System

Creating Designs with PLUSASM
● REVISION any_text

● TIME any_text

● COMPANY any_text

The Declarations Section
Declaration statements specify device I/O pins and affect how your
behavioral equations are mapped into a specific device. The first
statement (after the Header Section) must be the CHIP statement
immediately followed by the pinlist. All other declaration statements
may be used in any order.

Declaration State-
ment

T
O
P

I
N
C

Function Overview

CEPIN X Specifies the global Clock Enable input pins.
CHIP X X Specifies the file type, file name, and pin list.
FASTCLOCK X X Specifies the global FastCLK inputs.
FASTINPUT X Declares the signals connected to the FastInput pins.
FOEPIN X Specifies global FAST Output Enable input pins.
INCLUDE_EQN X Specifies names of Include Files.
INPUTPIN X Specifies device input pins.
IOPIN X Specifies device I/O pins.
LOGIC_OPT X Controls logic optimization.
MINIMIZE X X Controls the use of logic minimization.
MRINPUT X Specifies the Master Reset input.
NODE X X Specifies nodes in the design.
OPTIONS X Controls the automatic use of device resources.
OUTPUTPIN X Specifies device output pins.
PARTITION X X Specifies physical locations for groups of equations.
PWR X Controls the device power usage.
STRING X X Specifies a global text string substitution.
TOP = Used in Top-Level Files
INC = Used in Include Files and PLD Files in Schematics
XEPLD Design Guide 2–3

XEPLD Design Guide
The Equations Section

Specify your behavioral design equations in this section, which must
begin with the EQUATIONS keyword. You may use any valid
PLUSASM equation syntax.

In a Top-Level File, this section is optional if you have equations spec-
ified in Include Files. However, you must include the EQUATIONS
keyword even if there are no explicit equations in the file.

This section is mandatory in Include Files.

Creating Basic Designs
The Xilinx EPLD fitter automatically optimizes your equation files. It
analyzes your design and automatically maps functions into the
appropriate device resources without user intervention. The fitter
implements dense, high-performance designs by taking advantage of
the advanced XC7000 architectural features such as input pad regis-
ters, the Universal Interconnection Matrix, Dual-Block Architecture
function blocks, and global control signals.

The intent of this section is to introduce you to the various features of
the XC7000 architecture and show how you can control device
resource allocation with PLUSASM when desired.

This section discusses how to develop optimized equations for each
of the five basic structures used in a typical EPLD design:

● Input Pads.

● High Density Function Blocks.

● The Universal Interconnection Matrix.

● Fast Function Blocks.

● Output Pads.

Note: For a complete explanation of the XC7000 architectural fea-
tures, see the device data sheets.

Design Example
The following design example for a Pulse-Width Modulator (PWM) is
used to illustrate the basic design concepts discussed in this chapter.
2–4 Xilinx Development System

Creating Designs with PLUSASM
Figure 2-3 illustrates the logic of this design and how it is mapped
into the basic XC7000 architectural blocks. The equation file for this
schematic is shown in Figure 2-4.

The output of the PWM is a constant frequency with a variable high
time, controlled by a loadable, 4-bit up-down counter. If the counter
is loaded with the value P, the length of the down-count period is P
clock periods and the length of the up-count period is (2n+1)-P. The
toggle period of the output flip-flop is 2n+1, (the sum of the up-count
and the down-count periods), which is independent of P. Therefore,
the flip-flop output has a constant frequency with its high time
proportional to P.

Figure 2-3 4-Bit Pulse Width Modulator

D0
D1
D2
D3

Q0
Q1
Q2
Q3

D0
D1
D2
D3

Q0
Q1
Q2
Q3

UP

PE

^

D Q

^

^

D0
D1
D2
D3

TCO

PWM

CLK

Input Function
Block

UIM
Fast
Function
Block

Output
PadPad

OE
XEPLD Design Guide 2–5

XEPLD Design Guide
Figure 2-4 Pulse Width Modulator Equation File

TITLE NEWPWM
CHIP NEWPWM XEPLD

; pulse width modulation design

OUTPUTPIN q0 q1 q2 q3
OUTPUTPIN (FOE = OE) pwm
INPUTPIN (RCLK=CLK) d0 d1 d2 d3
NODE (UIM) tco
FASTCLOCK clk
FOEPIN OE

PARTITION FFB pwm

EQUATIONS

q3 := (q3 * /tco) :+: (d3 * tco
 + pwm * q0 * q1 * q2 * /tco
 + /pwm * /q0 * /q1 * /q2 * /tco)

q2 := (q2 * /tco) :+: (d2 * tco
 + pwm * q0 * q1 * /tco
 + /pwm * /q0 * /q1 * /tco)

q1 := (q1 * /tco) :+: (d1 * tco
 + pwm * q0 * /tco
 + /pwm * /q0 * /tco)

q0 := (q0 * /tco) :+: (d0
 + /tco)
pwm := pwm :+: tco

tco = (q0 * q1 * q2 * q3)
2–6 Xilinx Development System

Creating Designs with PLUSASM
Using Input Pad Structures
There are two types of input pads in XC7000-series devices: Dedi-
cated input-only pads and I/O pads configured for input.

Input pads can be configured as follows:

● Registered.

● Registered with clock enable.

● Latched.

● Combinatorial (non-registered and non-latched).

● FastInput.

Registered Inputs

Specify registered inputs by adding the clock source modifier
(RCLK=clock_source) to the INPUTPIN statement, as demonstrated in
the following example:

Figure 2-5 Registered Input Pad

INPUTPIN (RCLK=CLK) d0 d1 d2 d3
FASTCLOCK CLK

D0
D1
D2
D3

Q0
Q1
Q2
Q3

^

D0
D1
D2
D3

CLK

OE

Input Pad
XEPLD Design Guide 2–7

XEPLD Design Guide
Note: Input pad registers may only be clocked by the FastCLK
inputs.

Note: The software automatically tries to assign single input regis-
tered equations to input pad registers to minimize the usage of mac-
rocell resources where possible.

Registered Inputs with Clock Enable

Configure the registered input pads with clock enable by adding the
clock enable (CE) modifier to the INPUTPIN statement as follows:

FASTCLOCK CLK
CEPIN /CKEN
INPUTPIN (RCLK=CLK CE=CKEN) D0 D1 D2 D3

Latched Inputs

Configure the input pads for latched operation by using the latch
modifier (LE) in the INPUTPIN statement as follows:

FASTCLOCK ENAB
INPUTPIN (LE=ENAB) D0 D1 D2 D3

Combinatorial Inputs

Configure input pads for direct input to the UIM by omitting the
clock source specification in the INPUTPIN Statement. For example,
the following statement specifies direct input to the UIM:

INPUTPIN D0 D1 D2 D3

FastInputs

Each XC7300-series device has dedicated FastInput pins that input
signals directly to the Fast Function Blocks, bypassing the UIM, and
therefore requiring less delay. XC7300 devices for example have 12
dedicated FastInputs. To specify a FastInput use the (FI) modifier in
the INPUTPIN statement. For example:

INPUTPIN (FI) D0 D1 D2 D3

In this example, all instances of D0, D1, D2, and D3 are used as
FastInputs. As an alternative, you can specify the .FI extension (as in
D0.FI) for only those instances that you want to use the FastInput
path; all other instances are routed through the UIM.
2–8 Xilinx Development System

Creating Designs with PLUSASM
Input Polarity

Configure active-low inputs by adding a “/” in front of the pin speci-
fication. For example, to invert the D1 input:

INPUTPIN (RCLK=CLK) D0 /D1 D2 D3

By inverting a signal name in the INPUTPIN statement, you effec-
tively invert each instance of that input in the equations.
XEPLD Design Guide 2–9

XEPLD Design Guide
Using High-Density Function Blocks
The XC7300-series devices have a combination of High Density Func-
tion Blocks and Fast Function Blocks; this is called the “Dual Block
Architecture.” High Density Function Blocks provide the maximum
amount of logic resources for use in your design.

High Density Function Blocks can implement the following:

● Registered Equations.

● Combinatorial Equations.

Registered Equations

Specify registered equations by using the “:=” operator, as shown in
the following example:

Figure 2-6 Registered Equations for HDFBs

Q0
Q1
Q2
Q3

D0
D1
D2
D3

Q0
Q1
Q2
Q3

UP

PE

^

Function
Block

EQUATIONS
q3 := (q3 * /tco) :+: (d3*tco
 +pwm*q0*q1*q2*/tco
 +/pwm*/q0*/q1*/q2*/tco)
...

CLK
2–10 Xilinx Development System

Creating Designs with PLUSASM
Registered Equation Clock Definition

Use the .CLKF equation to specify the clock source for a registered
equation. Clocks may be any ordinary input or logical signal (macro-
cell feedback) in the design, which can be implemented using the
macrocell’s product term clock. You may also specify a FastCLK
signal which is declared in a FASTCLOCK statement. If you do not
specify a .CLKF equation, the software uses the first signal named in
a FASTCLOCK statement, by default.

Note: The software automatically assigns single-input rising edge
clock signals to FastCLKs where possible.

Register Preload Values

Registers in High Density Function Blocks can be configured to
power-up to either a logical 0 or 1. Use the .PRLD equation to specify
GND or VCC as the power-on value as follows:

Q1.PRLD = VCC; preload the Q1 output to a logic 1

If you do not specify a preload value, the software will normally
assume a logical 0 (GND) but will change it when necessary to allow
optimization of the register into an input pad or FFB. If you specify a
preload value, you may inhibit the software from performing optimi-
zation on that equation.

Macrocell Control Equations

Configure registered equations for asynchronous clear by using the
.RSTF extension. For example:

Qn.RSTF=CLEAR

Configure registered equations for an asynchronous SET input by
using the .SETF extension. For example:

Qn.SETF=SET

Create (product term) 3-state control signals by using the .TRST
extension. For example:

X.TRST = TRISTATE

Note: You can also control 3-state signals by using the global
FOEPIN signals. The software automatically assigns single-input
active-high .TRST equations to the global FOE signals where possi-
ble.
XEPLD Design Guide 2–11

XEPLD Design Guide
Combinatorial Equations

Specify combinatorial equations by using the “=” operator. For
example:

tco = q0 * q1 * q2 * q3

Manual Placement of Equations

To manually place one or more equations into any High Density
Function Block use the PARTITION statement, as follows:

PARTITION FB signal_name1 signal_name2 ...

To manually place one or more equations into a specific High Density
Function Block, (in this example, FB5) use the PARTITION statement,
as follows:

PARTITION FB5 signal_name1 signal_name2 ...

To manually place one or more equations consecutively into a specific
High Density Function Block, beginning with a specific macrocell, (in
this example, FB5, macrocell 3) use the PARTITION statement, as
follows:

PARTITION FB5_3 signal_name1 signal_name2 ...

Note: The software automatically partitions your design; manual
partitioning may prevent the software from producing the most effi-
cient mapping of your design.
2–12 Xilinx Development System

Creating Designs with PLUSASM
Using the Universal Interconnection Matrix (UIM)
The UIM provides a 100% interconnection matrix allowing any
output to drive any input in the device; routing is never blocked. The
wired-AND capability of the UIM also allows it to implement logic
functions which incur no additional delay.

Using UIM Interconnections

All macrocell inputs (except for the FastInputs) come from the UIM.
No special syntax is required to specify these connections which are
implied in your equations.

Using Wired-AND Functions

The UIM is capable of performing wired-AND functions which are
automatically used by the software when possible to improve
resource utilization. To manually specify a UIM AND function,
assign the associated nodes to the UIM by using a NODE (UIM) state-
ment. In the Pulse Width Modulator example, the carry-out signal is
created by ANDing the Q0-Q3 outputs in the UIM, as shown below:

Figure 2-7 Specifying UIM AND Gates

Note: In most cases there is no need to manually specify UIM AND
gates in your design. Your results are usually better if the software is
allowed to select which functions to move into the UIM.

Q0
Q1
Q2
Q3

UIM

NODE (UIM) TCO
EQUATIONS
tco = q0 * q1 * q2 * q3

TCO
XEPLD Design Guide 2–13

XEPLD Design Guide
XEPLD automatically uses the UIM whenever possible to increase the
available macrocell resources. You can disable the UIM optimization
function for your whole design by using the OPTIONS statement. For
example, to turn off optimization for the whole design:

OPTIONS OFF UIM_OPT ; Turn off UIM optimization

Signal Polarity

You can create DeMorgan equivalent logical functions (OR, NOR,
NAND and so on) by inverting the inputs or outputs of the UIM
AND function. For example, to create the logical OR function in the
UIM:

NODE (UIM) OR_GATE; place OR_GATE into the UIM
EQUATIONS
/OR_GATE = /Q0*/Q1*/Q2*/Q3; a logic OR function

Note: If you try to place an equation into the UIM that cannot be
implemented due to the lack of signal inversions, the equation is
automatically placed into a macrocell instead and the software issues
a warning.
2–14 Xilinx Development System

Creating Designs with PLUSASM
Using Fast Function Blocks
The XC7000-series devices have a combination of Fast Function
Blocks and High Density Function Blocks. Logic placed into the Fast
Function Blocks performs faster than logic placed into High Density
Function Blocks.

Fast Function Blocks can implement the following:

● Combinatorial Equations.

● Registered Equations.

Combinatorial Equations

Specify combinatorial equations by using the “=” operator. For
example:

TCO = q0 * q1 * q2 * q3

Registered Equations

Specify registered equations by using the “:=” operator, as demon-
strated in the following example:

Figure 2-8 FFB Registered Equations

Note: The preload value for registers in a Fast Function Block is VCC
(high), unless you are using the reset input to the register. If you are
using the reset input (only available in the XC7336) the preload value
is GND (low).

D Q

^

Fast
Function
Block

pwm := pwm :+: tco

TCO
pwm
XEPLD Design Guide 2–15

XEPLD Design Guide
Automatic Placement of Equations

After optimization, XEPLD automatically maps functions that meet
the following requirements into the available Fast Function Blocks:

● All clocks must be able to map onto global FastCLK signals.

● All 3-state controls must be able to map onto global FOE signals.

● All registers are asynchronously set only (not reset), except for the
XC7336 devices which are selectable for either set or reset.

● All registers must not specify a low (GND) preload value, except
for the XC7336. (If you use the reset input to a register in the
XC7336, the preload value must be GND.)

● All logic must use 4 or less p-terms when implemented with
active low outputs. (except for the XC7336 devices, which support
either active low or active high outputs.)

Note: If your equations require more than 4 product terms, the
XEPLD software will automatically partition your equations into
groups of 4 and export the output to adjacent macrocells using the
.EXPORT equation. This allows equations using more than 4 product
terms to be implemented in an FFB.

Manual Placement of Equations

To manually place one or more equations into any FFB use the PARTI-
TION statement, as follows:

PARTITION FFB signal_name1 signal_name2 ...

To manually place one or more equations into a specific FFB, (in this
example, FB2), use the PARTITION statement, as follows:

PARTITION FB2 signal_name1 signal_name2 ...

To manually place one or more equations into a specific FFB, begin-
ning with a specific macrocell, (in this example, FB2, macrocell 3), use
the PARTITION statement, as follows:

PARTITION FB2_3 signal_name1 signal_name2 ...

Note: In the XC7300 devices, FB1 and FB2 are actually Fast Function
Blocks. Specifying FB1 or FB2 in a PARTITION statement implies
using an FFB and not a High Density Function Block.

Note: FFBs do not have ALU resources. Therefore, any .D1 or .D2
equations are converted to their sum-of-products form by the soft-
ware as needed, to fit equations into Fast Function Blocks.
2–16 Xilinx Development System

Creating Designs with PLUSASM
Using Output Pad Structures
There are two types of output pads for XC7300-series devices: High
Density Function Block Outputs (standard drive capability) and Fast
Function Block Outputs (high drive capability).

Each of these outputs can be configured for:

● 3-state with product term (logic) control.

● 3-state with FOEPIN control.

● 3-state with both FOEPIN and product term control.

● Direct (always on).

3-State Outputs using Global FOE

Control 3-state outputs with the global FOEPIN inputs by using the
FOE modifier in the OUTPUTPIN statement, as demonstrated in the
following example:

Figure 2-9 3-state Control Using FOE

Note: The Global FOE capability is not available in the XC7272.

3-State Outputs using Product Term Control

Control 3-state outputs with logic signals by using the .TRST exten-
sion. For example:

OUTPUT := TCO
OUTPUT.TRST = X ; X is the 3-state control

OUTPUTPIN (FOE = OE) pwm
FOEPIN OE

PWM

Output

OE
Pad
XEPLD Design Guide 2–17

XEPLD Design Guide
Note: The software automatically assigns single-input active-high
.TRST functions to the global FOE pins where possible.

Note: Product term 3-state control is only valid in High Density
Function Blocks; .TRST equations cannot be specified for outputs
assigned to FFBs.

Direct Outputs

Configure outputs as always-on (no 3-state capability) by using the
OUTPUTPIN statement with no FOE modifiers. For example:

OUTPUTPIN D0 D1 D2 D3; Outputs are not 3-state

Specifying Feedback Paths

There are two types of signal feedback to the UIM:

● Pin Feedback (from the device pin).

● Macrocell Feedback (from the macrocell outputs).

The PINFBK option in the IOPIN pin statement can be used to
globally control the feedback options.

Pin Feedback

Use the PINFBK option of the IOPIN statements to specify that the
signal feedback always comes from the device pin. For example:

IOPIN (PINFBK) A
Q := A; A comes from the pin

Macrocell Feedback

Macrocell feedback is routed through the UIM and is independent of
the state of the associated device pin. For example:

IOPIN A
Q0:=A; A comes from the macrocell - UIM feedback
Q1:=A.PIN; A comes from the pin - Pin feedback

UIM feedback is the default unless otherwise specified.
2–18 Xilinx Development System

Creating Designs with PLUSASM
Specifying 3-State Options

There are two types of product term 3-state control:

● Pin 3-state.

● Node 3-state.

Pin 3-State

When using pin 3-state, the product term controls the 3-state condi-
tion of the pin only and not the macrocell feedback to the UIM. For
example:

OUTPUTPIN Q
Q := A; Q is always fed back to the UIM
Q.TRST = X

Pin 3-state is the default for all devices other than the XC7272. When
the equation above is implemented in an XC7272 however, the
macrocell feedback to the UIM is disabled (a logic 1 state) when the
pin is in a 3-state condition.

Node 3-State

Node 3-state is used to emulate 3-state busses in the UIM. However,
it is usually better to implement multiplexers instead of 3-state
busses because the UIM feedback is lost (disabled in a logic 1 state)
when the node is in a 3-state condition. For example:

NODE (NODETRST) A B
NODE (UIM) AND_GATE
OUTPUTPIN C
EQUATIONS
A = SIGNAL0 ; A = 1 when X is not true
B = SIGNAL1 ; B = 1 when X is true
A.TRST = X
B.TRST = /X
AND_GATE = A*B ; UIM AND gate
C = AND_GATE
XEPLD Design Guide 2–19

XEPLD Design Guide
Using both Product Term and FOE 3-State Control

If both product term and FOEPIN 3-state control signals are specified
for an output, the software automatically ANDs the signals together.
Both control signals must be active (high) to enable the pin as shown
in Figure 2-10 below. If either control signal is inactive (low), the
output pin is forced into a 3-state condition.

Figure 2-10 Using both P-Term and FOE 3-State Control

Note: This 3-state control AND function is inherent in the device and
does not use macrocell or UIM-AND resources.

X

P-Term 3-State Control
FOEPIN 3-State Control
2–20 Xilinx Development System

Chapter 3
XEPLD Design Guide — 0401191 01 3–1

Converting PAL Designs

This chapter shows you how to use PAL equation files to develop
designs for Xilinx EPLDs. This is a simple process because the
internal architecture of Xilinx EPLDs is similar to PALs and because
the XEPLD software automatically processes your PAL equation files,
creating a Top-Level File ready for compilation. Figure 3-1 illustrates
the PAL design conversion process.

Also see Chapter 1 for a brief example illustrating the use of PAL
equation files.

Figure 3-1 PAL File Conversion Diagram

X4412

Device Programmer File

Design Compilation

Top-Level
File

User Defined I/O Changes

XEPLD

XEPLD

XEPLD

FITEQN

PAL Conversion

PALCONVT

MAKEJED
or

MAKEPRG

PAL
Equation File

.PLD or

.PDS Files

PAL
Equation File

•
•
•
•

User-Defined I/O Changes

XEPLD Design Guide
The native language for Xilinx EPLDs is PLUSASM, a language based
on the PALASM2 Boolean equation syntax (.PDS). Many popular PAL
compilers such as ABEL, CUPL, LOG/iC, and PALASM can generate
the PALASM2 boolean equation files required by the XEPLD soft-
ware. By using your PAL compiler’s built-in ability to generate .PDS
files (such as the ABEL XFER utility or the CUPL -c compiler option),
you can easily generate PLUSASM-compatible equation files. These
equation files are then mapped into the Xilinx EPLD architecture by
the XEPLD software.

PAL Conversion Methodology Overview
Use the FITTER➝PALCONVT command to combine multiple PAL
equation files into a single coherent PLUSASM design. The
PALCONVT program reads your PAL files and analyzes their I/O
signal configurations, producing a PLUSASM Top-Level File which
specifies an interpretation of all signals. Your PAL equation files
become Include Files in the Top-Level File.

PALCONVT also resolves any polarity conflicts between PALs,
resolves any PAL-specific functionality (for 22V10s and 20V8s), and
creates a PAL Interconnect Report summarizing the usage and inter-
connection of all signals in the design and in the EPLD device I/O
interface. This report helps you choose a target device that matches
your requirements. See the XEPLD Reference Guide for the details of
22V10 and 20V8 support.

Pin and Node Assignment
PALCONVT automatically assigns I/O pin and node declaration
statements to the signals in your PAL equation files, based on their
use in the circuit. These declarations are written to the Top-Level File.

● Signals used only as equation inputs are assigned to INPUTPIN
statements.

● Signals used only as equation outputs are assigned to OUTPUT-
PIN statements.

● Signals used as both equation inputs and outputs, that have no
.TRST control inputs, are assigned to NODE statements.

● Signals used as outputs, that also have .TRST control inputs, are
3–2 Xilinx Development System

Converting PAL Designs
assigned to OUTPUTPIN statements, regardless of whether they
are also used as an input.

You can change any of these assigned nodes to output or I/O pins by
modifying the declaration statements in the Top-Level File after
running PALCONVT. The default assignments are illustrated below
in Table 3-1.

Table 3-1 Automatic Assignment of PAL Signals

PALCONVT also processes PLUSASM files that were not targeted for
PALs. This includes any equation file prepared for a PLD or custom
symbol in a schematic design. If your equation files include XEPLD-
specific declaration statements, they are automatically assigned as
shown in Table 3-2.

Table 3-2 XEPLD Declaration Statement Assignments

PAL Signals
Default

Assignment

Signals appearing only on the right side of equations INPUTPIN

Signals appearing only on the left side of equations OUTPUTPIN

Signals appearing on both sides (L & R) of equations and
have no .TRST control

NODE

Signals used as output that also have .TRST control OUTPUTPIN

XEPLD-Specific Declarations
in Include Files

Assignment

FASTCLOCK FASTCLOCK

NODETRST ON OUTPUTPIN (NODETRST)

NODE (UIM) NODE (UIM)

FASTINPUT INPUTPIN (FI)

PARTITION PARTITION
XEPLD Design Guide 3–3

XEPLD Design Guide
FASTCLOCK and FOEPIN Assignment
XEPLD automatically assigns the most frequently used rising-edge
clock inputs to FastCLK nets and the most frequently used active-
high output enable inputs to FOE nets. See “Editing the Top-Level
File” later in this chapter for more information on FASTCLOCK and
FOEPIN assignment.

Note: If your clocks or output enable controls are connected to com-
binatorial logic in your design, they cannot be assigned to the Fast-
CLK or FOE signals which use dedicated wiring in the device that is
not accessible to the macrocell logic.

Signal Polarity Conflict Resolution
PALCONVT automatically modifies equations to resolve conflicts in
signal polarity declarations. The software automatically inverts all
instances of a signal within a PAL file if the signal is declared with
active-low polarity in the PAL file’s pinlist but is also declared active-
high in the pinlist of another PAL file.

PAL Conversion Requirements
You can use any PAL equation file (or behavioral design file) that
conforms to PLUSASM syntax (.PLD or .PDS). PLUSASM is based on
PALASM and most PAL equation files that are output in PALASM2
Boolean equation format are PLUSASM compatible.

Note: You can recompile ABEL-based designs with Xilinx ABEL, and
the resulting files will be PLUSASM compatible.

See the PLUSASM section of the XEPLD Reference Guide for a
complete description of PLUSASM.

Using 22V10 and 20V8 Files
PALCONVT automatically processes 22V10 and 20V8 PAL files
including the implied features (such as default clocks, 3-state
controls, global set/reset, and so on). See Appendix B of the XEPLD
Reference Guide for complete details of 22V10 and 20V8 support.
3–4 Xilinx Development System

Converting PAL Designs
Using Generic PAL Files
If the CHIP statement of any PAL equation file contains a PAL device
type other than “22V10” or “20V8”, or if the CHIP statement contains
the keywords, COMPONENT, PLFB9, or PLFFB9, XEPLD will
assume that the equation file is for a generic PAL and will process the
equations as a behavioral design. All equations must be explicitly
defined in PLUSASM syntax; your generic files must not include any
implied functions (such as 3-state controls, inversions, and so on). See
Appendix B of the XEPLD Reference Guide for more information on
generic PAL support.

Generic equations may also be obtained when a device-independent
behavioral design is processed by a PLD compiler. If the resulting
PLUSASM-compatible equation file contains no CHIP statement or if
the CHIP statement omits the target PLD type, you must specify a
CHIP statement in the file with an unrecognized target PLD type
such as the following:

CHIP my_pal 16R8; 16R8 is unrecognized
; and defaults to generic

Note: The signal on pin 1 (of a PAL equation file) is assumed to be the
default clock for any registered equation output that does not have an
explicit clock definition.
XEPLD Design Guide 3–5

XEPLD Design Guide
The PAL Conversion Procedure
The procedure for preparing one or more PAL equation files for use in
a Xilinx EPLD is illustrated in Figure 3-2. See Chapter 1 for a brief
PAL conversion example including the menus that appear at each
step.

Figure 3-2 Pal Conversion Methodology

Create PAL Equation Files
with .PLD or .PDS Extensions

Import the Files

Run XDM, The Xilinx Software

Create a Top-Level File by Using
FITTER ➝ PALCONVT

Review the PAL Interconnect
Report and make any Changes

Select a Device Type and Speed

Compile the Design by Using
FITTER ➝ FITEQN

Verify the Design

Program a Device

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9
3–6 Xilinx Development System

Converting PAL Designs
Step 1 — Create .PLD or .PDS Files
For each PAL in the design, generate a PALASM2 boolean equation
file from the original PAL source code. For example, use the ABEL
“XFER” utility or the CUPL “-C” compiler option. All PAL equation
files must have either a .PLD or .PDS file extension.

Step 2 — Import the PAL Files
Copy the PAL equation files into a design directory. It is recom-
mended that you not use the /XACT directory for designs.

Note: This is a good time to verify that the signal names in each PAL
pinlist establish the proper signal connectivity for the design.

Step 3 — Run XDM
XDM is the Xilinx Design Manager program contained in XEPLD.

a) To run XDM, at the system prompt type:

XDM

The XDM main menu appears.

Step 4 — Select a Device Type and Speed
Choose an EPLD device type and speed based on your design
requirements.

a) Open the device family menu by selecting the PROFILE➝
FAMILY command from the XDM main menu. XDM displays
the various Xilinx device families available to you.

b) Select either “XC7200” or “XC7300.” XDM displays the part
type selection menu.

c) Select a device type. For example, select 7336PC44. XDM dis-
plays a speed selection menu.

d) Select a device speed grade. For example, select “–7”.

Notice that the “Family:” and “Part:” sections of the XDM main
menu (lower left) change to reflect your selections.
XEPLD Design Guide 3–7

XEPLD Design Guide
Step 5 — Create a Top-Level File
The PALCONVT program automatically creates a Top-Level File for
you.

a) Run PALCONVT by executing the FITTER➝PALCONVT com-
mand from the XDM main menu. You are prompted for a
design name.

b) Enter a design name. If the file name already exists, you are
asked if you want to overwrite the file. XDM then lists all .PLD
and .PDS files in the design directory.

c) Select one or more PAL files to include in the design, and click
“DONE.” You are prompted for a target selection.

d) If you select Option One “Create new PLD and PAL Intercon-
nect Report”, PALCONVT reads the equation files and creates
a Top-Level File. Each selected PAL equation file name is speci-
fied in an INCLUDE_EQN statement. The pinlists from each
PAL file are merged together and the Top-Level File is saved as
design_name.PLD. See Figure 3-7 for an example of a Top-Level
File.

Note: Option One is recommended.

If you select Option Two “Integrate new PLD using FITEQN”,
XEPLD runs PALCONVT (as in option one) and compiles your
design using FITEQN. Inspect the Top-Level File to verify that
the node and I/O pin assignments created by the conversion
process are correct. Then proceed to Step 8 “Verify the Design”.

If there is a conflict between PAL files, PALCONVT displays an error
message and halts. The PAL Interconnect report (design_name.INT)
will indicate the conflict. Change the PAL source file and run
PALCONVT until the design is free of conflicts.

Step 6 — Edit the Top-Level File
After reviewing the PAL Interconnect Report, you can use a text
editor to edit the Top-Level File (design_name.PLD) and make any
necessary changes to the automatic assignments made by
PALCONVT.

a) Resolve any signal name inconsistencies to establish the correct
interconnection between PAL files.
3–8 Xilinx Development System

Converting PAL Designs
b) Change the default node and I/O pin assignments created by
the automatic conversion process.

c) Specify any global control signals you want to use (FastCLK,
FOE).

Note: When you are finished editing, be sure to save the changes
before proceeding to the next step.

Step 7 — Compile the Design
When your Top-Level File is complete you are ready to compile your
design, creating a physical device layout.

a) Run the compiler by selecting the FITTER➝FITEQN com-
mand, which displays all .PLD files in the working directory.

b) Select your design file (design_name.PLD). XEPLD creates the
design_name.VMH file which contains a physical description of
your logical design as it is mapped into the specified EPLD.
XEPLD also creates the reports used to verify your design.

Step 8 — Verify the Design
Use the reports created by the compiler to verify that your design fits
within the specified device. Choose the reports you want to read by
using a text editor, or by selecting the UTILITIES➝BROWSE
command. See Chapter 5 for a discussion of design verification.

The primary reports are:

● design_name.RES — The resource usage report.

● design_name.PIN — The pin assignments for your design.

● design_name.ERR — The warning and error log.

● design_name.EQN — The optimized equation file.

Step 9 — Program the Device
Generate a device programming bit-map file by using the
VERIFY➝MAKEPRG command (for Intel Hex format) or the
VERIFY➝MAKEJED command (for JEDEC format). Refer to your
device programmer documentation for instructions on how to down-
load the bit-map file.
XEPLD Design Guide 3–9

XEPLD Design Guide
Verifying PAL Conversion
PALCONVT creates a PAL Interconnect Report (design_name.INT)
listing the signals used by each PAL in your design. Use this report to
verify that the signal names in the pinlist of each PAL Include File
establish the required connectivity between the PAL files.

The following section presents a PAL conversion example. The PAL
Interconnect Report for the example design is shown in Figure 3-6.
The “Connectivity” column of the Interconnect Report shows the
interconnections for each PAL pin. Pins that do not connect to another
PAL are marked “External Only.” Pins that are used only for feedback
within the same PAL are marked “Internal Only.” Duplicate output
signal names are marked “Conflict PAL_name:pin_number” to help
you easily identify which PAL is generating the conflict.

You can use a text editor with a global search and replace function to
edit the PAL Include File pinlist and equations. Once you have estab-
lished the proper signal connectivity run PALCONVT once again.

An alternative to editing the PAL Include Files is to create a schematic
using Xilinx PAL library components to establish the proper connec-
tivity.

Editing the Top-Level File
The PALCONVT software creates a Top-Level File based on its
assumptions about your overall design. In some cases you will need
to manually edit the Top-Level File and reassign some of the signals
assigned to NODE statements. These signals will be reassigned to
OUTPUTPIN or IOPIN statements.

The XEPLD fitter will read the Top-Level File and the Include Files,
optimize the design, and achieve excellent results. For example, the
fitter will automatically collapse your logic and take advantage of
global clock nets and global output enable control nets, even though
you have not specified them in the Top-Level File. However, if you
have any speed-critical paths or bi-directional signals in your design
you must specify how the fitter is to handle them.

The following example illustrates how to edit the Top-Level File if
you want to map speed-critical signals into Fast Function Blocks and
FastInput pins, and how to handle bi-directional signals.
3–10 Xilinx Development System

Converting PAL Designs
PAL Conversion Example
An example PAL design is illustrated in Figure 3-3. The PAL equation
files are shown in Figure 3-4 and Figure 3-5. The PAL Interconnection
Report is shown in Figure 3-6. The Top-Level File created by
PALCONVT is shown in Figure 3-7. The edited Top-Level File is
shown in Figure 3-8.

Figure 3-3 The Original PAL Design Example

X5015

PAL1

1

2

3

4

5

6

7

8

9

10

11

12

24

23

22

21

20

19

18

17

16

15

14

13

A

B

C

PAL2

1

2

3

4

5

6

7

8

9

10

11

12

24

23

22

21

20

19

18

17

16

15

14

13

F

G

H

J

K

L

D

E
XEPLD Design Guide 3–11

XEPLD Design Guide
Figure 3-4 PAL1 Equation File

Figure 3-5 PAL2 Equation File

TITLE PAL1
CHIP PAL1 P22V10
;PINLIST (Highest Pin Number = 24)
A B C NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC K J H G F NC
; PALCONVT DESIGN EXAMPLE PAL1
EQUATIONS
F := (B);
G:= (F);
G.TRST = C;
H := (G);
J := (B * K)
K := (B);
K.TRST = (C);

TITLE PAL2
CHIP PAL2 P22V10
;PINLIST (Highest Pin Number = 24)
NC J K NC NC NC D E NC NC NC NC NC NC NC NC NC NC NC NC NC L NC NC
; PALCONVT DESIGN EXAMPLE PAL2
EQUATIONS
L = (J * K * E);
L.TRST = (D);
3–12 Xilinx Development System

Converting PAL Designs
Figure 3-6 PAL Interconnect Report Example

XEPLD, Version Xilinx Inc.
 PAL INTERCONNECT REPORT
 Circuit name: EXAMPL1
Target Device: 7310884 Integrated: 10-25-93, 6:26PM

PAL File: PAL2
++

PAL Signal PAL CHIP
PIN Name Use Use Connectivity
 2 J I NODE From PAL1:20
 3 K I NODE From PAL1:19
 7 D I INPUTPIN External Only
 8 E I INPUTPIN External Only
22 L O OUTPUTPIN External Only

Unconnected pins: 1 4 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21

PAL File: PAL1
++

PAL Signal PAL CHIP
PIN Name Use Use Connectivity
 1 A I INPUTPIN External Only
 2 B I INPUTPIN External Only
 3 C I INPUTPIN External Only
19 K O,FBK NODE To PAL2:3
20 J O NODE To PAL2:2
21 H O OUTPUTPIN External Only
22 G O,FBK NODE Internal Only
23 F O,FBK NODE Internal Only

Unconnected pins: 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Total number of Output Equations specified = 6
Total number of device pins used for Input = 5
Total number of device pins used for Output = 2
Total number of device pins used for I/O = 0
Total number of Global Control pins used = 0
XEPLD Design Guide 3–13

XEPLD Design Guide
Figure 3-7 Example Top-Level File Created by PALCONVT

Figure 3-8 Example Top-Level File (edited)

PATTERN exampl1.pld - file made by PALCNVT command
CHIP exampl1 XEPLD
INCLUDE_EQN 'pal2.pds'
INCLUDE_EQN 'pal1.pds'
INPUTPIN D E A B C
OUTPUTPIN L H
NODE J K G F
EQUATIONS

PATTERN exampl1a.pld - file made by PALCNVT command

CHIP exampl1a XEPLD

INCLUDE_EQN 'pal1.pds'
;INCLUDE_EQN 'pal2.pds' PAL2 equations copied into Top Level
;File to specify pin feedback only for K input of PAL2

FASTCLOCK A ; Changed from INPUTPIN
INPUTPIN B C
FOEPIN D ; Changed from INPUTPIN
INPUTPIN (FI) E ; Changed from INPUTPIN to

; fast input
OUTPUTPIN F H J ; Changed from NODE
IOPIN (PINFBK) G ; Changed from NODE
IOPIN K ; Changed from NODE
OUTPUTPIN (FOE=D) L ; Change from product term

;to FOE enable

PARTITION FFB L ; Place L in a fast function
;block

EQUATIONS

L = (J * K.PIN * E) ; Use pin feedback instead
;of macrocell feedback
;for K
3–14 Xilinx Development System

Converting PAL Designs
Assigning Nodes to Outputs
The PALCONVT software interprets all signals that appear on both
sides of the equations as nodes and assigns them to NODE state-
ments in the Top-Level File. There are four instances where you will
need to change these NODE declarations:

● PAL outputs that drive other PAL inputs and also drive EPLD
outputs, must be changed to OUTPUTPIN statements.

● PAL outputs that are used as feedback in the same PAL and also
drive EPLD outputs, must be changed to OUTPUTPIN state-
ments.

● External bi-directional signals using pin feedback must be
changed to IOPIN (PINFBK) statements.

● External bi-directional signals using both pin feedback and inter-
nal macrocell feedback must be changed to IOPIN statements; the
instances using pin feedback must be identified using the .PIN
extension.

These changes are described in the following sections.

Interconnections Between PALs

Interconnecting signals between PALs are assumed to be nodes. In
the PAL conversion example, PALCONVT assigned signal J to a
NODE because it appears on both sides of the equations:

J := (B * K); PAL1
L = (J * K * B); PAL2

This signal must be removed from the NODE statement and placed
into an OUTPUTPIN statement in the Top-Level File as shown in
Figure 3-8.

PAL Outputs Used as Feedback in the Same PAL

PAL outputs that drive internal logic feedback are assumed to be
nodes. In the PAL conversion example, PALCONVT assigned signal
F to a NODE instead of a pin because signal F appears on both sides
of the equations:

F := (B); PAL1
G := (F); PAL1
XEPLD Design Guide 3–15

XEPLD Design Guide
This signal must be removed from the NODE statement and placed
into an OUTPUTPIN statement in the Top-Level File as shown in
Figure 3-8.

External Bi-Directional — PIN Feedback

Bi-directional signals are always assumed to be nodes because they
appear on both sides of equations. In the PAL conversion example,
PALCONVT assigned signal G to a NODE instead of a pin because
signal G is used both as an input and as an output:

G := (F); PAL1
H := (G); PAL1
G.TRST = C; PAL1

Signal G must be moved from the NODE statement to an IOPIN
statement in the Top-Level File as shown in Figure 3-8.

Use the PINFBK option in the IOPIN statement to specify that the
feedback always comes from the XC7000 device pin. For example:

IOPIN (PINFBK) G

External Bi-Directional — Macrocell and PIN
Feedback

Bi-directional signals are always assumed to be nodes. In the PAL
conversion example, PALCONVT assigned signal K to a NODE
instead of a pin because signal K is used for both input and output:

K := (B); PAL 1
L = (J * K * E); PAL 2
K.TRST = (C); PAL1

To change signal K to an XC7000 I/O signal, and to use both macro-
cell feedback (to PAL1) and pin feedback (to PAL 2), do the following:

1. Declare signal K as an IOPIN in the Top-Level File.

2. Change all occurrences of K on the right side of the equations to
K.PIN (in PAL2.PDS). Move the equations into the Top-Level File.

Note: An Include File must have at least one equation. In this exam-
ple, when the equations containing K are moved to the Top-Level
File, PAL2.PDS will contain no equations and therefore PAL2 is no
longer included.
3–16 Xilinx Development System

Converting PAL Designs
Assigning Output Enable Signals to FOE Nets
Changing any 3-state output enable signals from product term
control (expressed as a .TRST control equation using UIM intercon-
nections) to a global fast output enable (FOE) net results in decreased
resource requirements and decreased output enable delays.

Note: The XEPLD optimization software automatically assigns the
most frequently used output enable signals to the FOE nets whenever
possible without user intervention. However, you can also manually
assign FOE signals by editing the Top-Level File.

In the PAL conversion example, to specify signal D as an FOE control
for output L, make the following changes to the Top-Level File:

1. Add the “FOE = D” option to the OUTPUTPIN statement of the
output (L) to be controlled:

OUTPUTPIN (FOE=D) L

2. Add the statement:

FOEPIN D

3. Delete signal D from the INPUTPIN statement:

INPUTPIN E A B C

4. Delete the .TRST control equation (L.TRST = D) in the Include
File.

Note: You cannot use the FOEPIN signal as a logic input; FOEPIN
affects pin feedback but not UIM feedback. Only output enable sig-
nals that can be controlled by a single active-high pin may be
assigned to an FOE net. Active-low output enable signals must come
from a product term (macrocell).

Assigning Clock Signals to FastCLK Nets
Changing clock signals from a product term clock (expressed as a
.CLKF control equation) to a global FastCLK net will give you
decreased clock-to-output delays and reduced resource require-
ments.

Note: The XEPLD optimization software automatically assigns the
most frequently used clock signals to the FastCLK nets whenever
possible. However, you can also manually assign signals to FastCLK
XEPLD Design Guide 3–17

XEPLD Design Guide
nets by editing the Top-Level File.

In the PAL conversion example, to specify signal A as a FastCLK,
make the following changes to the Top-Level File:

1. Add the statement:

FASTCLOCK A

2. Delete signal A from the INPUTPIN statement:

INPUTPIN E B C

Note: The XC7000 architecture does not allow the same pin to be
used as both a FASTCLOCK and a logic input.

Assigning Equations to Fast Function Blocks
Fast Function Blocks (FFBs) are faster than High Density Function
Blocks and provide increased output drive capability; the software
automatically assigns output functions to FFBs when possible. You
can manually assign output signals and nodes to the FFBs by using
PARTITION statements. You can assign FastInput signals to the FFBs
by using the INPUTPIN (FI) statement or by using the .FI extension
when the signal appears on the right side of an FFB equation.

Note: Registered functions assigned to FFBs may only use
FastCLK nets and can only be asynchronously SET (except for the
XC7336 which can also be asynchronously reset).

Note: Any function assigned to an FFB may only use an FOE signal
for 3-state output control.

Note: All FFB outputs (except for the XC7336) must be active-low at
the device pin. If they are not active-low, the software will transform
the equation to an active-low output if possible.

In the PAL conversion example, to assign signal L to an FFB and
signal E to a fast input pin, make the following changes to the Top-
Level File:

1. Add the statement:

PARTITION FFB L

2. Add the statement:

INPUTPIN (FI) E
3–18 Xilinx Development System

Converting PAL Designs
Because L is assigned to an FFB during the compilation process
(FITEQN), the software will automatically create the following state-
ments to change the 3-state output enable control signal from product
term control to FOE control:

FOEPIN D
OUTPUTPIN (FOE=D) L

The software will also delete the product term 3-state control state-
ment from the PAL2 equation file:

L.TRST = (D);

Note: The software does not modify the original PLD files. It creates
a modified version of the file that is compiled by FITEQN. The modi-
fied design file is reported in the design_name.EQN file.
XEPLD Design Guide 3–19

XEPLD Design Guide
3–20 Xilinx Development System

Chapter 4
XEPLD Design Guide — 0401191 01 4–1

Using PLD Files in Schematics

This chapter provides a step-by-step procedure for including behav-
ioral equations into schematic designs. This is an easy process
because XEPLD automatically processes your schematic, assembles
any PLD equation files, and integrates the final design automatically.
Though you can create complete Xilinx EPLD designs using
predefined schematic library components such as gates, flip-flops,
and counters, you can also create custom components expressed as
behavioral designs or PLD files, which give you full control of the
device architecture.

This chapter includes a design example of using PALs in a schematic.
See Chapter 5 “Arithmetic Design Rules” for additional information
on creating custom arithmetic components.

Choosing Library Components
To include a behavioral equation file into your schematic design, you
must use the special PLD library components or create a custom
component. This section discusses the features of each type of PLD
component in the XEPLD library and provides guidelines for their
use.

Table 4-1 shows the various ways in which you can specify that a
PLD file is targeted to a schematic symbol.

XEPLD Design Guide
Table 4-1 Specifying Library Components

* Any PAL device number other than 22V10 or 20V8.

Note: If the PLD type in the CHIP statement is not recognized it will
default to GENERIC.

Using the PL22V10 or PL20V8
XEPLD supports the 22V10 and 20V8 PAL devices through special
PAL library components. Generally you would choose these compo-
nents if you already have PAL designs targeted for them or if you
have experience writing equation files for them. XEPLD supports all
implied features of these devices and provides automatic partitioning
and equation splitting.

Note: If you do not have access to the PALASM source files for these
devices, XEPLD provides automatic JEDEC file conversion.

Using the PL20PIN, PL24PIN, and PL48PIN
PALs other than the 22V10 and 20V8 are supported by the generic 20
pin, 24 pin, and 48 pin PAL library components. Generic PAL equa-
tion files must explicitly define all logic functions in an architectur-
ally-independent form; any implied functions such as 3-state control,
signal inversion, clocks, and so on (which are specific to the originally
targeted PAL device) cannot be recognized by XEPLD. However,
XEPLD does provide automatic partitioning and equation splitting
for these devices. Refer to the PLUSASM Language reference in the

Device Type CHIP Statement Library Component

PAL - 22V10 22V10 PL22V10
PAL - 20V8,
GAL - 20V8

20V8 PL20V8

Other PALs Unrecognized* PL20PIN, PL24PIN,
PL48PIN

Custom COMPONENT Custom Symbol
High Density

Function Block
PLFB9 PLFB9

Fast
Function Block

PLFFB9 PLFFB9
4–2 Xilinx Development System

Using PLD Files in Schematics
XEPLD Reference Guide for details on how each equation in your .PLD
or .PDS file is interpreted.

Use the word “GENERIC” (or any PAL device type other than 22V10
or 20V8) in the PAL file CHIP statement to target your PAL file to one
of the generic PAL components. Each pin provided in these compo-
nent symbols can be used for any input, output, or I/O function in
your PAL equation file. You can also create your own custom symbol
to represent your PAL equations, as described in the following
section “Creating Custom Components.”

Note: XEPLD does not have a JEDEC conversion utility for generic
PALs. A PALASM boolean equation file with either a .PLD or .PDS
file extension is required.

Using the PLFB9 and PLFFB9
These library components are based on the logic contained in XC7000
High Density Function Blocks (PLFB9) or Fast Function Blocks
(PLFFB9). By targeting custom logic to one of these components your
logic maps to a single Function Block; partitioning and equation split-
ting will not be performed by the compiler. The library symbol has
enough I/O and control pins to support all possible applications of
the selected Function Block. The PLFB9 symbol includes the arith-
metic carry-in and carry-out pins.

Generally you would choose these components if you are familiar
with PLUSASM and wish to use the special features of the EPLD
device architecture. These components allow the experienced user to
create the most compact designs by controlling the placement of
equations in the device.

Note: Use the keyword “PLFB9” or “PLFFB9” In the equation file
CHIP statement to target your PAL file to the PLFB9 or PLFFB9 com-
ponents.

Creating Custom Component Symbols
You can define custom components with their own unique symbols
and pinouts, and place them into your schematic. Custom symbols
can have pinouts which are easier to recognize when viewing your
schematic. They are especially useful when custom functions are
used repetitively throughout your design.
XEPLD Design Guide 4–3

XEPLD Design Guide
Use the keyword “COMPONENT” in the equation file CHIP state-
ment to target your PAL file to a custom symbol. This informs the
software that the pins on the symbol have the same names as the
signals in your equation file. The logic for these components can be
created using any of the behavioral design methods discussed in this
manual. As with any generic PLD equation file, all logic functions
must be explicitly defined by equations.

Unlike a hierarchical symbol representing an underlying schematic,
custom symbols are processed as primitives by the XEPLD software.
You may need to apply an attribute to the symbol to indicate that it is
a primitive and is not to be expanded into an underlying schematic.

For information on creating the schematic symbols for these compo-
nents see the Xilinx CAE tool Interface Manual for your schematic
entry tool.

Choosing a PLD Development Method
See Chapter 1 and Chapter 2 of this manual for a complete descrip-
tion of various PLD development methods. Each of the methods as
they apply to schematics is described as follows:

Using JEDEC Files
Translate each JEDEC file into a PLUSASM equation file by using the
XDM TRANSLATE➝JED2PLD command. Then you can process your
schematic design using the TRANSLATE➝XEMAKE facility as
described in Step 7 of the following section.

JEDEC files are useful for easily importing existing files for 22V10 and
20V8 PALs. Always use either the PL22V10 or PL20V8 library
symbols to represent your JEDEC files.

Using PLUSASM
Use PLUSASM to develop your PLD equation files if you want to
access specific architectural features such as the high speed carry,
local feedback, and product term export paths of the device.

PLUSASM is the native language for Xilinx EPLDs, based on the
PALASM2 Boolean equation syntax. In addition the language
4–4 Xilinx Development System

Using PLD Files in Schematics
contains constructs that allow you to access the advanced architec-
tural features of the XC7000 architecture.

You can target any PLD or custom component in the schematic
library by placing PL22V10, PL20V8, PLFB9, PLFFB9, GENERIC, or
COMPONENT in the PLUSASM equation file CHIP statement.

Using a PLD Compiler
Use a PLD compiler to develop your PLD files if you want to take
advantage of the compiler‘s high level language capability but don’t
need to access device specific features such as the high speed carry,
local feedback, and product term export paths. This method is also
useful for importing existing PAL files.

The native language for Xilinx EPLDs is PLUSASM, a language based
on the PALASM2 Boolean equation syntax (.PDS). Many popular
PAL compilers such as ABEL, CUPL, LOG/iC, and PALASM can
generate the PALASM2 boolean equation files required by the
XEPLD software. By using your PAL compiler’s built-in ability to
generate .PDS files (such as the ABEL XFER utility or the CUPL -c
compiler option), you can easily generate PLUSASM-compatible
equation files.

These equation files can be targeted to the PL22V10, PL20V8, generic
PAL, or custom schematic symbols.
XEPLD Design Guide 4–5

XEPLD Design Guide
Design Flow
A variety of design flows for creating schematic designs containing
PLD files is shown in Figure 4-1.

Figure 4-1 Design Flow for Using PLDs in Schematics

Use Schematic Symbols:
PL22V10, PL20V8
custom, or generic

Using a
PLD Compiler

Using
PLUSASM

Using
JEDEC Files

Use Schematic Symbols:
PL22V10, PL20V8,
PLFB9, PLFFB9

custom, or generic

Use Schematic Symbols:
PL22V10 or PL20V8

Create Your PLD Files Convert the JEDEC Files

Create Your Schematic Design

Integrate the Design

Simulate Your Design
(Optional)

Program a Device

Link the PLD Files to the Schematic
using Attributes

1

2

3 4

5

6

7

8

9

4–6 Xilinx Development System

Using PLD Files in Schematics
Step 1 — Choose a PLD Design Method
PLD design methods are discussed in Chapter 1 and Chapter 2 of this
manual.

Step 2 — Choose PLD Components
See “Choosing Library Components” earlier in this chapter for a
description of the various PLD components available to you.

Step 3 — Create Your PLD Files
Use any of the methods described in this book to create your .PLD
files or import existing PAL files. Many popular PAL compilers such
as ABEL, CUPL, LOG/iC, and PALASM can generate the PALASM2
boolean equation files required by the XEPLD software.

Step 4 — Convert Your JEDEC Files
If you are using JEDEC files (for either the 22V10 or 20V8) then
execute the TRANSLATE➝JED2PLD Command on each file. Figure
4-2 illustrates the JED2PLD menu.

Figure 4-2 JED2PLD Popup Window

Step 5 — Create Your Schematic Design Files
Use your schematic capture tool to enter the schematic using XEPLD
library symbols. Use the PLD component symbols provided in the
library or create your own custom components.
XEPLD Design Guide 4–7

XEPLD Design Guide
Step 6 — Link Your Files to the Schematic
Link the PLD symbols in your schematic to the equation files that
define their function by placing an attribute on each PLD symbol.

The format is:

PLD=file_name

The file name does not include the file extension. For the specific
syntax of this attribute, see the Xilinx CAE tool Interface Manual for
your specific CAE tool.

Step 7 — Integrate the Design
Execute TRANSLATE➝XEMAKE from the XDM main menu.

Figure 4-3 illustrates the XEMAKE menu.

Figure 4-3 XEMAKE Popup Menu

Select “Done” and XEMAKE performs the following functions:

● Prompts you for the name of a schematic file.

● Integrates the schematic and automatically creates a netlist file in
the XNF format.

● Runs PLUSASM for each PLD file found in the schematic.

● Runs FITNET to integrate the complete design.

● Generates Resource, Pinlist, Mapping, Error, Partitioning, Equa-
tion, and Logic Optimization reports.
4–8 Xilinx Development System

Using PLD Files in Schematics
Step 8 — Simulate Your Design (optional)
See the Xilinx CAE tool interface manual for simulation instructions
relating to your particular simulator.

Step 9 — Program the Device
Generate a programming bit-map file using the XDM
VERIFY➝MAKEPRG command (for Intel Hex format) or the
VERIFY➝MAKEJED command (for JEDEC format). Refer to your
device programmer documentation for instructions on how to down-
load the bit-map file.

Design Example — Using PALs in a Schematic
The circuit shown in Figure 4-4 demonstrates how to handle many
common situations when using PALs in schematics. This example
deals with the strategies, equation syntax, and procedures for incor-
porating PALs into a schematic and is not intended to be a complete
tutorial. See the Xilinx CAE Tool Interface Manual for your particular
schematic entry tool for more information including net labeling and
attribute assignment conventions.

Choosing Library Components
The original circuit for this design used 22V10 PALs and therefore it
is easy to use the PL22V10 library components. The original PAL1
equation file is shown in Figure 4-5. In most cases, equation files can
be targeted to library PAL components with no modification.
However, this example shows you how to modify the equation files
when the PAL has 3-state outputs or bi-directional signals. The modi-
fied equation files are shown in Figure 4-6.The equation file for PAL1
requires editing because it contains a bi-directional signal that goes
off-chip and because it has 3-state outputs, otherwise it could have
been used unmodified.

Assigning Clock Signals to FastCLK Nets
Assigning clocks to the global FastCLK nets will give you faster
clock-to output delays and reduced macrocell resource requirements.
The XEPLD optimization software assigns clocks to the FastCLK nets
XEPLD Design Guide 4–9

XEPLD Design Guide
whenever possible without user intervention. However, you can also
specify which clocks are assigned to the FastCLK nets by using the
global clock library components. To specify signal A as a FastCLK,
use a BUFG (Global Input Buffer) instead of an IBUF (Input Buffer) in
the schematic. (If an IBUF is used, the clock is implemented as a
product term clock.)

Figure 4-4 Example Schematic Using PALs

X4458

PL22V10

PLD=PAL1

1

2

3

4

5

6

7

8

9

10

11

23

22

21

20

19

18

17

16

15

14

13

A

B

C

D

E

BUFG

IBUF

IBUF

IBUF

BUFFOE

OBUF

F

F

VDD

G

E

F

L

H

J

K

OBUF

OBUF

OBUF

OBUF

OBUFEX1

IBUF

IBUF

PL22V10

PLD=PAL2

1

2

3

4

5

6

7

8

9

10

11

23

22

21

20

19

18

17

16

15

14

13
4–10 Xilinx Development System

Using PLD Files in Schematics
Figure 4-5 Original PAL1 Equation File

Figure 4-6 Modified PAL1 Equation File

TITLE PAL1
CHIP PAL1 P22V10;
;PINLIST (Highest pin number = 24)
 A B C NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC K J H G
F NC
; PALCNVT Design Example PAL1
EQUATIONS
F := (B);
G := (F);
G.TRST = (C);
H := (G);
J := (B * K);
K := (B);
K.TRST = (C);

TITLE PAL1
CHIP PAL1 P22V10;
;PINLIST (Highest pin number = 24)
 A B C G_PIN NC NC NC NC NC NC NC NC NC NC NC NC NC NC K J
H G F NC
; PALCNVT Design Example PAL1
EQUATIONS
F := (B);
G := (F);
G.TRST = (C);
H := (G_PIN);
J := (B * K);
K := (B);
K.TRST = (C);
XEPLD Design Guide 4–11

XEPLD Design Guide
Assigning Output Enable Signals to FOE Nets
Assigning signals to the global fast output enable (FOE) nets gives
you reduced output enable delays and reduced macrocell resource
requirements. The XEPLD optimization software assigns output
enable signals to the global FOE nets whenever possible without user
intervention. However, you can also specify in your schematic which
output enable signals are to be assigned to the FOE nets. To specify
signal D as an FOE control signal for output L, do the following:

1. Permanently enable the PAL outputs by connecting the .TRST
control pin to VDD in the schematic.

2. Connect signal L to an OBUFEX1 output buffer in the schematic.

3. Connect signal D to a BUFFOE input buffer in the schematic.

4. Connect the BUFFOE input buffer to the OBUFEX1 output enable
input in the schematic.

Assigning Functions to Fast Function Blocks
Critical functions can be assigned to Fast Function Blocks to take
advantage of their higher speed and increased output drive capabili-
ties. This is accomplished by either assigning attributes to the sche-
matic or by making changes to the equation file.

Using Schematic Attributes

You can specify which component outputs are assigned to Fast Func-
tion Blocks by assigning an “F” attribute to the nets that are driven by
the component outputs.

You can assign fast inputs to Fast Function Blocks by assigning the
“F” attribute to the net that drives the component input.

To assign signal L to a Fast Function Block and signal E to a fast input
pin, do the following:

1. Add the “F” attribute to the net driven by signal L.

2. Add the “F” attribute to the net that is driving signal E.

Note: You can assign component pins to FFBs, even if they do not
drive another component in the schematic, by attaching them to dan-
gling (unconnected) nets and assigning the “F” attribute to the net.
4–12 Xilinx Development System

Using PLD Files in Schematics
Using the PLFFB9 Component

You can assign signal outputs to Fast Function Blocks by targeting the
PLFFB9 library component in the schematic.

You can assign fast inputs by using the FASTINPUT statement in
your equation file.

To assign signal L to a Fast Function Block and signal E to a fast input
pin, do the following:

1. Change the target device in the PAL2 equation file CHIP state-
ment to PLFFB9:

CHIP PAL2 PLFFB9

2. Add the following statement to the equation file:

FASTINPUT E

3. Change any 3-state output enable control signals to FOE nets by
permanently enabling the PAL outputs. Do this by removing any
.TRST control equations from the PAL file. In the equation file
delete (or comment out) the following statement:

L.TRST = D

4. Connect signal L to an OBUFEX1 output buffer in the schematic.

5. Connect signal D to a BUFFOE input buffer in the schematic.

6. Connect the OBUFEX1 output enable input to the BUFFOE input
buffer in the schematic.

Note: Registered functions assigned to an FFB may only use the glo-
bal FastCLK nets and be asynchronously SET.

Note: Any function assigned to an FFB may only use the global FOE
signal for 3-state output signal control. The .TRST equations are not
permitted for PLFFB9 components.

Note: The default clock pin for any registered signal in a PLFFB9 is
pin 34. You can move the clock signal to pin 34 or you can override
the default by adding .CLKF control equations.
XEPLD Design Guide 4–13

XEPLD Design Guide
Assigning Bi-Directional I/O Signals
Two of the most common usages of bi-directional signals are
described below. In Case 1, Signal G is a bi-directional output of PAL1
that goes off-chip. In Case 2, signal K is an input of PAL2 that can be
driven by PAL1 or by an off-chip signal.

Case 1 — Bi-Directional Outputs that Go Off-Chip

To create a bidirectional signal in a schematic for XC7000 devices you
must specify both an output signal and an input signal. This requires
two separate pins on the PLD symbol (one input and one output) to
schematically represent the connections even though the physical
implementation in the XC7000 device requires only one I/O pin. In a
low-density PAL, the signal at the pin is used for both internal feed-
back and signal output when the output is bidirectional and therefore
requires only one pin in a schematic. Therefore, In a schematic design
for XC7000 devices, you must create an extra input to the PLD for
every bi-directional I/O signal.

Note: If you do not have enough unused PLD pins to create the extra
inputs required to implement bi-directional signals in an XC7000
device, you can compile your equations as a PLD component and
place them into a PL48 or custom component. Thus, you are not lim-
ited by the number of device pins in the original PAL.

Because signal G in the example was defined as a bi-directional signal
in the original PAL, it must use pin feedback in the XC7000 device. To
create a bi-directional signal G, do the following:

1. Connect signal G of PAL1 (pin 22) to an OBUF output buffer.

2. Create a new input called G_PIN on PAL1 (pin 4). Connect G_PIN
to an IBUF input buffer.

3. Connect the signal G OBUF output and the signal G_PIN IBUF
input to an I/O pad.

4. In the PAL1 equation file change NC to G_PIN in position four of
the pinlist. This defines G_PIN as a pin.

5. In the PAL1 equation file, wherever signal G appears on the right
side of an equation change it to G_PIN.
4–14 Xilinx Development System

Using PLD Files in Schematics
Note: Signal G on the right side of an equation implies macrocell
feedback. Using G_PIN instead of G explicitly specifies pin feedback
because G_PIN is driven by the input buffer of an XC7000 I/O pad.

Note: In an XC7000 device, you have the option to use either the
device pin (pin feedback) or the macrocell feedback. Macrocell feed-
back is the default for any signal not explicitly defined as pin feed-
back.

Case 2 — Using Both Macrocell and Pin Feedback

Within the PAL1 equation file, the internal feedback of signal K is
always used.

Within the PAL2 equation file, you want to use the signal at the
XC7000 device pin.

To change signal K to an XC7000 I/O signal, and to use macrocell
feedback for PAL1 and pin feedback for PAL2, do the following:

1. Connect signal K (PAL1, pin 19) to an OBUF output buffer.

2. Connect signal K (PAL2, pin 3) to an IBUF input buffer.

3. Connect the OBUF output and the IBUF input to an I/O pad.
XEPLD Design Guide 4–15

XEPLD Design Guide
4–16 Xilinx Development System

Chapter 5
XEPLD Design Guide — 0401191 01 5–1

Advanced Behavioral Design Techniques

The following subjects are discussed in this chapter:

● Manual Device Pin Assignment.

● Simulating Behavioral Designs.

● Verifying Behavioral Designs.

● Design Fitting Strategies.

● Design Rules for Arithmetic Design.

Manual Device Pin Assignment
Note: Manual pin assignment can restrict the layout capability of the
software. It is usually best to allow XEPLD to automatically assign
pins based on the most efficient placement of logic in the device.

XEPLD automatically assigns device pins for you, based on the most
efficient usage of device resources. This is usually the best method for
pin assignment if you do not have specific pinout requirements.
Automatic pin assignment is performed only for those pins that have
not been assigned through some other method. After a successful
design compilation, you can use the PINSAVE command to maintain
the pin assignments during design iteration.

If you have specific pinout requirements you can use the pin declara-
tion and PARTITION statements.

Note: Pin declaration statements override the pin assignments in the
pin-save file. This allows you to make changes to your fixed pin spec-
ifications. However, any conflict of pin specifications between the
PARTITION statements and the pin-save file will cause an error.

XEPLD Design Guide
Manual Pin Assignment Precautions
When you manually assign output and I/O pins, you force the soft-
ware to place logic functions into specific function blocks. If the logic
does not exceed the function block resources (macrocells, product
terms, and UIM inputs) and the function block has the correct
external pin resources to meet the logic I/O requirements, the logic is
mapped into the function block and the design will route in the UIM.

Try to place product term intensive logic onto pins that are driven by
High Density Function Blocks. Be sure that the Function Block’s
shared product term resources and UIM inputs will not be exhausted.
You may also wish to leave additional room in the Function Block for
design iterations.

Assign your external rising-edge clocks and active-high output
enable signals to the FastCLK and FOE pins on the device. To create
global on-chip clocks, assign them to the FastCLK nets. To create
global output enable control signals, assign them to the FOE nets.
These signals will use the I/O buffer on the pin to route the macrocell
output onto the global net.

Evaluate the product term requirements of your logic assigned to
pins that are driven by the Fast Function Blocks. Plan ahead for
design iterations which may create functions that require the
exported product terms from an adjacent macrocell.

Be sure that the pin assignments in your pin declaration statements
are not in conflict with your PARTITION statements. These conflicts
will result in failures because the fitter is being instructed to either
map multiple functions into the same macrocell or to map the same
function into multiple macrocells.

Using Pin Declaration Statements
Assign specific device pins to signals by appending the PIN keyword
to any pin declaration statement. For example:

INPUTPIN (RCLK=C) X Y Z PIN 9 10 11
FOEPIN F PIN 32
FASTCLOCK CLKIN PIN 27

All physically possible pin assignments are accepted regardless of
their effect on device partitioning or mapping efficiency.
5–2 Xilinx Development System

Advanced Behavioral Design Techniques
Pin assignments within pin declaration statements override pin
assignments from the pin-save file.

Using PARTITION Statements
You can place PARTITION statements in the header of a behavioral
design file to control the assignment of equations to macrocells,
which determines the pin assignment of those outputs. All linked
equations (equations using either .ADD, .SHIFT, .EXPORT, or
.ADDMODE) must appear in a PARTITION statement; the order in
which their names appear determines the order in which the macro-
cells are linked. The software will automatically connect the carry
chain across function block boundaries if necessary.

Logical PARTITION Statements

Use a logical PARTITION statement to group signals into any func-
tion block; the specific function block and the ordering of the signals
within that function block are determined by the software.

For example: PARTITION TEST_FB X0 Y0 Z0

Physical PARTITION Statements

Use physical PARTITION statements to group signals into a specific
function block and optionally into specific consecutive macrocells.

For example: PARTITION FB3 A1 A2 A3 A4
or: PARTITION FB3_7 A1 A2 A3 A4

See the XEPLD Reference Guide for more information on the PARTI-
TION statement.

Simulating Behavioral Designs
XEPLD supports a variety of third-party simulators, allowing you to
perform timing simulation of your finished design.

To simulate a behavioral design, you must first translate it into a
netlist consisting of XC7000 library models. XEPLD automatically
creates behavioral simulation files in the XNF netlist format which
can be exported to the Viewlogic Viewsim simulator (.WIR), the
OrCAD simulator (.VST), or the Mentor simulator using the Xilinx-
XEPLD Design Guide 5–3

XEPLD Design Guide
supplied CAE tool interfaces and libraries. You can also use .XNF files
with other simulators that support Xilinx.

Note: When XEPLD processes your design some of your original
nodes may be removed due to circuit optimization. These nodes can-
not be viewed or stimulated. All of the external I/O signals are
always maintained.

Using Viewlogic Viewsim or OrCAD VST
To create a Viewlogic or OrCAD simulation model of your design:

1. Select the FITTER➝FITEQN command from the XDM menu. This
compiles your behavioral design creating a design_name.VMH file.

2. Select the VERIFY➝XSIMMAKE command from the XDM menu.

On the SUN platform, Viewlogic is the default. On the PC plat-
form, you are prompted for the type of simulator:

● Select “Orcad_epld_simulation” for OrCAD.

● Select “Viewlogic_epld_simulation” for Viewlogic.

3. Select your file name from the list of .VMH and .VMD files that are
displayed.

XEPLD creates a design_name.VST file (for OrCAD) or a
design_name.WIR file (for Viewlogic).

See the OrCAD Interface User Guide for more information on OrCAD
simulation.

Using XNF-Compatible Simulators
Many third-party simulators can support .XNF files. These files
contain all necessary timing and wirelist information.

To create an XNF model of your design:

1. Select the FITTER➝FITEQN command from the XDM menu. This
compiles your behavioral design creating a design_name.VMH file.

2. Select the VERIFY➝VMH2XNF command from the XDM menu.
This displays a list of .VMH files.

3. Select your file name from the list.

XEPLD creates a design_name.XNF file that can be simulated with
any XNF-compatible simulator.
5–4 Xilinx Development System

Advanced Behavioral Design Techniques
Simulating Board-Level Designs
If you are simulating a circuit that contains one or more EPLD
devices you must create a schematic symbol and an XNF file for each
EPLD device. The name of each symbol is the name of the EPLD
design, as specified in the CHIP statement of the Top-Level File. The
pin names of the symbol must match the I/O signal names in the
design.

Verifying Behavioral Designs
After you have compiled your design, using the FITTER➝FITEQN
command, XEPLD generates the reports that tell you how your
design fits in the target device and how fast the design will run.

● The Resource Report, design_name.RES, gives you a summary of
the logic utilization of the device, your I/O usage, and the
resources that were left unused.

● The Equation Report, design_name.EQN, is a PLUSASM behav-
ioral design file created by the XEPLD optimizer that shows you
exactly how all your logic equations were implemented after
XEPLD performed logic optimization. Optimization includes col-
lapsing of combinatorial logic nodes into device outputs and reg-
isters, assigning signals to global FastCLK and FOE nets, utiliza-
tion of input pad registers, and the creation of UIM-AND
functions. This report contains all declarations and equations pro-
duced by the XEPLD optimizer to implement your design.

● The Pinlist Report design_name.PIN shows the final XC7000 device
pinout of your design.

Verifying Design Fit
When XEPLD has successfully compiled your design, you will see
the following message on your screen:

Design Successfully Mapped. Examine the following
report files:

Examine the Resource Report to determine the amount of chip
resources used to implement your design and how much remain. An
example Resource Report is shown in Figure 5-1. This design comes
XEPLD Design Guide 5–5

XEPLD Design Guide
from Timing Example 1 in the next section and was targeted for the
XC73108-12PC84.

The Logic Resources section of the Resource Report shows that 6
macrocells were used in the design and 102 remain available for addi-
tional logic. The Pin Resources section shows the types of signals
required by the design, the types of device pins used to satisfy the
signal requirements, and the remaining device pins that can be used
for additional signals.

This report shows that the 2 input signals were placed on input pins,
4 output signals were placed on output pins, and 2 I/O signals were
placed on I/O pins. Also used were 2 FOE pins and 1 FastCLK pin. A
total of 45 pins (10 input and 35 I/O) remain available for additional
input signals.
5–6 Xilinx Development System

Advanced Behavioral Design Techniques
Figure 5-1 Timing Example 1 — Resource Report

XEPLD, Version 5.0 Xilinx Inc.
 Resource Report
 Circuit name: EXAMPL1A
Target Device: XC73108-12PC84 Integrated: 11- 6-93,
10:24AM

LOGIC RESOURCES

 Required Used Remaining
Function Blocks 3 3 9
Macrocells 6 6 102

PIN RESOURCES:

Type Req --------Used-------------- --------Remaining---------
 I O I/O Fclk Foe Cen Tot I O I/O Fclk Foe Cen Tot
Inputs 2 2 0 2 10 35 45
Outputs 4 4 0 0 0 0 4 12 35 2 0 2 51
I/Os 2 2 2 35 35
Fclks 1 1 1 2 2
Foes 2 2 2 0 0
Cens 0 0 0 2 2
 --- --- -- --- --- --- --- ---
 6 2 4 2 1 2 0 8

Note:The design requires 1 pins with Fast Input capability.
 This device has 12 pins with Fast Input capability.
 The design requires 4 pins with Fast Output capability.
 This device has 12 FO and 0 I/FO remaining from original 16 FO and
0 I/FO.

 End of Resource Report
XEPLD Design Guide 5–7

XEPLD Design Guide
Verifying Design Timing
If you are not using a timing simulator you can use the Equation
Report to calculate how fast your design will run. This report shows
your design equations as they appear after optimization enabling you
to trace your logic flow through the device architecture. The declara-
tions section tells you which of your signals were assigned to the
FastCLK nets, the FOE nets, and the UIM nodes. The PARTITION
statements tell you which signals were assigned to Fast Function
Blocks (partitions FB1 and FB2 in XC7000-series devices).

Because the XC7000 device architecture is similar to a PAL, the device
timing can be determined by using a relatively small set of fixed
timing parameters listed in the EPLD device data sheet.

By viewing the optimized equations in the design_name.EQN report,
you can easily determine the logic path through the device and apply
the timing parameters found in the device data sheet.

Three design examples are provided in this section to demonstrate
how to calculate design timing:

● Example 1 shows you how to calculate timing for designs using
global control signals, High Density Function Blocks, and Fast
Function Blocks.

● Example 2 shows you how to calculate timing for designs that
require equation splitting of internal nodes. The timing calcula-
tions for UIM functions is also demonstrated.

● Example 3 shows you how to calculate timing for designs that
require splitting of external signals. (The splitting of nodes and
output signals is performed as needed by the XEPLD software to
fit large equations into available function block resources.)
5–8 Xilinx Development System

Advanced Behavioral Design Techniques
Timing Calculation Example 1
This example is taken from the design in Chapter 3. The Equation
Report for this design is shown in Figure 5-2. View this report to see
the exact logic paths assigned by the optimization software.

The PARTITION statements show that the optimization software
placed output signals F, H, J, and L into FB1, a Fast Function Block.
I/O signals G and K were placed into High Density Function Blocks.
The pin declaration statements show that both output enable signals
C and D were placed on the global FOE nets.

The following timing calculations are based on the August 1993
datasheet for the XC73108-12PC84.

Setup and Hold — Signals B and G to Clock

Signals B and G are used as input signals for equations F and H
which have been placed in a Fast Function Block. These input and
I/O signals have not been declared as fast inputs, therefore they pass
through the UIM before entering the function block.

The setup and hold times at the pin can be determined from the Fast
Function Block external setup and hold times, and the internal UIM
delay, as follows:

Setup Time = tSUF + tUIM = 6 + 10 = 16 ns

Hold Time = tHF - tUIM = 0 - 10 = -10 ns

Clock-to-Output — Signals F, G, H, J, K, L from Clock

Signals F, H, and J have been placed in a Fast Function Block. Their
clock-to-output delay is therefore the Fast Function Block external
clock-to-output delay (tCOF):

Clock-To-Output delay = tCOF = 9 ns

Signals G and K have been placed in a High Density Function Block.
The clock for these signals (A) is implemented using a FastCLK. Their
clock-to-output delay is therefore the High Density Function Block
external FastCLK-to-output delay (tCO):

FastCLK-To-Output delay = tCO = 12 ns
XEPLD Design Guide 5–9

XEPLD Design Guide
Signal L has been placed in a Fast Function Block and is dependent
on the pin feedback of a registered function (K) placed in a High
Density Function Block. The clock-to-output delay path is calculated
from the sum of the High Density Function Block external FastCLK-
to-output delay (tCO) and the Fast Function Block external pin-to-pin
propagation delay from an I/O pin (tPDFU):

Clock-To Output = tCO + tPDFU = 12 + 22 = 34ns

Output Enable/Disable — Signals G, K, L

These signals have been declared in the pin declaration statements as
controlled by FOE pins. The output enable/disable time therefore is
equal to the I/O pad output enable/disable delay (tFOEI):

Output Enable/Disable time = tFOEI = 12 ns

Pin-to-Pin Propagation Delay — Signal E to L

Signal L has been placed in a Fast Function Block and signal E is
declared as a fast input. The pin-to-pin propagation delay is therefore
equal to the Fast Function Block external propagation delay tPDFO):

Pin-to-Pin Propagation Delay = tPDFO = 12 ns

Maximum Frequency — Clock A

The longest signal path in the design is from the output of a High
Density Function Block register (G), through an I/O buffer (pin feed-
back for signal G), through the UIM, and into a Fast Function Block
register (H):

Cycle Time = tCOI + tOUT + tIN + tUIM + tFLOGI + tFSUI =
1 + 8 + 4 + 10 + 2 + 3 = 28 ns
5–10 Xilinx Development System

Advanced Behavioral Design Techniques
Figure 5-2 Example 1 Equation Report

; This is the .eqn file produced by the partitioner. It shows ;
; how your equations were implemented in order to best utilize the ;
; resources available on the chip. ;
; ;
; This design was compiled for the 7310884

PATTERN exampl1a.eqn
DATE Mon Oct 25 19:03:21 1993
CHIP EXAMPL1A XEPLD
MINIMIZE OFF
PARTITION FB1_2 F H J L
PARTITION FB10_9 G
PARTITION FB6_1 K
INPUTPIN B
INPUTPIN (FI) E
OUTPUTPIN F H J
OUTPUTPIN (FOE = D) L
IOPIN (FOE = C) G K
FASTCLOCK A
FOEPIN C D
EQUATIONS
/L = /K.PIN
 + /J
 + /E
/F := /B
 F.CLKF = A
/G := /F
 G.CLKF = A
/H := /G.PIN
/J := /K
 + /B
 J.CLKF = A
/K := /B
 K.CLKF = A
XEPLD Design Guide 5–11

XEPLD Design Guide
Timing Calculation Example 2
This example demonstrates how to calculate timing when automatic
equation splitting of nodes is performed by the software. This occurs
when the number of product terms required by a function cannot be
placed into a single macrocell. When nodes are split the software tries
to re-combine the outputs in the UIM. If this is successful, then no
timing penalty is incurred by the splitting and re-combining process.
However, if the software cannot re-combine the macrocell outputs in
the UIM, then the outputs are re-combined in a macrocell which adds
delay to the function.

This example also demonstrates how to calculate timing when the
software creates UIM AND gates in order to reduce the number of
function block inputs when mapping the design.

The design consists of a 24-bit up-counter, a 24-bit data storage
register, and a 24-bit comparator as shown in Figure 5-5. The counter
counts up until its value is equal to the contents of the data register.
On the next clock, the counter is reset to 0, and a timing pulse is
generated one clock later. The effects of equation splitting are illus-
trated in Figure 5-4. The Top-Level File for this design is shown in
Figure 5-5. The Equation Report is shown in Figure 5-6.

Figure 5-3 24-Bit Counter Block Diagram

>

>

>

^

Storage
Register

Up
Counter

Comparator
PULSE

D[0:23]

STROBE

CLOCK

24

24

D Q

RESTART
5–12 Xilinx Development System

Advanced Behavioral Design Techniques
The 24-bit data storage register is placed into the device I/O registers,
therefore no macrocell resources are used to create it. In the Equation
Report, the INPUTPIN (RCLK=CLOCK) statement specifies that the
data bits are mapped into the I/O registers (not into macrocells).

The comparator requires 48 product terms and therefore equation
splitting and UIM optimization of the resulting OR function are
performed by the software. The equation for RESTART, the compar-
ator output, was split into six nodes called RESTART_5 through
RESTART_0. The NODE (UIM) RESTART statement shows that the
outputs of these nodes were successfully recombined in the UIM and
therefore design timing remains unaffected by the equation splitting.

The pin declaration statements in the Equation Report specify that
STROBE and CLOCK use the global FastCLK nets.

Automatic UIM optimization was also performed on some of the
counter feedback signals by ANDing them together to reduce the
number of function block inputs required. These UIM functions,
UIM_0 through UIM_6, are declared as UIM nodes and therefore
they do not affect the design timing.

The following timing calculations are based on the August 1993 data
sheet for the XC7236A-16PC44.

Setup and Hold — D[0:23] to STROBE

The data registers have been placed into the I/O pads and are
clocked with STROBE which is placed on a FastCLK net. Therefore,
the setup and hold time at the pins is equal to the input register setup
and hold time, relative to FastCLK:

Setup Time = tSU2 = 6 ns

Hold Time = tH2 = 0 ns

Clock-to-Output — PULSE

The PULSE signal is placed into a macrocell that is clocked by
CLOCK which has been assigned to a FastCLK net. Therefore, the
clock-to-output delay is equal to the device FastCLK input-to-regis-
tered output delay:

Clock-to-Output = tCO = 10ns
XEPLD Design Guide 5–13

XEPLD Design Guide
Maximum Frequency — Clock A

The equations in the Top-Level File specify that the longest path in
this design should be from the output of a macrocell register used in
the counter (Q0-Q23), through the UIM, and into another macrocell
register used for the RESTART comparator output. The same path is
used from the output of the RESTART register, through the UIM, to
the PULSE register. This timing path is unaffected by functions
declared as UIM nodes in the Equation Report.

The maximum operating frequency of this design is equal to the
maximum sequential toggle frequency of the High Density Function
Block:

Maximum Frequency = fCYC = 60MHz
5–14 Xilinx Development System

Advanced Behavioral Design Techniques
Figure 5-4 The Effects of Equation Splitting

D Q

^

Comparator:
48 p-terms split
into 6 macrocells

P-terms recombined
in a UIM AND gate

Macrocell
Register

RESTART

UIM

/RESTART_0

/RESTART_5

/RESTART_1

/RESTART_2

/RESTART_3

/RESTART_4

NOTE: The inversions on the inputs and the output
of the UIM AND gate effectively create an OR function.

RESTART

Equations created
by the software

Inversion created
by the software
XEPLD Design Guide 5–15

XEPLD Design Guide
Figure 5-5 Example 2 Top-Level File

TITLE CTR24
CHIP CTR24 XEPLD;
INPUTPIN
 clock strobe d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14
 d15 d16 d17 d18 d19 d20 d21 d22 d23
OUTPUTPIN
 pulse
NODE
 q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17

q18 q19 q20 q21 q22 q23 data0 data1 data2 data3 data4 data5
data6 data7 data8 data9 data10 data11 data12 data13 data14
data15 data16 data17 data18 data19 data20 data21 data22 data23
restart

;24bitctr
minimize off restart
EQUATIONS
data23 := d23 ;24-bit data storage register
data23.CLKF = strobe ;data stored on rising edge of srrobe
... NOTE: data22 through data1 removed for brevity
data0 := d0
data0.CLKF = strobe
/restart := /q0 * data0 + q0 * /data0 ;restart counter from 0 when
counter
 + /q1 * data1 + q1 * /data1 ;value is equal to data value
... NOTE: + /q2 through + /q22 removed for brevity

 + /q23 * data23 + q23 * /data23
restart.CLKF = clock
pulse := restart ;pulse goes high for one clock period
pulse.CLKF = clock
q23 := (q23 * /restart) :+: (q0 * q1 * q2 * q3 * q4 * q5 * q6 * q7 *
q8 * q9 * q10 * q11 * q12 * q13 * q14 * q15 * q16 * q17 * q18 * q19 *
q20 * q21 * q22 * /restart)
q23.CLKF = clock
...NOTE: q22 through q1 removed for brevity
q0 := (q0 * /restart) :+: (/restart)
q0.CLKF = clock
5–16 Xilinx Development System

Advanced Behavioral Design Techniques
Figure 5-6 Example 2 Equation Report

; This is the .eqn file produced by the partitioner. It shows ;
; how your equations were implemented in order to best utilize the ;
; resources available on the chip. ;
; This design was compiled for the 723644 ;
PATTERN ctr24.eqn
DATE Wed Oct 27 11:55:30 1993
CHIP CTR24 XEPLD
MINIMIZE OFF
PARTITION FB2_1 Q4 Q5 Q6 Q7 Q8 Q12 Q13 Q19 RESTART_2
PARTITION FB4_1 Q2 RESTART_4 Q3 Q9 Q10 Q11 Q18 Q20 Q21
PARTITION FB1_1 PULSE Q0 Q1 Q14 Q15 Q22 Q23 RESTART_3 RESTART_5
PARTITION FB3_1 Q16 Q17 RESTART_0 RESTART_1
INPUTPIN (RCLK = STROBE) D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23
OUTPUTPIN PULSE
NODE Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17
 Q18 Q19 Q20 Q21 Q22 Q23
NODE (UIM) RESTART
NODE RESTART_0 RESTART_1 RESTART_2 RESTART_3 RESTART_4 RESTART_5
NODE (UIM) UIM_0 UIM_1 UIM_2 UIM_3 UIM_4 UIM_5 UIM_6
FASTCLOCK CLOCK STROBE
EQUATIONS
 RESTART = /RESTART_0 */RESTART_1 */RESTART_2 */RESTART_3 */

RESTART_4 */RESTART_5
... NOTE: Some equations are removed for brevity
/PULSE := /RESTART
 PULSE.CLKF = CLOCK
 Q23 := Q23.D1 XOR Q23.D2
 Q23.D1 = Q23 */RESTART
 Q23.D2 = Q0 * Q1 * Q6 * Q7 * Q8 * Q9 * Q10 * Q14 * Q15 * Q22
 */RESTART * UIM_4 * UIM_5
 Q23.CLKF = CLOCK
... NOTE: Some equations are removed for brevity
 Q0 := Q0.D1 XOR Q0.D2
 Q0.D1 = Q0 */RESTART
 Q0.D2 = /RESTART
 Q0.CLKF = CLOCK
 UIM_0 = Q0 * Q1 * Q2 * Q3
 UIM_1 = Q15 * Q16 * Q17 * Q18
 UIM_2 = Q6 * Q7 * Q8
 UIM_3 = Q12 * Q13 * Q14 * Q15 * Q16 * Q17
 UIM_4 = Q2 * Q3 * Q4 * Q5 * Q11 * Q12 * Q13
 UIM_5 = Q16 * Q17 * Q18 * Q19 * Q20 * Q21
 UIM_6 = Q0 * Q1 * Q2 * Q3 * Q4 * Q5 * Q6 * Q7 * Q8 * Q9 * Q10
 * Q11 * Q12 * Q13 * Q14
XEPLD Design Guide 5–17

XEPLD Design Guide
Timing Calculation Example 3
This example demonstrates how to calculate timing when automatic
equation splitting of external outputs is performed by the software.
This occurs when the amount of logic required by a function cannot
be placed into a single macrocell.

For this example a minor change was made to the design of the
previous timing example 2. The PULSE output was deleted and the
RESTART signal was brought off-chip instead. The UIM AND gate
output (RESTART) must drive a macrocell (it cannot directly drive an
I/O pad) and therefore the software must create an equation (which
requires a macrocell) in which to receive the re-combined signal, as
shown in Figure 5-8. In example 2 this was not necessary because the
recombined signal was input to a macrocell register (PULSE), which
could drive the output pad.

The block diagram of this example is shown in Figure 5-7 and the
Equation Report is shown in Figure 5-9.

Figure 5-7 Timing Example 3 — Block Diagram

>

>

^

Storage
Register

Up
Counter

Comparator

D[0:23]

STROBE

CLOCK

24

24

RESTART
5–18 Xilinx Development System

Advanced Behavioral Design Techniques
Figure 5-8 Macrocell Buffer Created by the Software

The UIM AND gates created by the splitting of external signals are
declared as UIM nodes in the Equation Report with the name:

split_equation_name_JOIN.

The output of the split_equation_name_JOIN function comes from a
UIM AND gate and is used for any internal feedback; therefore this
signal does not create extra delay. However, to drive an output buffer,
this signal must pass through a macrocell and thus incurs one extra
macrocell delay for the external signal. Therefore, when you see a
UIM node named split_equation_name_JOIN, the Equation Report will
show that an equation for a buffer was created by the software. This
is the macrocell required to take the signal off-chip, as shown in
Figure 5-8. The syntax for this software-created buffer is:

split_equation_name = split_equation_name_JOIN

In the Equation Report for this example you will see:

RESTART = RESTART_JOIN

Clock-to-Output — RESTART

The equation was split internally into several registered nodes. The
signal then makes an additional internal combinatorial pass through
a macrocell before going to the output buffer. Therefore the clock-to-
output delay can be calculated by adding one internal delay to the
XC7236 clock-to-output delay, as follows:

Clock-To-Output = tCO + tPDF = 10 + 10 = 20 ns

UIM
MacrocellRESTART_JOIN
Added by

XEPLD

RESTART
XEPLD Design Guide 5–19

XEPLD Design Guide
Maximum Frequency

The maximum frequency of Example 3 is determined by the feedback
path from the RESTART register back to the counter. According to the
.EQN file listing, the Q0–Q23 counter equations use the UIM signal
RESTART_JOIN which adds no additional delay to the feedback
path. Therefore, the circuit can still be clocked at the maximum High
Density Function Block frequency of fCYC:

Maximum Frequency = fCYC = 60Mhz
5–20 Xilinx Development System

Advanced Behavioral Design Techniques
Figure 5-9 Example 3 Equation Report

PATTERN ctr24.eqn
DATE Thu Oct 28 11:25:32 1993
CHIP CTR24 XEPLD
MINIMIZE OFF
PARTITION FB2_1 Q4 Q5 Q6 Q7 Q8 Q12 Q13 Q20 RESTART_2
PARTITION FB4_1 Q2 RESTART_4 Q3 Q9 Q10 Q11 Q18 Q19 Q21
PARTITION FB1_1 RESTART Q0 Q1 Q14 Q15 Q22 Q23 RESTART_3 RESTART_5
PARTITION FB3_1 Q16 Q17 RESTART_0 RESTART_1
INPUTPIN (RCLK = STROBE) D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23
OUTPUTPIN RESTART
NODE (UIM) RESTART_JOIN
NODE Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17
 Q18 Q19 Q20 Q21 Q22 Q23 RESTART_0 RESTART_1
 RESTART_2 RESTART_3 RESTART_4 RESTART_5
NODE (UIM) UIM_0 UIM_1 UIM_2 UIM_3 UIM_4 UIM_5 UIM_6
FASTCLOCK CLOCK STROBE
EQUATIONS
 RESTART_JOIN = /RESTART_0 */RESTART_1 */RESTART_2 */RESTART_3 */

RESTART_4 */RESTART_5
 RESTART_0 := D23 */Q23
 + /D23 * Q23
 + D22 */Q22
 + /D22 * Q22
...
 RESTART_5 := /D1 * Q1
 + D0 */Q0
 + /D0 * Q0
 RESTART_5.CLKF = CLOCK

 RESTART = RESTART_JOIN

 Q23 := /RESTART_JOIN * Q23
 + /RESTART_JOIN * Q0 * Q1 * Q6 * Q7 * Q8 * Q9 * Q10 * Q14
 * Q15 * Q22 * UIM_4 * UIM_5
 Q23.D1 = /RESTART_JOIN * Q23
 Q23.D2 = /RESTART_JOIN * Q0 * Q1 * Q6 * Q7 * Q8 * Q9 * Q10 * Q14
 * Q15 * Q22 * UIM_4 * UIM_5
 Q23.CLKF = CLOCK
...
 UIM_5 = Q16 * Q17 * Q18 * Q19 * Q20 * Q21

 UIM_6 = Q0 * Q1 * Q2 * Q3 * Q4 * Q5 * Q6 * Q7 * Q8 * Q9 * Q10
 * Q11 * Q12 * Q13 * Q14

The software-created
macrocell buffer
for outputting the signal
to an output pad
XEPLD Design Guide 5–21

XEPLD Design Guide
Design Fitting Strategies
This section discusses the strategies for getting your design to fit
within a target device.

If your design requires more macrocells or signal pins than are avail-
able in the target device then you must either reduce your logic
requirements or choose a larger device. The XC7000 family includes a
wide range of device types and packaging options from which to
choose. However, even if the target device has enough macrocells and
signal pins, your design may still not fit due to the limitations your
design places on the device.

For example, the XEPLD software optimizes the performance and
mapping efficiency of your design by collapsing combinatorial nodes
forward into output pins and registers. This minimizes the number of
macrocells required to implement your design but increases the
signal fan-in and number of product terms required to implement the
resulting optimized functions. In some cases this creates functions
that when mapped into a macrocell, use a significant number of func-
tion block shared product terms or inputs, which restricts the access
to the remaining macrocells in that function block. The Resource
Summary section of the Partitioning Report (design_name.PAR) tells
you the total amount of logic and pins used and the amount of
remaining resources.

Optimizing Device Resources
If you determine that the target device has enough total macrocells
and signal pins to contain your design and yet the design will not fit,
the easiest solution is to choose a larger device with more resources
and re-compile your design. However, if you have only a few
remaining unmapped functions, you can possibly get your design to
fit by controlling the optimization of device resources.

There are three reasons why your design may not fit into the available
resources of a target device:

● Your design is product term constrained.

● Your design is function block input constrained.

● Your design cannot access the Fast Function Block resources.
5–22 Xilinx Development System

Advanced Behavioral Design Techniques
If Your Design is Product Term Constrained

Product term constrained function blocks have only a few used
macrocells (outputs) but most of the shared product terms are used.
This situation is illustrated in the example Partitioning Report shown
in Figure 5-10. The target device in this example was an XC7354 in a
44 pin PLCC package. This device has six function blocks named FB1
through FB6.

Note: The Part Name “OVERFLOW0” is the name assigned by the
software to the unmapped logic.

Figure 5-10 Example of a P-Term Constrained Design

You can decrease the usage of shared product terms by controlling
the equation splitting parameters contained in the XEPLD.CFG file.
An example of this file is shown in Figure 5-11.

1. Copy the XEPLD.CFG file from the \XACT\DATA directory into
your design directory. This file contains the following line:

(alias max_shared_before_splitting 12)

This line controls how many shared product terms an equation can
use before it will be split.

Part # of # of Input Signal # of O/IO 0/IO Size
Name Outputs Lines Used Inputs Shared PT Req Avail Factor
FB1 8 24 24 0 0/0 0/8 9
FB2 7 12 12 0 0/0 0/8 7
FB3 2 10 10 12 1/0 2/0 9
FB4 3 12 12 10 0/0 0/3 8
FB5 9 21 32 8 0/0 0/3 9
FB6 1 10 10 6 0/0 0/3 4
OVERFLOW0 1 10 10 7 0/0 */* 5

__ __ __ __ ___ ____ __
31 1/0 2/25 51
XEPLD Design Guide 5–23

XEPLD Design Guide
2. Reduce the variable far enough to cause the product term inten-
sive equations to split into multiple macrocells.

You might try for example:

(alias max_shared_before_splitting 6)

This will increase your macrocell count but your logic will require
fewer partitions.

In this example, by reducing the max_shared_before_splitting vari-
able, you can cause the equations mapped into function blocks 3 and
4 to split, allowing the equation contained in OVERFLOW0 to be
mapped. When you reduce this variable, only the nodes are affected;
outputs will not split and design performance usually remains unaf-
fected because the split equations are re-combined in the UIM if
possible, which adds no delay.

Figure 5-11 Example XEPLD.CFG File

(alias power_port VCC)
(alias ground_port GND)
(alias power_net VDD;VCC)
(alias ground net GND)
(alias pl20V8 pal20V8;gal20V8;g20V8;p20V8;p20V8r;20V8)
(alias pl22V10 pal22V10;gal22V10;p22V10;g22V10;22V10)
(alias fpga hiper;hyperpld;xepld)

Enclose the following advanced user switches in parenthesis to enable them

The following control when PLUSASM splits equations with too many product
terms and the size of the split subfunctions it ceates.

(alias max_shared_before_splitting 12)
alias max_shared_after_splitting 1
5–24 Xilinx Development System

Advanced Behavioral Design Techniques
If Your Design is FB Input Constrained

Input constrained function blocks have only a few used macrocells
but most of the function block inputs are used. This situation is illus-
trated in the example Partitioning Report shown in Figure 5-10.

Figure 5-12 Example of an FB Input Constrained Design

If you have combinatorial nodes in your design, you may benefit
from selectively turning off the XEPLD collapser. This benefits both
product term and fan-in constrained designs. However, design
timing will be affected because the signal path will be lengthened. In
the Top-Level File, use the LOGIC_OPT statement to control logic
collapsing.

To turn off logic collapsing for the whole design, use the following:

LOGIC_OPT OFF

To turn off logic collapsing only for specific signals, use the
following:

LOGIC_OPT OFF signal_1 signal_2 ... signal_n

Note: Manually splitting any registered equations with a large num-
ber of inputs may also help.

Part # of # of Input Signal # of O/IO 0/IO Size
Name Outputs Lines Used Inputs Shared PT Req Avail Factor
FB1 8 24 24 0 0/0 0/8 9
FB2 7 12 12 0 0/0 0/8 7
FB3 2 21 21 3 1/0 2/0 9
FB4 3 21 22 2 0/0 0/3 9
FB5 9 21 21 0 0/0 0/3 9
FB6 1 10 10 4 0/0 0/3 4
OVERFLOW0 1 21 21 1 0/0 */* 9

__ __ __ __ ___ ____ __
31 1/0 2/25 56
XEPLD Design Guide 5–25

XEPLD Design Guide
If Your Design has Unused Fast Function Blocks

This section discusses how to modify your design to fit logic into Fast
Function Blocks.

The XEPLD software automatically maps into the Fast Function
Blocks any function that meets these requirements:

● All clocks use the global FastCLK signals.

● All 3-state controls use the global FOE signals.

● All registers may only be asynchronously set.

● All registers may only be preloaded to a logic high state or have
unspecified preload values.

● All logic must use 4 or less p-terms when implemented as active
low.

If your logic output signals must use an internal p-term clock, you
can drive the p-term clock off-chip through a FastCLK pin and back
into the global FastCLK net through the I/O buffer on the FastCLK
pin. If your logic output 3-state controls must be controlled by
internal p-terms you can drive the p-term control signal off-chip
through an FOE pin and back into the global FOE net through the I/
O buffer on the FOE pin. If your registers require asynchronous reset
inputs or if the preload state must be a logic low, then your design
will need modification in order to fit into an FFB.

If a function meets all the requirements except that it uses more than
four p-terms, you can manually place it into a Fast Function Block by
using PARTITION statements. The software will then use the product
term .EXPORT capability to implement the function across multiple
macrocells.

Note: When placing functions into Fast Function Blocks, it is best to
choose functions which require the least number of product terms.

In the following example, File1 is the original file and cannot be
placed in a Fast Function Block because it specifies product term
clock and 3-state control signals. File2 shows the required changes to
make the design work in an FFB.
5–26 Xilinx Development System

Advanced Behavioral Design Techniques
Figure 5-13 File1 — Cannot be Placed in an FFB

Figure 5-14 File2 — Can be Placed in an FFB

Note: In Figure 5-14 the default clock is out_clk. Therefore you do not
need to include the following statement:

out.clkf = out_clk

INPUTPIN a b c d e f g
OUTPUTPIN out
EQUATIONS
out := a * B * C * d * e
out.clkf = f * g; use p-term clock
out.trst = /h; use p-term 3-state control

INPUTPIN a b c d e f g
OUTPUTPIN (FOE=out_trst) out
FASTCLOCK out_clk; Global clock signal
FOEPIN out_trst; Global 3-state control signal
PARTITION FFB out; Place this output into a Fast Function Block
EQUATIONS
out := a * B * C * d * e
out_clk = f * g; use global FastCLK
out_trst = /h; use global 3-state control
XEPLD Design Guide 5–27

XEPLD Design Guide
Design Rules for Arithmetic Design
This section discusses the arithmetic logic and fast carry path capabil-
ities of the Xilinx XC7000-series devices. Arithmetic logic design
requires that you not only create the proper equations but also that
you place those equations into the correct physical order in the
device.

PLUSASM arithmetic logic syntax differs between designs targeted
for the XC7272 and the remainder of the XC7000 series devices, due
to differences in the circuit implementations. Also, the arithmetic
equation extensions are different; the XC7272 uses the .ADDMODE
extension, while the other devices use the .ADD extension.

Arithmetic Logic Architecture (Except XC7272)
This section describes the arithmetic logic path within the XC7236
and XC7300 series architectures. Figure 5-15 shows the circuit block
diagram for the arithmetic carry logic in each macrocell. Figure 5-16
shows the architecture of the XC7236 including the carry connections
between Function Blocks.

To perform arithmetic functions, the function generator in the ALU is
programmed to perform an exclusive OR operation on the D1 and D2
ALU inputs. When the carry input to the macrocell is disabled, as is
the case when the macrocell represents the least significant bit of an
adder, the ALU performs as a half adder and adds only the D1 and
D2 inputs. When the carry input to the ALU is enabled for the
remaining adder bits, the ALU performs as a full adder, adding the
carry to the D1 and D2 inputs.
5–28 Xilinx Development System

Advanced Behavioral Design Techniques
Figure 5-15 XC7000 Series ALU Logic Diagram (except XC7272)

X3206Carry Input

D1

D2

Function
Generator To Macrocell

Flip-Flop

D1
Sum-of-

Products

D2
Sum-of-

Products

Arithmetic
Carry Control

Carry Output

0

1

Arithmetic Logic Unit (ALU)
XEPLD Design Guide 5–29

XEPLD Design Guide
Figure 5-16 XC7236 Architecture

4-Bit Adder Example

The PLUSASM equation file syntax for a four bit adder is listed in
Figure 5-17. The arithmetic carry control bit is controlled by the
PLUSASM .ADD equation. When .ADD is set to VCC, the carry input
is enabled. If the .ADD equation is not present, the carry input is
disabled by default. The least-significant bit, S1, does not have a
.ADD equation specified and therefore does not receive a carry-in
signal. The equation syntax is the same for both PLD equation files
and behavioral designs.

17

18

I/O/FI/FDO

I/O/FI/FDO

I/O/FI/FDO

I/O/FDI

I/O/FDI

I/O/FDI

I/O/FDI

I/O/FDI

I/O/FDI

35

36

37

38

40

41

42

43

44

44
LCC

I/O/FI/FCO

I/O/FI/FCO

I/O/FI

I/O

I/O

I/O

I/O

FOE/O

I/O/FDO

24

25

26

27

28

30

31

32

33

Serial Shift

Arithmetic Carry

MC4-9

MC4-8

MC4-7

MC4-6

MC4-5

MC4-4

MC4-3

MC4-2

MC4-1

A
N

D
 A

R
R

A
Y

MC3-9

MC3-8

MC3-7

MC3-6

MC3-5

MC3-4

MC3-3

MC3-2

MC3-1

A
N

D
 A

R
R

A
Y

2121

2121

UIM

A
N

D
 A

R
R

A
Y

A
N

D
 A

R
R

A
Y

MC1-1

MC1-2

MC1-3

MC1-4

MC1-5

MC1-6

MC1-7

MC1-8

MC1-9

MC2-1

MC2-2

MC2-3

MC2-4

MC2-5

MC2-6

MC2-7

MC2-8

MC2-9

Carry

Shift

Arithmetic

Serial

2

3

4

5

6

8

9

10

11

44
LCC

13

14

15

16

18

19

20

21

22

I/O/FCI

I/FCI

I/FCI

I/O/FCI

I/O/FCI

I/O/FCI

FCLK0/O

FCLK1/O

FCLK2/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O/FI

I/O/FI

I/O/FI

18

15

FB4

FB3

FB1

FB2

X4686
5–30 Xilinx Development System

Advanced Behavioral Design Techniques
Figure 5-17 Four-Bit Adder Equation File

To have dynamic control of the carry input into the least significant
macrocell of an arithmetic function, you can write an equation for
another macrocell to control the carry output from the D1 and D2
product terms as shown in Figure 5-18. Be sure to enable the carry
into the least significant macrocell of the arithmetic function.

Figure 5-18 Dynamic Control of the LSB Input

To extract a signal from the carry chain and make it available to a
macrocell logic output, use the equation shown in Figure 5-19.

Figure 5-19 Extracting the Carry Signal

S1.D1 = A1
S1.D2 = B1
S1 = S1.D1 XOR S1.D2
S2.D1 = A2
S2.D2 = B2
S2 = S2.D1 XOR S2.D2
S2.ADD = VCC
S3.D1 = A3
S3.D2 = B3
S3 = S3.D1 XOR S3.D2
S3.ADD = VCC
S4.D1 = A4
S4.D2 = B4
S4 = S4.D1 XOR S4.D2
S4.ADD = VCC

DUMMY.D1 = CARRY_IN
DUMMY.D2 = CARRY_IN
DUMMY = DUMMY.D1 GND DUMMY.D2
S1.ADD = VCC; Enable carry into S1

CARRY_OUT = CARRY_OUT.D1 GND CARRY_OUT.D2
CARRY_OUT.ADD = VCC
XEPLD Design Guide 5–31

XEPLD Design Guide
Partitioning Arithmetic Equations
Arithmetic macrocells must be physically adjacent to each other and
in the correct order for the carry chain to propagate properly. The
physical placement of equations is controlled by the PARTITION
statement in the Top-Level File of behavioral designs. The macrocell
order in the PARTITION statement must be listed from LSB to MSB as
shown below; this places the macrocells in the correct order in the
carry chain.

PARTITION ADD4 DUMMY S1 S2 S3 S4 CARRY_OUT

In this case, the software maps these equations in the specified order,
entirely within any one function block in the device. If the adder does
not fill an entire function block, the software is free to shift the adder
to start in any macrocell position that allows the entire function to be
mapped into a single function block.

The PARTITION statement can also be used to control the order of
arithmetic functions that span multiple function block boundaries.
For example, a 16-bit adder can be implemented as follows:

PARTITION ADD16 DUMMY S1 S2 S3 S4 S5 S6 S7 S8 S9
S10 S11 S12 S13 S14 S15 S16 CARRY_OUT

In this case, the software is free to map the adder into any contiguous
group of macrocells that meet the I/O requirements of the logic.

If you need to minimize the number of carry signals between function
blocks, use physical PARTITION statements to place the LSB equa-
tion into the least significant macrocell of a function block. For
example, the following PARTITION statement specifies that the carry
chain begins at function block 10, macrocell 3:

PARTITION FB10_3 DUMMY S1 S2 ... S16 CARRY_OUT

Note: Use the functional block diagram shown in the target device
data sheet to determine the direction of the carry path.

For PLD equation files, in order to map the equations into adjacent
macrocells and in the correct order according to the carry chain, the
output variable names must appear contiguously in the pin list, from
least-to-most-significant bit order. For example:

CHIP PLFB9 ADD9
A1 A2 A3 A4 A5 A6 A7 A8 A9 B0 B2 B3 B4 B5 B6 B7 B8
B9 S1 S2 S3 S4 S5 S6 S7 S8 S9
5–32 Xilinx Development System

Advanced Behavioral Design Techniques
8-Bit Adder/Subtracter/Accumulator Example

A more complex design that takes advantage of the macrocells’ fast
feedback path is shown in the following design example of an 8-bit
two’s compliment adder/subtracter/accumulator. The logic diagram
is shown below in Figure 5-20.

Figure 5-20 8-Bit Adder/Subtracter/Accumulator

The PLUSASM equation syntax for two bits of the adder/subtracter
/accumulator is listed below in Figure 5-21.

Figure 5-21 8-Bit Adder/Subtracter/Accumulator Equations

D Q

ENB INCR SUBT COUT

BO — B7

A0 — A7

ENA

ACCUM CIN CLK

C7

SO — S7

OE

REGISTER

MUX

MUX

MUX

"01"
0

1

0

1

B

A

1

0

ADDER

X2984

S1.D1 = EB1*/SUBT*/INCR + /EB1*SUBT*/INCR + SUBT*INCR
 S1.D2 = EA1*/ACCUM
 S1.FBK = ACCUM
 S1.ADD = VCC
 S1 := S1.D1 XOR S1.D2
 S1.CLKF = CLK
 S1.TRST = OE
 S2.D1 = EB2*/SUBT*/INCR + /EB2*SUBT*/INCR + SUBT*INCR
 S2.D2 = EA2*/ACCUM
 S2.FBK = ACCUM
 S2.ADD = VCC
 S2 := S2.D1 XOR S2.D2
 S2.CLKF = CLK
 S2.TRST = OE
XEPLD Design Guide 5–33

XEPLD Design Guide
The accumulator can be cascaded. The least significant bit of the accu-
mulator is preceded by the following equation, which generates the
appropriate carry-in, as shown below in Figure 5-22.

Figure 5-22 Generating the Carry-In for the LSB

In this example, the AND-gates enabling the A and B input buses are
implemented in the UIM. In a behavioral design, each gated A and B
operand would be declared as a UIM node using the statement:

NODE (UIM) EA1 EA2 EA3 ... EB1 EB2 EB3 ...

The gated operands for the first three bits of the accumulator would
then be implemented as follows:

EA1=A1*ENA
EA2=A2*ENA
EA3=A3*ENA
...
EB1=B1*ENB
EB2=B2*ENB
EB3=B3*ENB
...

DUMMY.D1 = SUBT*/INCR + /SUBT*INCR
DUMMY.D2 = VCC
DUMMY = DUMMY.D1 GND DUMMY.D2
5–34 Xilinx Development System

Advanced Behavioral Design Techniques
XC7272 Arithmetic Logic Architecture
This section describes the arithmetic logic path within the XC7272
architecture, which is different from the other devices in the family.
Figure 5-23 shows the circuit block diagram for the arithmetic carry
logic in each macrocell. Figure 5-24 shows the XC7272 chip architec-
ture including the carry connections between function blocks.

To perform arithmetic functions, the arithmetic control bit is set to
steer the carry bit into one input of the ALU function generator. The
function generator is then programmed to perform an exclusive NOR
operation on the D1 input and the inverse of the carry-in. When you
write an equation for the D1 product term that implements a half-
adder in sum-of-products format, the macrocell logic output becomes
the sum output of a full-adder.

Figure 5-23 XC7272 ALU Logic Diagram

MUX
1

0

D Q

CLK

D1

F

D2

MUX
0

1

MUX
1

0

Cin

D 1

D 2

ALU

Any
Function

(XNOR for
Adder)

Add
EPROM

Cell

COUT X2982

Macrocell
Register
XEPLD Design Guide 5–35

XEPLD Design Guide
Figure 5-24 XC7272 Architecture Showing Carry Connections

22

36

MC5-9

MC5-8

MC5-7

MC5-6

MC5-5

MC5-4

MC5-3

MC5-2

MC5-1

A
N

D
 A

R
R

A
Y

2121

UIM

A
N

D
 A

R
R

A
Y

CarryArithmetic

I/O

I/O

FCLK/O

FCLK/O

36

20

FB5FB4

FB3

21

A
N

D
 A

R
R

A
Y

MC3-1

MC3-2

MC3-3

MC3-4

MC3-5

MC3-6

MC3-7

MC3-8

MC3-9

O

O

O

O

O

O

O

O

FB6
MC6-9

MC6-8

MC6-7

MC6-6

MC6-5

MC6-4

MC6-3

MC6-2

MC6-1

A
N

D
 A

R
R

A
Y

21

FB2

21

A
N

D
 A

R
R

A
Y

MC2-1

MC2-2

MC2-3

MC2-4

MC2-5

MC2-6

MC2-7

MC2-8

MC2-9

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

FB7
MC7-9

MC7-8

MC7-7

MC7-6

MC7-5

MC7-4

MC7-3

MC7-2

MC7-1

A
N

D
 A

R
R

A
Y

21

Arithmetic Carry

FB1

21

A
N

D
 A

R
R

A
Y

MC1-1

MC1-2

MC1-3

MC1-4

MC1-5

MC1-6

MC1-7

MC1-8

MC1-9

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

FB8
MC8-9

MC8-8

MC8-7

MC8-6

MC8-5

MC8-4

MC8-3

MC8-2

MC8-1

A
N

D
 A

R
R

A
Y

21

MC4-1

MC4-2

MC4-3

MC4-4

MC4-5

MC4-6

MC4-7

MC4-8

MC4-9

12

11

10

9

84
LCC

32

31

30

29

28

26

25

24

23

42

41

40

39

38

36

35

34

33

[10]

[9]

[8]

[7]

68
LCC

21

20

19

18

16

15

14

13

*

*

*

*

[14]

[13]

[12]

[11]

[26]

[25]

[24]

[23]

[22]

[20]

[19]

[18]

[17]

*

*

[34]

[33]

[32]

[30]

[29]

[28]

[27]

12

I/F
C

I

I/F
C

I

I/F
C

I

I/F
C

I

I/F
C

I

I/F
C

I

I/F
C

I

I/F
C

I

I/F
C

I

I/F
C

I

I/F
C

I

I/F
C

I

[5
]

[4
]

[3
] * * [2
] * *

[6
8]

[6
7]

[6
6]

[6
5]

7 6 5 4 3 2 84

83

82

81

80

79

* = pin not present on 68 LCC

[55]

[56]

[57]

[58]

*

*

*

*

[44]

[45]

[46]

[47]

[48]

[50]

[51]

[52]

[53]

*

*

[36]

[37]

[38]

[40]

[41]

[42]

[43]

65

66

67

68

70

71

72

73

54

55

56

57

58

60

61

62

63

44

45

46

47

48

50

51

52

53

[60]

[61]

[62]

[63]

68
LCC

74

75

76

77

84
LCC

O

O

O

O

O

O

O

O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O/FCO

I/O/FCO

X4687
5–36 Xilinx Development System

Advanced Behavioral Design Techniques
When in arithmetic mode, the carry output of the macrocell comes
from the output of a 2-to-1 multiplexer controlled by the D1 product
term. When an equation for the D2 product term is written that sets
the product term equal to one of the operands, the carry output of a
full-adder is generated.

4-Bit Adder Example (XC7272)

The PLUSASM equation syntax for a 4-bit adder is listed below in
Figure 5-25. The arithmetic control bit is controlled by the
.ADDMODE equation, which must be turned on for the least signifi-
cant bit of adders implemented in the XC7272. When .ADDMODE is
set to VCC, the macrocell generates a carry-out. If the .ADDMODE
equation is not present, the carry chain input is transparently passed
through the macrocell, and the macrocell will not generate a carry-
out.

Figure 5-25 4-Bit Adder (XC7272)

S1.D1 = A1 * /B1 + /A1 * B1
S1.D2 = A1
S1 = S1.D1 XNOR S1.D2
S1.ADDMODE = VCC
S2.D1 = A2 * /B2 + /A2 * B2
S2.D2 = A2
S2 = S2.D1 XNOR S2.D2
S2.ADDMODE = VCC
S3.D1 = A3 * /B3 + /A3 * B3
S3.D2 = A3
S3 = S3.D1 XNOR S3.D2
S3.ADDMODE = VCC
S4.D1 = A4 * /B4 + /A4 * B4
S4.D2 = A4
S4 = S4.D1 XNOR S4.D2
S4.ADDMODE = VCC
XEPLD Design Guide 5–37

XEPLD Design Guide
In arithmetic mode, the XC7272 always receives a carry-in. Therefore,
you must always use another macrocell to control the carry input to
the LSB of an adder. To generate a constant zero carry-in, use the
equation shown below in Figure 5-26:

Figure 5-26 Generating a Constant Zero Carry-In

To create dynamic control of the carry input, use the equation shown
below in Figure 5-27:

Figure 5-27 Dynamic Carry-In Control

To extract a signal from the carry chain and make it available to a
macrocell logic input, use the equation shown below in Figure 5-28:

Figure 5-28 Using the Carry Signal for Macrocell Input

DUMMY.D1 = GND; macrocell carry-out = D2 P-Term
DUMMY.D2 = GND; D2 is always = 0
DUMMY = DUMMY.D1 GND DUMMY.D2
DUMMY.ADDMODE = VCC

DUMMY.D1 = GND; macrocell carry-out = D2 P-Term
DUMMY.D2 = CARRY_IN
DUMMY = DUMMY.D1 GND DUMMY.D2
DUMMY.ADDMODE = VCC

CARRY_OUT.D1 = VCC; transp. carry pass through
CARRY_OUT = CARRY_OUT.D1 NOTD2 CARRY_OUT.D2

; Macrocell output = inverse of D2
CARRY_OUT.ADDMODE = VCC; MUX passes carry input

; to D2
5–38 Xilinx Development System

Advanced Behavioral Design Techniques
Adder/Subtracter/Accumulator Example (XC7272)

The next example implements binary addition/subtraction with an
accumulator. It is frequently desirable to store one number in a
register of flip-flops (called an accumulator) and either add or
subtract a second number from it, leaving the result stored in the
accumulator. One way to build a parallel adder/subtracter with an
accumulator is to add a flip-flop register to an adder/subtracter
network, resulting in the circuit shown in Figure 5-29.

Figure 5-29 Two’s-Complement Adder/Subtracter/Accumulator

Subtraction of binary numbers is easily accomplished by adding the
complement of the number to be subtracted. For instance, to compute
A - B, the two’s complement of B is added to A. The two's comple-
ment of B can be formed by first finding the one's complement and
then adding 1. The one's complement is formed by inverting each bit
of B, and then addition of 1 is accomplished by setting the carry input
to the full adder to 1.

The PLUSASM equation syntax for four bits of the add/subtract
/accumulate function shown above are listed in Figure 5-30.

FA

REG

MUX

B4

S4

C4 C3 C2

REG

C1

SUBT

CLK

FA

REG

MUX

B3

S3

FA

REG

MUX

B2

S2

FA

REG

MUX

B1

S1 X2986
XEPLD Design Guide 5–39

XEPLD Design Guide
Figure 5-30 Adder/Subtracter/Accumulator Equations (4-bits)

C0.D1 = SUBT*/SUBT ; always generate carry when D1=0
C0.D2 = SUBT + /SUBT ; carry_in = SUBT
C0 = C0.D1 GND C0.D2 ; (C0 not used)
C0.ADDMODE = VCC
S1.D1 = S1*/B1*/SUBT + /S1*B1*/SUBT + S1*B1*SUBT + /S1*/
B1*SUBT
S1.D2 = S1
S1: = S1.D1 XNOR S1.D2
S1.CLKF = CLK
S1.ADDMODE = VCC
S2.D1 = S2*/B2*/SUBT + /S2*B2*/SUBT + S2*B2*SUBT + /S2*/B2*SUBT
S2.D2 = S2
S2: = S2.D1 XNOR S2.D2
S2.CLKF = CLK
S2.ADDMODE = VCC
S3.D1 = S3*/B3*/SUBT + /S3*B3*/SUBT + S3*B3*SUBT + /S3*/B3*SUBT
S3.D2 = S3
S3: = S3.D1 XNOR S3.D2
S3.CLKF = CLK
S3.ADDMODE = VCC
S4.D1 = S4*/B4*/SUBT + /S4*B4* SUBT + S4*B4*SUBT + /S4*/B4*SUBT
S4.D2 = S4
S4: = S4.D1 XNOR S4.D2
S4.CLKF = CLK
S4.ADDMODE = VCC
5–40 Xilinx Development System

Index

.ADD extension, 5-3

.ADDMODE extension, 5-3, 5-37

.CLKF extension, 3-17, 4-13

AUTHOR statement, 2-2

B

XEPLD Design Guide — 0401191 01 Index-1

.EXPORT extension, 2-16, 5-3, 5-26

.PDS file, 3-7, 4-3

.PLD file, 3-7, 3-9, 4-3

.RSTF extension, 2-11

.SETF extension, 2-11

.SHIFT extension, 5-3

.TRST extension, 2-11, 2-17, 3-17, 4-13

.VST file, 5-3

.WIR file, 5-3

.XNF file, 5-3, 5-4
= operator, 2-12, 2-15
= operator colon, 2-10, 2-15
20V8

features supported, 4-2
using, 3-4, 4-2

22V10
features supported, 4-2
using, 3-4, 4-2

A
ALU function generator, 5-28
ALU function generator (XC7272), 5-35
Arithmetic

design examples
4-bit adder, 5-30
8-bit adder/subtracter, 5-33
adder/subtracter (XC7272), 5-39

design rules, 5-28
logic architecture, 5-28
logic architecture (XC7272), 5-35

attributes
schematic, 4-12

behavioral design, 1-1
Boolean equation entry, 1-2
bus and vector operations, 1-3
getting started, 1-1
hierarchical format, 1-1

bi-directional I/O
assigning signals, 4-14

bit map files, 1-11
Boolean equations, 1-1
BROWSE menu command, 3-9
BUFFOE component, 4-12, 4-13

C
CEPIN statement, 2-3
CHIP statement, 2-2, 4-3, 4-4
clear (asynchronous), 2-11
clocks

default, 4-13
FastCLK, 3-18, 4-9
maximum frequency calculation, 5-10
product term, 3-17

clock-to-output time calculation, 5-9, 5-
13, 5-19
combinational equations, 2-12, 2-15
COMPANY statement, 2-3
compiling designs, 1-10, 3-9
COMPONENT keyword, 4-4
components

BUFFOE, 4-12, 4-13
choosing, 4-9
custom, 4-1, 4-3
GBUF, 4-10
IBUF, 4-10

XEPLD Design Guide
OBUFEX1, 4-12, 4-13
PL20, 4-2
PL20V8, 4-2, 4-4
PL22V10, 4-2, 4-4
PL24, 4-2
PL48, 4-2
PLFB9, 4-3
PLFFB9, 4-3, 4-13

CUPL (PLD compiler), 1-3
custom components, 4-3

D
D1 input, 5-28, 5-35
D2 input, 5-28, 5-37
DATE statement, 2-2
declarations section (PLUSASM), 2-3
default clock

PLFFB9, 4-13
DeMorgan equivalent functions, 2-14
design

compiling, 3-9
optimization, 5-22
verification, 5-5

device
basic structures, 2-4
family selection, 1-6, 3-7
part type selection, 1-6
pin assignment, 5-1
programming, 1-11, 3-9, 4-9
speed selection, 1-7, 3-7

direct inputs, 2-8
direct outputs, 2-18

E
EQN file, 5-5
Equation Report, 5-5, 5-8
equations

chaining across FB boundaries, 5-3
collapsing, 5-5
combinational, 2-12, 2-15
linked, 5-3
manual partitioning, 2-16

registered, 2-10, 2-15, 3-18
section (PLUSASM), 2-4
splitting, 4-2, 5-8, 5-13
splitting effects, 5-15

EQUATIONS keyword, 2-4

F
F schematic attribute, 4-12
Fast Function Block

exporting product terms, 5-26
Fast Function Blocks

partitioning, 5-26
Fast Function Blocks (FFB), 2-4

assigning equations, 3-18
using, 2-15

fast inputs, 5-9
FastCLK nets, 2-16, 3-4, 3-17, 4-9, 5-26
FASTCLOCK statement, 3-4
FASTINPUT statement, 4-13
FB (High Density Function Block), 2-4
FI modifier (Fast Input), 3-18
FITEQN menu command, 1-10, 3-9, 5-4,
5-5
FITNET menu command, 4-8
FITTER menu command, 3-9, 5-4
fitting strategies, 5-22
FOE modifier, 2-17
FOE nets, 2-16, 3-4, 3-17, 3-18, 4-12, 4-13,
5-26
FOEPIN statement, 2-11, 2-17, 3-4, 3-17

G
GBUF component, 4-10
GENERIC keyword, 4-2, 4-3
generic PAL, 3-5, 4-2

H
header section (PLUSASM), 2-2
hierarchical design, 2-2
High Density Function Blocks (FB), 2-4

using, 2-10
High-Level Design Language (HDL), 1-3
hold time calculation, 5-9
Index-2 Xilinx Development System

Index
I
IBUF component, 4-10
Include File, 1-1, 2-1
input pads, 2-4

direct inputs, 2-8
registered inputs, 2-8
using, 2-7

INPUTPIN (FI) statement, 3-18
INPUTPIN statement, 2-8, 3-2
inputs

direct, 2-8
latched, 2-8
registered, 2-8
registered with clock enable, 2-8

Intel Hex files, 1-11
IOPIN (PINFBK) statement, 3-15

J
JED2PLD menu command, 4-4, 4-7
JEDEC files, 1-4, 1-11

conversion, 4-2
using, 4-4

L
LE modifier, 2-8
library components, 4-1
linked equations, 5-3
LOG/iC (PLD compiler), 1-3
logic

collapser, 5-22, 5-25
moving into FFB, 5-26

LOGIC_OPT statement, 5-25
logical PARTITION statements, 5-3

M
MAKEJED menu command, 3-9, 4-9

example, 1-11
MAKEPRG menu command, 3-9, 4-9

example, 1-11
manual pin assignment, 5-2
max. clock freq. calculation, 5-10

N
NODE (UIM) statement, 2-13
node assignment (in PALCONVT), 3-2
NODE statement, 3-2
nodes

assigning to outputs, 3-15
splitting, 5-12

O
OBUFEX1 component, 4-12, 4-13
optimization, 5-22
optimization effects, 5-4
optimizer, 5-5
optimizing device resources, 5-22
OrCAD VST, 5-4
OrCADPLD (PLD compiler), 1-3
output enab./disable time calc., 5-10
output enable signals, 3-17
output pad structures, 2-4

using, 2-17
OUTPUTPIN statement, 2-18, 3-2, 3-15
outputs

direct, 2-18
splitting, 5-18
tri-state, 2-17

P
PAL

20V8, 1-4, 3-2, 3-4
22V10, 1-4, 3-2, 3-4
conversion example, 1-4, 3-11
conversion procedure, 3-6
conversion requirements, 3-4
converting files, 1-2, 3-1
generic, 3-5, 4-2
importing files, 4-5
interconnections, 3-15
library component, 4-2
using in schematics, 4-9

PAL Interconnect Report, 3-10
PALASM, 1-3
PALCONVT menu command, 3-2, 3-8
XEPLD Design Guide Index-3

XEPLD Design Guide
example, 1-8
verification, 3-10

PARTITION Statement, 5-26
PARTITION statement, 2-16, 3-18, 5-1

logical, 5-3
physical, 5-3

partitioning, 4-2
Partitioning Report, 5-22
PDS file, 3-7, 4-3
physical PARTITION statements, 5-3
pin

assignment, 5-1, 5-2
assignment (in PALCONVT), 3-2
assignment (precautions), 5-2
statements, 3-2

pin feedback, 3-16, 3-17, 5-10
PIN keyword, 5-2
Pinlist Report, 5-5
PINSAVE command, 5-1
pin-save file, 5-1, 5-3
pin-to-pin delay calculation, 5-10
PL20, using, 4-2
PL24, using, 4-2
PL48, using, 4-2
PLD

development methods, 4-4
files, 4-3
files, used in schematics, 4-1
library components, 4-1
linking symbols to schematic, 4-8
state-machine design, 1-3
truth table input, 1-3

PLD compilers
ABEL, 1-3
ABEL XFER utility, 3-7
CUPL, 1-3
CUPL -c option, 3-7
LogIC, 1-3
OrCAD PLD, 1-3
third-party, 1-3
using, 4-4

XABEL, 1-3
PLFB9

using, 4-3
PLFB9 keyword, 4-3
PLFFB9

using, 4-3, 4-13
PLFFB9 keyword, 4-3
PLUSASM, 1-2

creating designs, 2-1
declarations section, 2-3
equations section, 2-4
file structure, 2-2
header section, 2-2
using, 4-4

polarity conflicts
resolving with PALCONVT, 3-2

preload, register, 2-11, 2-15, 5-26
preload, register (XC7336), 2-16
product-term clock, 3-17
product-terms

exported, 5-2
shared, 5-23

PROFILE menu command, 3-7
programming (device), 1-11, 3-9, 4-9
Pulse Width Modulator example, 2-4

R
RCLK modifier, 2-7, 2-8
register preload, 2-11, 2-15, 5-26
register preload (XC7336), 2-16
registered equations, 2-10, 2-15, 3-18

asynchronous clear, 2-11
asynchronous set, 2-11, 4-13
using FastCLK, 4-13

registered inputs, 2-8
reports

Equation Report, 5-5, 5-8
PAL Interconnect Report, 3-10
Partitioning Report, 5-22
Pinlist Report, 5-5
Resource Report, 5-5, 5-8

Resource Report, 5-5, 5-8
Index-4 Xilinx Development System

Index
REVISION statement, 2-3

S
schematic

attributes, 4-12
set (asynchronous), 2-11
setup and hold timing calculation, 5-13
simulation, 4-9, 5-3

board-level designs, 5-4
splitting

variable specification, 5-23
splitting equations, 5-8
splitting outputs, 5-18
state machine design, 1-3
st-up time calculation, 5-9
symbols, custom, 4-3

T
TIME statement, 2-3
timing calculation example, 5-9, 5-12
timing calculations

clock-to-output, 5-9, 5-13, 5-19
for equation splitting, 5-18
Maximum frequency, 5-10
maximum frequency, 5-14
output enab./disab., 5-10
propagation delay, 5-10
set-up and hold, 5-9
setup and hold, 5-13

TITLE statement, 2-2
Top-Level File, 1-1, 2-1

editing, 3-10
TRANSLATE menu command, 4-4, 4-7
tri-state control, 2-11, 3-17, 3-18
tri-state outputs, 2-17

U
UIM, 2-4

AND functions, 2-13, 5-5, 5-12
interconnections, 2-13
optimization, 5-13
using, 2-13

UIM feedback, 3-15, 3-17

UTILITIES menu command, 3-9

V
verification, 5-5

design fit, 5-5
design timing, 5-8

VERIFY menu command, 4-9, 5-4
ViewLogic Viewsim, 5-4
ViewSim simulator, 5-3
VMD file, 5-4
VMH file, 5-4
VMH2XNF menu command, 5-4
VST file, 5-3

W
WIR file, 5-3

X
XABEL, 1-3
XDM, 3-7
XEPLD.CFG file, 5-23
XMAKE menu command, 4-4, 4-8
XNF file, 5-3, 5-4
XSIMMAKE menu command, 5-4
XEPLD Design Guide Index-5

XEPLD Design Guide
Index-6 Xilinx Development System

Trademark Information
XEPLD Design Guide — 0401191 01

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of
Xilinx. All XC-prefix product designations, XACT-Floorplanner, XACT-Performance,
XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell,
LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock,
VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are
trademarks of International Business Machines Corporation. DASH, Data I/O and
FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-PLA are
trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-
Silos and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered
trademark and MS-DOS is a trademark of Microsoft Corporation. Centronics is a
registered trademark of Centronics Data Computer Corporation. PAL and PALASM are
registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices,
Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard Corporation.
Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim,
QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of
Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation.
Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne
Electronic Design Automation Group. DECstation is a trademark of Digital Equipment
Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product
described or shown herein; nor does it convey any license under its patents, copyrights, or
maskwork rights or any rights of others. Xilinx reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product
possible. Xilinx will not assume responsibility for the use of any circuitry described herein
other than circuitry entirely embodied in its products. Xilinx devices and products are
protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216;
4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626;

R

Trademark Information
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821;
5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248;
5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125;
5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; RE
34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does
not represent that devices shown or products described herein are free from patent
infringement or from any other third party right. Xilinx assumes no obligation to correct
any errors contained herein or to advise any user of this text of any correction if such be
made. Xilinx will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems.
Use of a Xilinx product in such applications without the written consent of the
appropriate Xilinx officer is prohibited.
Xilinx Development System

	COVER PAGE
	TRADEMARK INFORMATION
	BOOK CONVENTIONS
	TABLE OF CONTENTS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	GO TO OTHER BOOKS
	Chapter 1 Getting Started with Behavioral Design
	An Overview of Behavioral Design Methods
	Converting Existing PAL Designs
	Using PLUSASM to Create New Designs
	Using Xilinx ABEL to Create New Designs
	Using Third-Party PLD Compilers
	Converting JEDEC Files

	Design Example — Converting a PAL File
	PAL Conversion Procedure
	Step 1 — Copy the PAL File
	Step 2 — Run XDM
	Step 3 — Select the Device Family, Type, and Speed
	Step 4 — Convert the PAL Equation File
	Step 5 — Compile the Design
	Step 6 — Verify the Design
	Step 7 — Program a Device

	Chapter 2 Creating Designs with PLUSASM
	PLUSASM Overview
	PLUSASM File Structure
	The Header Section
	The Declarations Section
	The Equations Section

	Creating Basic Designs
	Design Example
	Using Input Pad Structures
	Registered Inputs
	Registered Inputs with Clock Enable
	Latched Inputs
	Combinatorial Inputs
	FastInputs
	Input Polarity

	Using High-Density Function Blocks
	Registered Equations
	Registered Equation Clock Definition
	Register Preload Values
	Macrocell Control Equations
	Combinatorial Equations
	Manual Placement of Equations

	Using the Universal Interconnection Matrix (UIM)
	Using UIM Interconnections
	Using Wired-AND Functions
	Signal Polarity

	Using Fast Function Blocks
	Combinatorial Equations
	Registered Equations
	Automatic Placement of Equations
	Manual Placement of Equations

	Using Output Pad Structures
	3-State Outputs using Global FOE
	3-State Outputs using Product Term Control
	Direct Outputs
	Specifying Feedback Paths
	Pin Feedback
	Macrocell Feedback
	Specifying 3-State Options
	Using both Product Term and FOE 3-State Control

	Chapter 3 Converting PAL Designs
	PAL Conversion Methodology Overview
	Pin and Node Assignment
	FASTCLOCK and FOEPIN Assignment
	Signal Polarity Conflict Resolution

	PAL Conversion Requirements
	Using 22V10 and 20V8 Files
	Using Generic PAL Files

	The PAL Conversion Procedure
	Step 1 — Create .PLD or .PDS Files
	Step 2 — Import the PAL Files
	Step 3 — Run XDM
	Step 4 — Select a Device Type and Speed
	Step 5 — Create a Top-Level File
	Step 6 — Edit the Top-Level File
	Step 7 — Compile the Design
	Step 8 — Verify the Design
	Step 9 — Program the Device
	Verifying PAL Conversion

	Editing the Top-Level File
	PAL Conversion Example
	Assigning Nodes to Outputs
	Interconnections Between PALs
	PAL Outputs Used as Feedback in the Same PAL
	External Bi-Directional — PIN Feedback
	External Bi-Directional — Macrocell and PIN Feedback

	Assigning Output Enable Signals to FOE Nets
	Assigning Clock Signals to FastCLK Nets
	Assigning Equations to Fast Function Blocks

	Chapter 4 Using PLD Files in Schematics
	Choosing Library Components
	Using the PL22V10 or PL20V8
	Using the PL20PIN, PL24PIN, and PL48PIN
	Using the PLFB9 and PLFFB9
	Creating Custom Component Symbols

	Choosing a PLD Development Method
	Using JEDEC Files
	Using PLUSASM
	Using a PLD Compiler

	Design Flow
	Step 1 — Choose a PLD Design Method
	Step 2 — Choose PLD Components
	Step 3 — Create Your PLD Files
	Step 4 — Convert Your JEDEC Files
	Step 5 — Create Your Schematic Design Files
	Step 6 — Link Your Files to the Schematic
	Step 7 — Integrate the Design
	Step 8 — Simulate Your Design (optional)
	Step 9 — Program the Device

	Design Example — Using PALs in a Schematic
	Choosing Library Components
	Assigning Clock Signals to FastCLK Nets
	Assigning Output Enable Signals to FOE Nets
	Assigning Functions to Fast Function Blocks
	Using Schematic Attributes
	Using the PLFFB9 Component

	Assigning Bi-Directional I/O Signals
	Case 1 — Bi-Directional Outputs that Go Off-Chip
	Case 2 — Using Both Macrocell and Pin Feedback

	Chapter 5 Advanced Behavioral Design Techniques
	Manual Device Pin Assignment
	Manual Pin Assignment Precautions
	Using Pin Declaration Statements
	Using PARTITION Statements
	Logical PARTITION Statements
	Physical PARTITION Statements

	Simulating Behavioral Designs
	Using Viewlogic Viewsim or OrCAD VST
	Using XNF-Compatible Simulators
	Simulating Board-Level Designs

	Verifying Behavioral Designs
	Verifying Design Fit
	Verifying Design Timing
	Timing Calculation Example 1
	Setup and Hold — Signals B and G to Clock
	Clock-to-Output — Signals F, G, H, J, K, L from Clock
	Output Enable/Disable — Signals G, K, L
	Pin-to-Pin Propagation Delay — Signal E to L
	Maximum Frequency — Clock A

	Timing Calculation Example 2
	Setup and Hold — D[0:23] to STROBE
	Clock-to-Output — PULSE
	Maximum Frequency — Clock A

	Timing Calculation Example 3
	Clock-to-Output — RESTART
	Maximum Frequency

	Design Fitting Strategies
	Optimizing Device Resources
	If Your Design is Product Term Constrained
	If Your Design is FB Input Constrained
	If Your Design has Unused Fast Function Blocks

	Design Rules for Arithmetic Design
	Arithmetic Logic Architecture (Except XC7272)
	4-Bit Adder Example

	Partitioning Arithmetic Equations
	8-Bit Adder/Subtracter/Accumulator Example

	XC7272 Arithmetic Logic Architecture
	4-Bit Adder Example (XC7272)
	Adder/Subtracter/Accumulator Example (XC7272)

