
DEVELOPMENT
SYSTEM

 ™

REFERENCE GUIDE
VOLUME 1

ONLINER

0401405

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

Contents

Copyright 1990-1995 Xilinx Inc. All Rights Reserved.
Chapter 1 The XACT Design Manager
Online Help .. 1-2
The Program List File... 1-3
Using XDM on a PC... 1-3

Using XDM on a Workstation.. 1-7
About X-Windows and Graphic User Interfaces 1-7
Mouse Configuration... 1-7
Window Operations .. 1-8

Window Buttons... 1-8
Window Accelerator Keys.. 1-8
Active Window ... 1-9
Edit Functions.. 1-9

Starting XDM .. 1-9
Running XMake within XDM .. 1-12
 XDM User Interface .. 1-13

The Graphical Interface .. 1-14
The Command Line Interface ... 1-14

The XDM Menu.. 1-15
The Design Entry Menu .. 1-15

SYMGEN ... 1-15
The Translate Menu.. 1-15

XMake ... 1-16
XEMake ... 1-16
ABL2XNF... 1-16
ABL2PLD... 1-17
Annotate (OrCAD Interface Only)...................................... 1-17
CleanUp (OrCAD Interface Only) 1-17
HM2RPM ... 1-17
INET (OrCAD Interface Only) .. 1-17
JED2PLD... 1-18
MAP2LCA.. 1-18
MemGen.. 1-18
PinSave ... 1-18
PLUSASM ... 1-18
Development System Reference Guide, Volume 1 — 0401405 01 i

Development System Reference Guide, Volume 1
SDT2XNF (OrCAD Interface Only) 1-19
SYN2XNF (Synopsys Interface Only)................................ 1-19
WIR2XNF (Viewlogic Interface Only)................................. 1-19
X-BLOX.. 1-19
XDRAFT (OrCAD Interface Only) 1-19
XNFMAP.. 1-20
XNFMerge ... 1-20
XNFPrep .. 1-20

The PlaceRoute Menu .. 1-20
APR ... 1-20
APRLoop ... 1-21
PPR ... 1-21
XDE ... 1-21

The Fitter Menu (XC7200 and XC7300 only).......................... 1-21
FITEQN.. 1-21
FITNET .. 1-22
PALCONVT ... 1-22

The Verify Menu.. 1-23
ASCTOVST (OrCAD Interface Only) 1-23
LCA2XNF... 1-23
MakeBits .. 1-23
MAKEJED.. 1-23
MAKEPRG... 1-24
MakePROM ... 1-24
ORCAD (VST) ... 1-24
PROLINK ... 1-24
VMH2XNF.. 1-24
VSM (Viewlogic Interface Only) ... 1-25
VSMUPD (Viewlogic Interface Only) 1-25
XSimMake ... 1-25
XChecker ... 1-25
XDelay ... 1-25
XNFBA... 1-26
XNFCVT .. 1-26
XNF2VST (OrCAD Interface Only) 1-26
XNF2WIR (Viewlogic Interface Only)................................. 1-26
XPP.. 1-26

The Utilities Menu ... 1-27
Browse... 1-27
DirClean... 1-27
Directory .. 1-27
ii Xilinx Development System

Contents
DOS (PC Only) .. 1-28
Edit .. 1-28
Execute.. 1-28
Help ... 1-29
Report.. 1-29
ScanDisk ... 1-29
Version .. 1-30

The Profile Menu .. 1-30
Cursor.. 1-30
Family .. 1-30
KeyCursor.. 1-31
Keydef ... 1-31
Menucolors .. 1-31
Mouse.. 1-31
Options .. 1-32
Palette ... 1-32
Part .. 1-32
Readprofile .. 1-32
Saveprofile... 1-32
Settings.. 1-32
Speed .. 1-32

Chapter 2 The XMake Program
Using XMake from the XDM Menu .. 2-2
Using XMake from the System Prompt.. 2-2
XMake Command Line Usage ... 2-3
Files ... 2-4

Input Files ... 2-4
Schematic File ... 2-4
HDL File... 2-5
design.mak .. 2-5
design.xnf .. 2-5

Output Files .. 2-5
design.mak .. 2-5
design.out .. 2-5
design.xff ... 2-6
design.xtf ... 2-6
design.xg ... 2-6
design.map .. 2-6
design.lca .. 2-6
design.bit ... 2-6
Development System Reference Guide, Volume 1 iii

Development System Reference Guide, Volume 1
Options... 2-6
MAK File Input with –r... 2-9
Schematic File Input with –r.. 2-9

XMake Design Flow ... 2-10
MAK File... 2-15

A Simple MAK File Example ... 2-15
A Complete MAK File Example... 2-18

Macros in the MAK File .. 2-19
Error Messages and Recovery Techniques 2-20
Warning Messages and Recovery Techniques............................ 2-27

Chapter 3 The MemGen Program
Running MemGen from Windows .. 3-1
Running MemGen from DOS ... 3-3

Syntax ... 3-3
Input Files ... 3-3

filename.mem .. 3-3
Output Files... 3-3

filename.xnf ... 3-3
filename.cmd ... 3-4
filename.1 .. 3-4
memgen.log ... 3-4

Memory Definition File Example ... 3-4
Specifying Memory Characteristics... 3-4

Type... 3-5
Depth ... 3-5
Width.. 3-5
Symbol... 3-5
Default ... 3-6
Data ... 3-6
Comments ... 3-7

Data Formats .. 3-7
Options.. 3-8
Examples .. 3-10
Address Boundary Checking .. 3-11

Chapter 4 XACT-Performance Utility
Defining Timing Requirements Using Groups.............................. 4-2

Understanding the Basics ... 4-2
TIMESPEC Primitive.. 4-3
From-To Statement Syntax.. 4-4
iv Xilinx Development System

Contents
Using Predefined Groups ... 4-5
Creating Arbitrary Groups Using TNMs 4-5

Placing TNMs on Primitive Symbols.................................. 4-6
Placing TNMs on Macro Symbols 4-7
Placing TNMs on Signals or Pins to Group Flip-Flops 4-8

Creating New Groups from Existing Groups........................... 4-11
Combining Multiple Groups into One................................. 4-12
Creating Groups by Exclusion ... 4-13
Defining Flip-Flop Subgroups by Clock Sense 4-15

Grouping Latches ... 4-15
Creating Groups by Pattern Matching 4-16

How to Use Wildcards to Specify Signal Names 4-17
How to Define Groups by Signal Name............................. 4-17

When Multiple Specifications Apply to the Same Path 4-18
Ignoring Selected Paths.. 4-18
Specifying Time Delay in TS Attributes 4-19

Selecting Automatic Delay (AUTO) 4-19
Specifying a TS Attribute Delay in Terms of Another 4-20

Sample Schematic Using End-Point Specifications................ 4-21
Default Specifications Inserted by PPR 4-23

Defining Timing Requirements Using Path-Type Specifications.. 4-23
The Four Basic Path Types .. 4-24

Clock to Setup (C2S, DC2S) ... 4-24
Pad to Setup (P2S, DP2S) .. 4-26
Clock to Pad (C2P, DC2P) .. 4-27
Pad to Pad (P2P, DP2P) ... 4-29

When Multiple Path-Type Specifications Apply to the
Same Flip-Flop ... 4-31
The Forward Tracing Mechanism ... 4-31
Combinational Delays and Timing Specifications on
Clock-Related Paths ... 4-32
Specifying a Path-Type TS Attribute Delay in Terms
of Another ... 4-33
Placing TS Flags... 4-33

Placing TS Flags on the Schematic................................... 4-34
Placing TS Flags on Cascaded Counters.......................... 4-40

Other Specification Parameters.. 4-42
LINK (Link TS Attributes)... 4-42
IGNORE (Ignore Path Type) ... 4-43

Sample Schematic Using Path-Type Specifications............... 4-43
How are Path-Type and End-Point Specifications Different? . 4-44
Development System Reference Guide, Volume 1 v

Development System Reference Guide, Volume 1
Syntax Summary.. 4-45
TNM Attributes .. 4-45
TIMEGRP Attributes ... 4-45
TIMESPEC Attributes ... 4-46

Chapter 5 The XNFCVT Program
Syntax .. 5-2
Files.. 5-2

input.xnf .. 5-2
output.xnf .. 5-2

Options... 5-2
Summary of Version Differences ... 5-3
XNFCVT Program Process .. 5-5
The AKA File (Version 2 to Version 1 Only)................................. 5-5
Error Messages and Recovery Techniques 5-6

Chapter 6 HM2RPM
User-Created Hard Macros .. 6-2

Designs with Elements from Previous Libraries...................... 6-3
Designs with Elements from the Unified Libraries 6-4

Xilinx-Created Hard Macros ... 6-4
Designs with Elements from Previous Libraries...................... 6-4
Designs with Elements from the Unified Libraries 6-4

Design Flow ... 6-5
Files.. 6-7

Input Files ... 6-7
Output Files... 6-7

How to Use HM2RPM .. 6-8
Invoking HM2RPM .. 6-8

From XDM ... 6-8
From the Command Line ... 6-8

Creating Unified Libraries-Compatible XNF File 6-9
Obtaining Help .. 6-9

HM2RPM Options .. 6-9
-Helpall.. 6-9

Error Messages.. 6-10

Index ... i

Trademark Information
vi Xilinx Development System

Chapter 1
Development System Reference Guide, Volume 1 — 0401405 01 1-1

The XACT Design Manager

This program is compatible with the following families.

● XC2000

● XC2000L

● XC3000

● XC3000A

● XC3000L

● XC3100

● XC3100A

● XC4000

● XC4000A

● XC4000D

● XC4000H

● XC5200

● XC7200

● XC7300

XDM, the XACT Design Manager, is the common user interface
shared by all FPGA and EPLD development packages. It serves as a
menu–driven shell for executing all XACTstep development
operations, including the XEPLD Integrator and related interfaces.

To use XDM effectively, you should be familiar with its features. The
following subsections describe important XDM features.

Development System Reference Guide, Volume 1
● “Online Help” describes how to use the online help facility.

● “The Program List File” describes the proglist.xdm file.

● “Running XMake in XDM” describes how to run the XMake
program from within XDM.

● “Using XDM on the PC” describes how to run XDM on the PC and
explains the XDM opening screen.

● “Using XDM on a Workstation” describes how to run XDM on a
workstation and explains the XDM opening screen.

● “XDM User Interface” describes how to execute commands from
the graphical user interface and the command line.

● “The XDM Menu” briefly describes the menus and associated
commands. For more details, refer to the appropriate chapter in
the Development System Reference Guide for detailed descriptions of
syntax, options, and error messages for specific programs.

Online Help
XDM includes online help for each menu, program, and command
option. For example, you can display help information about the
Translate menu, about the XMake program located in the Translate
menu, or about the XMake -x option.

There are two methods for displaying help: XDM command–line
entry and menu selection for any topic represented in the Design
Manager menu structure. To use online help from the command line,
use the following format:

help topic-option

Using this method, the topic can be either a menu name, a program, or
command name. You can request information about a specific option
by typing a “-” and the option immediately after the topic. Press ↵ to
display the online help information. Press F1 to exit the online help
display.

On PCs, selecting help from a menu requires that you first highlight
the topic with the mouse. With the menu item highlighted, press the
F1 key to access the corresponding help screen. Press F1 again to exit
the help display.
1-2 Xilinx Development System

The XACT Design Manager
Note: Pressing the F1 key on a highlighted command is called
context–sensitive help. While command line entry for help is
supported on all platforms, only PCs support context–sensitive help.

Note: To exit from the online help on workstations, press F1.

The Program List File
XDM maintains a program list file (proglist.xdm) to minimize the
time required for start up. The text file contains a list of XDM–
supported programs (executable files) installed on your system.

When generating proglist.xdm, XDM attempts to write it in the
following order:

1. To the directory specified by the XACTUSER environment
variable, if defined.

2. To the “data” subdirectory of the directory specified by the XACT
environment variable, for example, C:\XACT\DATA on PCs.

3. To the current working directory.

When reading proglist.xdm, XDM searches for the file in the
following order.

4. In the current working directory.

5. In the directory specified by the XACTUSER environment
variable, if defined.

6. In the “data” subdirectory of the directory specified by the XACT
environment variable, for example, C:\XACT\DATA on PCs.

XACTUSER is a user–defined environment variable that XDM uses
only if it is defined.

Using XDM on a PC
The XDM executable file is located in the XACT directory (the default
is C:\XACT), which should be included in the PATH specified in
your autoexec.bat file. To start XDM at your operating system
prompt, enter this command:

xdm
Development System Reference Guide, Volume 1 1-3

Development System Reference Guide, Volume 1
When you enter this command, the Design Manager software loads
into memory, reads the proglist.xdm file to set up your menus, and
displays a message similar to the one below.

Reading c:\xact\data\proglist.xdm...

Note: If proglist.xdm is missing, as in the very first invocation of
XDM, XDM automatically generates this file using the ScanDisk
command. See the XDM Menu section for a description of the
ScanDisk command.

After a short while, another message similar to the one below
displays.

Reading c:\xact\data\xdm.pro...

This message means XDM is reading the profile information in the
xdm.pro file to configure the Design Manager software as well as the
graphics, I/O ports, and any other configurable system parameters.
You can customize the xdm.pro file. Refer to the information in the
Profile menu section.

When XDM is completely loaded, your monitor displays the XDM
main screen. The main screen consists of a menu bar at the top, a
command line at the bottom, a status/settings area above the
command line, a mouse cursor, and a logo with software version
information in the center, as shown in Figure 1-1.
1-4 Xilinx Development System

The XACT Design Manager
Figure 1-1 XACT Design Manager Opening Screen (PC–type
Systems)

Descriptions of the identified parts of the XDM Opening Screen
follow:

● Menu Bar is at the top of the Main Screen and contains commands
and utilities available from XDM. Clicking on the Menu Bar
brings up the various menu options.

● Main Screen is below the Menu Bar and contains the version
number and copyright information for XDM. In the lower–left
corner of the Main Screen are four Setting fields: Family, Directory,
Part, and Mouse. To change these settings, place the cursor over
the field and click the left button. A pop–up menu displays a list
of items that you can select.

● Family specifies the family of Xilinx devices that is the target
for your design. For example, to choose EPLD devices, select
XC7200 or XC7300. Your selection in this field determines
Development System Reference Guide, Volume 1 1-5

Development System Reference Guide, Volume 1
which commands are available from the menu. For example,
the PLUSASM command appears on the Translate menu only
if you choose XC7200 or XC7300.

● Directory specifies the design directory in which you are
working.

● Part specifies the part that is the target of your design, for
example, XC7236-30PC44.

● Mouse specifies the mouse mode (or connection port on the
PC).

● Command Line is where you enter commands via the keyboard.
You can re–execute a command by pressing ↵ when the desired
command appears at the Cmd: prompt. Use the keyboard arrow
keys to cycle through previously executed commands. You can
enter commands when the cursor is blinking on the Command
line. If the cursor does not appear, click on the Command line with
the mouse. Use the backspace and arrow keys to edit commands
on the Command line.

To quit XDM and return to DOS, select Quit on the menu bar or enter
the quit command on the Command line at the bottom of the XDM
screen.

Note: You can temporarily return to DOS without quitting XDM by
using the DOS command in the Utilities menu. See the command
description later in this chapter.

If your menus do not display all of the commands included with your
Xilinx software product, check your autoexec.bat file to verify that
your PATH is properly set to include the executable directory paths
specified during installation. For example,

PATH ...;drive:\XACT;...

If your PATH is not present, modify your autoexec.bat file to include
the missing path, then reboot your system. You might also have to
update your proglist.xdm file. To do this, start XDM and select the
ScanDisk command from the Utilities menu.
1-6 Xilinx Development System

The XACT Design Manager
Using XDM on a Workstation
You must have X-Windows running on your workstation before you
start XDM. This subsection briefly describes the X-Windows
environment and how to start XDM.

Note: You should not start XDM in the background mode. XDM calls
some programs that go into an interactive mode and can cause XDM
to halt if it is running in the background mode.

About X-Windows and Graphic User Interfaces
XilinX software requires X-Windows to operate on a workstation. The
recommended graphic interface is Motif. X-Windows is an industry-
standard windows environment developed by the Massachusetts
Institute of Technology (MIT). The appearance of the windows,
mechanisms used to manipulate windows, and the mouse definition
are part of Motif. X–Windows and Motif are available on Apollo and
Sun–4.

Xilinx software is also compatible with the Display Manager on
Apollo and Openlook on Sun–4.

Both X–Windows and the Motif window manager are configurable.
Configuration files control mouse operation, menu contents, screen
display, and window appearance. The .Xdefaults file controls the X–
Windows environment and the .mwmrc file controls the Motif
window manager. These files should be in your home directory.

There are some basic operations you should know that apply to most
configurations. The following paragraphs describe these operations.

Mouse Configuration
You can program the mouse buttons to start menus, select objects,
and select text. The modes of a mouse button can vary depending
upon the location of the cursor. Buttons operate differently if the
cursor is located in an X–terminal window, X–terminal banner or
edge, or outside an X–terminal window. Specific mouse button
operation is dependent upon your configuration.
Development System Reference Guide, Volume 1 1-7

Development System Reference Guide, Volume 1
Window Operations
You can easily modify the size and location of windows within the X-
Windows or Motif environment. You can start window operations
through menus or using accelerator keys. The basic window
operations are as follows:

● “Move” allows you to move the window to a different location on
the screen.

● “Size” allows you to alter the size of the window by clicking an
edge or corner of the window and dragging the cursor.

● “Iconify/Minimize” transforms the window into an icon. Double
clicking on the icon restores the window to its original size.

● “Front” brings the window to the front of the display, overlapping
other open windows.

● “Back” sends the window to the back of the display; other open
windows overlap the window sent to the back.

● “Pop” toggles the window between the front and back of the
display. When you initially select Pop, the window comes to the
front.

● “Close” closes the window and removes it from the active display.

Window Buttons

Many window configurations are defined with three buttons in the
banner of the window. These buttons are menu select, iconify and
maximize. The menu select is in the top left corner; the window
iconify and maximize are in the top right corner.

Window Accelerator Keys

You can execute many window operations with accelerators keys.
Typical window operations are window resize, move, and front. You
can define these window operations with Esc, Control, or meta 〈◊)
keys, or any other key in your .XDefaults file. For example, you might
define Esc v to scroll down a screen.

Using the mouse, resizing a window is a click–and–drag operation on
the window edge or corner; moving a window is a click–and–drag
1-8 Xilinx Development System

The XACT Design Manager
operation on the window banner; bringing a window to the front is a
click operation on the banner.

Active Window

The active window is usually highlighted to allow easy identification.
Xilinx software uses the focus method that is defined in the X–
Windows environment.

Edit Functions

Several keys and key sequences that work in the X–Window
environment also apply to the Xilinx software. For example, you can
use the up/down keys for command recall. Other key sequences are
as follows:

● Control-U erases an entire command line

● Backspace or Control-H erases the character to the left of the
cursor

● Delete erases the character to the right of the cursor, except at the
end of the line, when it erases the last character on the line

● F1 or Help brings up on–line help.

Starting XDM
Enter the following command from the operating system prompt:

XDM

Note: Use all capital letters when you type ‘XDM’ at the prompt.

After you enter the XDM command, the Design Manager software
loads into memory and reads the proglist.xdm file to set up your
menus. While this is being done, the following message displays:

Reading proglist.xdm...

Note: If proglist.xdm is missing, as it will be in the very first
invocation of XDM, XDM automatically generates this file, using the
ScanDisk command. See the ScanDisk command description in “The
XDM Menu” section in this chapter.
Development System Reference Guide, Volume 1 1-9

Development System Reference Guide, Volume 1
After a short while, this message appears:

Reading xdm.pro...

When XDM is completely loaded, the XDM opening screen displays.
See Figure 1-2 for an illustration of the XDM opening screen. The
opening screen consists of four areas: Command Window, Menu Bar,
Main Screen, and Settings.

● Command Window consists of three areas: Status Line, Instruction
Line, and Command Line.

● The top line is the Status Line, which displays responses to the
commands you enter (either with the keyboard or the menus)
and a history of commands you have entered at the Command
Line.

● The middle line is the Instruction Line, which tells you to press
any key to continue whenever a program or command
completes execution. Pressing any key at this time brings back
the original XDM window.

● The bottom line is the Command Line at which you enter
commands via the keyboard. You can re–execute a command
by pressing Return when the desired command appears at the
Cmd: prompt. Use the keyboard arrow keys to cycle through
previously executed commands. You can enter commands
when the cursor is blinking on the command line. If the cursor
does not appear, click on the Command line with the mouse.
Use the backspace and arrow keys to edit commands on the
Command Line.
1-10 Xilinx Development System

The XACT Design Manager
Figure 1-2 XDM Opening Screen (Workstations)

● Menu Bar is below the Command Window and contains
commands and utilities available from XDM. Clicking on the
menu bar brings up the various menu options.

● Main Screen is below the Menu Bar and contains the version
number and copyright information for XDM. When XDM runs a
program, the Main Screen is replaced by a text window where
standard output from the program displays. When the program
completes, XDM waits for confirmation before removing the text
screen and continuing.

In the lower–left corner of the Main Screen are four Setting fields:
Family, Directory, Part, and Mouse. To change these settings, place
the cursor over the field and click the left button. A pop–up menu
displays a list of items that you can select.

● Family specifies the family of Xilinx devices that is the target
for your design. For example, to choose EPLD devices, select
XC7200 or XC7300. Your selection in this field determines
Development System Reference Guide, Volume 1 1-11

Development System Reference Guide, Volume 1
which commands are available from the menu. For example,
the PLUSASM command appears on the Translate menu only
if you choose XC7200 or XC7300.

● Directory specifies the design directory in which you are
working.

● Part specifies the part that is the target of your design, for
example, XC7236-30PC44.

● Mouse specifies the mouse mode.

To quit XDM and return to the operating system prompt, select Quit
from the menu bar or enter “quit” on the Command Line.

Note: When running your Xilinx software in X–Windows, you can
return to a system command prompt by simply opening another
window.

Note: If your menus do not display all of the commands included
with your Xilinx software product, verify that your path variable is
set correctly. It should include the directory in which the Xilinx tools
reside. The proglist.xdm file might also need updating. To update this
file use the ScanDisk command from the Utilities menu.

Running XMake within XDM
The most important feature of XDM is the capability of running the
XMake program. XMake uses schematic–to–XNF translators and the
necessary design implementation tools to automatically convert a
design file into a bitstream file. This is the most automated way to
implement your design. To run XMake, follow the steps below.

Note: XMake supports only FPGA implementation flows. An
equivalent capability, called XEMake, also exists in XDM to support
EPLD design flows (XC7000 family).

Note: OrCAD users must run XDRAFT before entering the schematic
and selecting XMake.

1. Select the XMake command from the Translate Menu.

2. Select the XMake options you want from the displayed menu.
Available options are dependent upon the current Family settings.
1-12 Xilinx Development System

The XACT Design Manager
Note: Unless the current design uses Unified Libraries, you must
select the -l option in XMake. This option automatically selects the
‘Use–old–library–only’ option when starting the translators.

3. Select Done.

4. Select the input file from the displayed menu.

The files in this menu vary, depending on the options you selected
in step 2. For example, if you selected the -x option, the menu
only contains XNF files. If you did not select the -x or -g option,
the menu contains all recognized schematic and MAK files.

When reprocessing a design that you have modified, you should
select the corresponding MAK file. However, if any modules have
been added or deleted, you must select the original design file as
input, so that XMake generates a new MAK file.

5. At this point, XDM displays the target menu. Select the item that
describes the stage at which you want XMake to stop.

XMake starts translators and design implementation tools with the
current option settings for each tool. Use the Options command from
the Profile menu to examine and select options for each tool
(program).

Note: There are a number of options that XMake does or does not
use, regardless of the current setting, when processing a design. This
feature ensures that there are no errors caused by the exclusion or
inclusion of such options, in the context of automatic, continuous
design flow.

For example, XMake always uses the -b option for WIR2XNF, and the
-w option for APR, and always ignores the output_xnf option for
ABL2XNF.

 XDM User Interface
There are two methods for executing XDM commands. These
methods are the same for PCs and workstations. You can use the
mouse pointer to open a menu and select the desired command; or,
you can enter the command and options on the Command Line.

With each method, messages from commands appear in the window
from which you started XDM. While a command is running, the
cursor takes the shape of a clock. When the command finishes, a beep
Development System Reference Guide, Volume 1 1-13

Development System Reference Guide, Volume 1
sounds, and the cursor changes back to its original form. (You can
select the cursor type using the Cursor command in the Profile
menu.)

The Graphical Interface
Using the graphical interface to execute commands or programs
requires that you first know where that command resides in the
XACT Design Manager menu structure.

Note: You also need to know to which operations the mouse buttons
are set. The following usage descriptions assume that the mouse is set
to the default button configuration. The default mouse settings is:
Select for B1 (left button), Menu for B2 (middle button), and Done for
B3 (right button).

To open a menu, position the cursor on the menu you want to open
and click the left mouse button. On PCs, you can also recall the last
command selected by pointing anywhere except the menu titles and
pressing the middle button.

The Command Line Interface
You can use the keyboard to enter commands that are shown in the
menus. Commands with two or more capital letters indicate a
keyboard shortcut; commands that appear in all capital letters have
no keyboard shortcut.

For example, the Utilities menu displays a command, DirClean.
Using the keyboard, you could enter this command in one of three
ways; DirClean, DirC, or DC (followed by a ↵).

Keyboard shortcuts are not case sensitive. In the aforementioned
example, you could enter dc, Dc, or dC to run DirClean.

On PCs, when you open either the Utilities or Profile menu, the
commands display with some or all of the characters highlighted. The
highlighted characters represent an additional shortcut for entering
the command on the command line.
1-14 Xilinx Development System

The XACT Design Manager
The XDM Menu
This section includes general information about the XDM menus.
Depending on which Xilinx software you have installed, your system
might display fewer menus than are described here.

After a general description of the possible menus, more detailed
information is provided for the Utilities and Profile menus.

Warning: On PCs, if your menus do not display all of the commands
included with your Xilinx software product, check that your path
environment variable is set correctly in your autoexec.bat file.
Typically, it should include “C:\XACT” — the directory where the
Xilinx tools typically reside. If it is not present, modify your
autoexec.bat file to include it, then reboot your system. The
proglist.xdm file might also need updating. Do this by starting XDM
and selecting ScanDisk from the Utilities menu.

Warning: On workstations, if your menus do not display all of the
commands included with your Xilinx software product, verify that
your path variable is set correctly. It should include the directory in
which the Xilinx tools reside. The proglist.xdm file may also need to
be updated. Do this by invoking XDM and selecting ScanDisk from
the Utilities menu.

The Design Entry Menu
This menu contains a listing of the design entry software packages
installed in your system. Supported packages include Workview,
OrCAD, XABEL, and SYMGEN (Xilinx’s symbol generator).

SYMGEN

This tool translates an XSF file into a symbol file. SYMGEN can
generate symbols in text, OrCAD, Viewlogic, and Cadence formats.

The Translate Menu
This menu contains the translation programs that produce an XNF or
LCA design file (though not all of the programs produce these files
directly). The Xilinx device family and implementation method you
use determine which translation programs appear on the menu, and
whether your resulting file type is XNF or LCA. This menu contains
Development System Reference Guide, Volume 1 1-15

Development System Reference Guide, Volume 1
all of the translations required to support your design entry package.
In particular, the XMake program (XEMake for XC7200 and XC7300
family) is useful for automatically translating and implementing your
design. XMake and XEMake eliminate the need to manually run
individual tools.

XMake

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200.

Xmake uses the necessary schematic–to–XNF translation programs
and appropriate design implementation tools in succession to
automatically convert a design file into a BIT file. At the beginning of
this process it generates a MAK file. A MAK file contains the
information about how a design is to be processed. You can use the
MAK file for any subsequent invocations of XMake for the same
design. Running XMake within XDM is the most automated way to
implement your design. Refer to the “Running XMake in XDM”
section for more information. For details about the XMake program,
refer to the “XMake Program” chapter in this reference guide.

XEMake

Supports XC7200/XC7300.

XEMake is the EPLD version of XMake, which supports both
schematic and behavioral (equation–file) designs. XEMake automates
the schematic or equation–file integration process by running the
proper EPLD tools in succession. XEMake accepts OrCAD, Viewlogic,
PLD files, PDS files, MAK files (generated from XEMake only), or
XNF files and integrates it into a database file (VMH/VMD).
Optionally, you can specify XEMake to create an Intel HEX
programming file (PRG).

ABL2XNF

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H.

This program translates ABL files to an XNF format.
1-16 Xilinx Development System

The XACT Design Manager
ABL2PLD

Supports XC7200/XC7300.

This program creates a PLD file from an Abel file and runs PLUSASM
to create a bitmap file. Optionally, it can run FITEQN if your Able file
is a top–level file.

Annotate (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A/L, XC4000/XC4000A/H, XC7200/XC7300.

This OrCAD command updates reference designators in OrCAD
schematics in the order in which they were placed on the schematic
as the first step in preparing an ORCAD schematic for functional
simulation. Annotate can assign new reference designators to all
parts including manually edited parts, to ensure that they are unique.

CleanUp (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

This OrCAD command cleans up overlapping objects in OrCAD
schematics.

HM2RPM

Supports XC4000/XC4000A/D/H.

This command translates a Hard Macro into a Relationally Placed
Macro (RPM). Hard Macros are not supported by PPR versions later
than V1.3.1, and must be converted into RPMs for newer versions of
PPR.

INET (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

This OrCAD command reads the root schematic and any other
related schematics and converts them into netlist files (INF files) as
the second step in preparing an OrCAD schematic for functional
simulation.
Development System Reference Guide, Volume 1 1-17

Development System Reference Guide, Volume 1
JED2PLD

Supports XC7200/XC7300.

This program imports a JEDEC file and uses it to define the functional
behavior of a PLD component in a schematic. First, it translates the
JEDEC file to a PLUSASM equation file (with a PLD extension). Then,
it starts the PLUSASM assembler, which assembles the equation file
into a bitmap. You can view and edit the PLUSASM equation file.

MAP2LCA

Supports XC2000/XC2000L, XC3000/XC3100.

MAP2LCA translates a MAP file into an LCA file. You can edit this
LCA file in the XACT Design Editor or use APR to automatically
place and route the file.

MemGen

Supports XC4000/XC4000A/D/H.

MemGen is the Xilinx RAM and ROM memory compiler for the
XC4000 family of devices. Given the type of memory and its width,
depth, and contents, MemGen creates the appropriate XNF file to
implement the memory. It can also create a schematic symbol for your
memory function.

PinSave

Supports XC7200/XC7300.

This command saves the pin allocation information into a VMF file.
Use this command after a successful integration of your design. If
you set the Pinfreeze option of either the FITEQN or FITNET
commands to on, the Integrator, during subsequent iterations of your
design, assigns the pins to the same locations indicated in the VMF
file. You can edit the VMF file to alter pin assignments.

PLUSASM

Supports XC7200/XC7300.

PLUSASM assembles a PLUSASM equation file that describes a PLD
used in a schematic design. PLUSASM assembles the source file you
1-18 Xilinx Development System

The XACT Design Manager
select and generates a component bitmap file and a report. FITNET
on the Fitter menu uses the Component bitmap files.

SDT2XNF (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

SDT2XNF generates an XNF file from an OrCAD netlist file.

SYN2XNF (Synopsys Interface Only)

Supports XC3000/XC3100, XC3000A/L, XC3100A, XC4000/
XC4000A/D/H, XC5200.

SYN2XNF generates an XNF file from a Synopsys SEDIF or SXNF
file.

WIR2XNF (Viewlogic Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200, XC7200/XC7300.

WIR2XNF translates a WIR file into an XNF file.

X-BLOX

Supports XC3000A/L, XC3100A, XC4000/XC4000A/D/H, XC5200.

X–BLOX performs data path and architectural synthesis. X-BLOX
generates an XNF file, with an XG extension, from a schematic or
netlist drawn with X-BLOX modules.

XDRAFT (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

XDRAFT sets up your SDT.CFG in the current directory (OrCAD SDT
configuration file) and/or VST.CFG (OrCAD VST configuration file)
to run with the Xilinx OrCAD environment. You must run XDRAFT
once for each design before running XMake.
Development System Reference Guide, Volume 1 1-19

Development System Reference Guide, Volume 1
XNFMAP

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L.

This program maps the logic defined in the XNF file into the
architectural resources of the FPGA device. XNFMAP reads the XTF
file and decides which gates to combine into a CLB. XNFMAP first
maps the logic that has been assigned to specific locations in the
schematic.

XNFMerge

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200, XC7200/XC7300.

XNFMerge combines multiple XNF files to create a single flattened
(non-hierarchical) design file. It also generates a report file
(design.mrg) listing the files read; the signals that were bound
together; and the number of signals, primitive symbols, and
unresolved symbols in the output design file.

XNFPrep

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200.

XNFPrep performs a design rule check (DRC) and removes unused
and redundant logic from a flattened XNF file. It also checks the
syntax of the XACT-Performance parameters found in the design and
prepares delay information for PPR path analysis.

The PlaceRoute Menu
This menu contains commands that run the XACT Design
Implementation algorithms that place CLBs and IOBs in the FPGA
and route all of the required connections. For XC3000A/L and
XC4000 designs, PPR also partitions the logic in the design file before
placing and routing.

APR

Supports XC2000/XC2000L, XC3000/XC3100.

APR reads an input design map file, places the CLBs and IOBs in a
specific part, then routes the design. APR produces an LCA file.
1-20 Xilinx Development System

The XACT Design Manager
APRLoop

Supports XC2000/XC2000L, XC3000/XC3100.

APRLoop allows you to perform multiple iterations of the APR
software. This allows you to evaluate several LCA files and select the
best solution. When you select APRLoop, the program prompts you
to specify the number of iterations you want it to perform. For more
information, refer to the “APR” chapter in the Development System
Reference Guide.

PPR

Supports XC3000A/L, XC3100A, XC4000, XC4000A/D/H, XC5200.

PPR reads an XTF file (generated by XNFPrep) for XC4000,
XC4000A/D/H, and XC5200 designs, maps the logic into CLBs and
IOBs, and places and routes the design in a specific part. PPR also
reads a MAP file (generated by XNFMAP) for XC3000A/L and
XC3100A designs, and places and routes the design in a specific part.
PPR produces an LCA file.

XDE

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000, XC4000A/D/H.

XDE is the XACT Design Editor. XDE is a graphical representation of
an implemented design. Use XDE to manually modify your design.

The Fitter Menu (XC7200 and XC7300 only)
This menu appears on the XDM menu bar only when you select an
EPLD device (XC7200 or XC7300) for the “Family” field. The
commands on this menu execute the XEPLD design implementation
algorithms that map the design onto the target EPLD device. For
more details about this menu, refer to the XEPLD Reference Guide.

FITEQN

Supports XC7200/XC7300.

FITEQN integrates a behavioral design. The main equation file you
specify must follow the required PLUSASM file structure. The
equation file is processed by several XEPLD modules to produce a
Development System Reference Guide, Volume 1 1-21

Development System Reference Guide, Volume 1
database, VMD (only for XC7272), or VMH (all other EPLD devices).
From this database, you can produce a programming file to program
the device. You can also produce a timing simulation XNF file using
VMH2XNF and save the pinouts using the PinSave program. Use
MAKEPRG to generate an Intel HEX file or MAKEJED to generate a
JEDEC file.

This command produces several reports: Resource (RES), Mapping
(MAP), Pinlist (PIN), Partition (PAR), and Collapse/Logic
Optimization (LGC). FITEQN also produces a design_name.log file
and a behavioral design file, which contains partitioning and other
information, with the name design_name.eqn.

FITNET

Supports XC7200/XC7300.

This command integrates a schematic–based design. The input file is
a merged, flattened XNF file (XFF) from XNFMerge that is processed
by several XEPLD modules to produce a database. From this
database, a programming file can be produced to program the device.
You can also produce a timing simulation XNF file using VMH2XNF
and save the pinouts using the PinSave program. Use MAKEPRG to
generate an Intel HEX file or MAKEJED to generate a JEDEC file.

This command produces several reports: Resource (RES), Mapping
(MAP), Pinlist (PIN), Partition (PAR), and Collapse/Logic
Optimization (LGC). FITNET also produces a design_name.log file and
a behavioral design file, which contains partitioning and other
information, with the name design_name.eqn.

PALCONVT

Supports XC7200/XC7300.

This command creates a new behavioral design file from existing PAL
designs, which are input in the form of PDS or PLD files.

PALCONVT creates a PAL interconnect report (INT) that lists all the
signals used by all PALs and indicates any conflicts.

These PAL files can be PLUSASM files that you created with a text
editor, files from third–party design entry packages (like ABEL), or
JEDEC files that you convert with the JED2PLD command.
1-22 Xilinx Development System

The XACT Design Manager
After using PALCONVT, choose a target device for your converted
design, then use FITEQN to integrate your design. Assuming that
there are no edits you want to make to the new PLD file, you can also
choose the “run FITEQN target” option.

The Verify Menu
The Verify menu provides a selection of programs associated with
design simulation and in–circuit verification. These selections include
all simulation and verification programs and all utility programs
needed to create the required file formats.

ASCTOVST (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

ASCTOVST converts an OrCAD Stimulus or Trace file from ASCII to
binary format and from binary to ASCII.

LCA2XNF

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200.

LCA2XNF translates an LCA file into a timing–annotated XNF file
that can be used to create a timing simulation file.

MakeBits

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200.

MakeBits creates a bitstream that can be downloaded into an FPGA.

MAKEJED

Supports XC7200/XC7300 (except XC7272/XC7272A devices).

MAKEJED creates a JEDEC file that you can use to program XEPLD
devices. This command prompts you for a signature, which you must
specify. A signature is a series of letters or numbers that indicates the
revision of the design. The device programmer reads the signature
allowing you to verify that the version is correct.
Development System Reference Guide, Volume 1 1-23

Development System Reference Guide, Volume 1
MAKEPRG

Supports XC7200/XC7300.

MAKEPRG creates a file in Intel HEX format that you can use to
program XEPLD devices. This command prompts you for a
signature, which you must specify. A signature is a series of letters or
numbers that indicates the revision of the design.

MakePROM

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200.

MakePROM creates a PROM programming file from a configuration
BIT file. MakePROM also combines multiple BIT files for use in a
daisy chain of FPGA devices.

ORCAD (VST)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

ORCAD places you in the OrCAD/ESP design environment where
the OrCAD VST simulator is located.

PROLINK

Supports XC7200/XC7300.

PROLINK starts the PROLINK interface software for controlling and
downloading HEX programming files (generated by MAKEPRG) to
the Xilinx DS120 device programmer.

VMH2XNF

Supports XC7200/XC7300.

VMH2XNF creates an XNF file with timing parameters for use in
timing simulation. The input file can be a VMH or VMD (from
XC7272) file.
1-24 Xilinx Development System

The XACT Design Manager
VSM (Viewlogic Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

VSM reads the model file produced by XNF2WIR and creates a
Viewsim wirelist (with a VSM extension) for functional and timing
simulation.

VSMUPD (Viewlogic Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200.

VSMUPD updates the Viewsim VSM file to allow complete back–
annotation to the original schematic during timing simulation.
VSMUPD adds net–equivalent statements to the VSM file that enable
Viewsim to back–annotate more net values to the original schematic.

XSimMake

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200, XC7200/XC7300.

XSimMake automatically prepares any design for either functional or
timing simulation. XSimMake is not available for Mentor Graphics
users.

XChecker

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200.

XChecker downloads, reads back, and verifies the configuration data,
and probes the internal logic states of FPGAs.

XDelay

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200.

XDelay is the static timing analyzer that reports detailed timing
information about the design, which you can use for overall
performance analysis.
Development System Reference Guide, Volume 1 1-25

Development System Reference Guide, Volume 1
XNFBA

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200.

XNFBA combines the pre–route XG/XFF file and the post–route XNF
file into a new file with pre–route names and post–route delays.

XNFCVT

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H.

XNFCVT converts an XNF netlist from Version 5 to Version 4, 2, 1.

XNF2VST (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

XNF2VST creates an OrCAD VST simulation file from an XNF format
file.

XNF2WIR (Viewlogic Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/D/H, XC5200, XC7200/XC7300.

XNF2WIR uses an XNF file as input to create a WIR file that
Viewlogic’s VSM netlister program can read.

XPP

Supports 1736AMD, 1765AMD, XC1736, XC1736A, XC1718D,
XC1718L, XC1736D, XC1736L, XC1765D, XC1765L, XC17128X.

XPP allows you to program a Xilinx serial PROM device with the
DS112 programmer.

Note: If you need more details about the commands listed in the
Design Entry, Translate, and Verify menus, consult the appropriate
CAE User Interface Guide.
1-26 Xilinx Development System

The XACT Design Manager
The Utilities Menu
The Utilities menu provides several utility commands that let you
change working directories, see which versions of Xilinx–supported
software are installed on your system, view file contents, and use
other file management and system control features. The commands
in the Utilities menu are not related to the development software
loaded in your system; they are the same regardless of your software
configuration.

Browse

This utility allows you to view, as a read–only document, any text file
from within XDM. After selecting Browse, you are prompted for a file
name. To browse through a file, select the file name from the menu or
enter it from the command line. Press F1 to return to XDM. If you
want XDM to start your own text viewing program when you select
Browse, you can set an environment variable to the name of the text–
viewing program. Consider the following PC example.

set BROWSE=LIST

Selecting Browse will call the LIST program with this setting.

Note: Browsing a design within XDM can be slow on a PC and
should only be used if you do not have a text editor on your PC.
Browse has a maximum display line limit of 800 lines.

DirClean

This utility helps you manage your design directories by eliminating
unwanted files that the design translation process creates. To use
DirClean, select any files you want to remove from the current
directory; XDM highlights the selected files. When you complete
your selections, click on Done or press ↵ to execute their removal.

Directory

The Directory command allows you to move easily through your
disk directory structure. You can select the current directory that
XDM reads from and writes to. A menu appears displaying the
current directory, the parent directory, and all subdirectories of the
current directory. Each time you select a new current directory, the
menu changes to reflect the new parent directory and subdirectories.
Development System Reference Guide, Volume 1 1-27

Development System Reference Guide, Volume 1
To change disk drives on PCs, enter the following command at the
command line.

dir drive:

Where drive is the disk drive you want as your current drive.

DOS (PC Only)

This command is a gateway to the DOS operating system
environment. You can use it on the command line either alone or as a
prefix to an operating system command. To access the DOS
environment, simply select the DOS command with the mouse or
enter the command on the command line. To re–enter the XACTstep
Development System, enter exit at the operating system command
prompt.

If you want to execute a system command from the Design Manager,
enter it in the following manner.

dos command

This executes the command or program and returns you to XDM
upon completion of the command or program.

Edit

Browsing a file within XDM can be slow on a PC and should only be
done if you do not have a text editor on your system. If you want
XDM to start your own text editing program when the Edit command
is selected, you can do so by setting the editor environment variable
to the name of your text editing program. Consider the following PC
example:

set editor=vi

This command is not necessary on workstations, because you can
simply open another window to edit a file.

Execute

The Execute command allows you to execute command files inside
XDM. If you save a sequence of XDM commands in a text file, you
can execute them by first selecting Execute, then entering the
command file name. You return to XDM when the file finishes
executing. The command file must contain legal XDM commands.
1-28 Xilinx Development System

The XACT Design Manager
Help

The Help command provides several methods for getting assistance
about a particular topic. On a PC, you can select a menu item and
press the F1 function key to display the online help. You can also
select the Help command from the menu, which displays the
following message at the bottom of the screen:

Enter help subject:

This display prompts you to select a help topic. An alternative
method for displaying help information is to enter the Help
command, followed by the topic or option.

help [topic-option]

For example, to display Help information about the –g option in
APR, enter the following syntax at the command line.

help apr-g

Note: There are no spaces between the program name and the
option.

Report

The Report command starts the Version command; however, instead
of displaying the output on your screen, it redirects the output to a
text file called version.rpt. You can read the text file at any time using
the Browse command.

ScanDisk

The ScanDisk command causes XDM to scan the hard disk drive,
according to the current setup, to determine which supported
software packages are installed on your system. While scanning,
XDM displays the following message:

Checking disk for supported software...

This messages indicates that XDM is analyzing your system and
setting up the contents of the DesignEntry, Translate, PlaceRoute and
Verify menus, so they reflect the software that is available.

Then XDM displays a message similar to the one shown below.

Writing c:\xact\data\proglist.xdm...
Development System Reference Guide, Volume 1 1-29

Development System Reference Guide, Volume 1
After a short while, another message indicates that the setup is
complete and XDM has generated a new, updated proglist.xdm file.

Writing c:\xact\data\proglist.xdm... done

Warning: Newly installed XDM–supported programs on your
system might not appear in the XDM menus until you run the
ScanDisk command. For ScanDisk to find an XDM–supported
program, your PATH environment variable must be set to include all
directory paths specified during installation.

Version

The Version command displays all supported programs currently
installed on your system, showing the location and version numbers
for each program. XDM might not be able to determine the version
number of some programs, such as Xilinx-supported third-party
programs.

The Profile Menu
This menu serves to customize XDM. Using the commands in this
menu, you can alter such characteristics as screen graphics, mouse
port connections (if you are using a serial mouse on a PC), and device
type and speed. Changes that you make from the default profile are
only valid for the current session until you save them. To save a
customized profile use the Saveprofile command.

Cursor

The Cursor command allows you to change the shape of the cursor.
You can select an arrow, a bug, a cross, or a gunsight.

Family

The Family command tells XDM the family of FPGA devices you are
using. XDM only displays valid menu items and command options
for the selected family. Current choices include XC2000, XC2000L
XC3000, XC3100, XC3000A, XC3000L, XC3100A, XC4000, XC4000A,
XC4000D, XC4000H, XC5200, XC7200/XC7300.
1-30 Xilinx Development System

The XACT Design Manager
KeyCursor

When KeyCursor is enabled, the arrow keys move the cursor through
pull–down menus; pressing ↵ executes the selected option. You must
enter commands through the keyboard or use the mouse to select
them from pull–down menus. The default for the PC is on. The
default for the workstation is off.

Keydef

The keydef command allows you to program your system function
keys. After selecting this command, XDM prompts you for a key
name (such as, F1, F2, F3, and so forth.) and then a function. The
function can be any XDM command. To start an external text editor
with the push of a button, program one of the function keys. If you
like the vi editor, for example, enter the following on the command
line to program F2 to start the vi editor on a PC.

keydef F2 dos vi

Menucolors

The Menucolors command allows you to change the color of items
displayed in menus. Use Help on the individual commands in this
menu for more information on their functionality and usage.

Mouse

The Mouse command sets the function of each mouse button. The
default settings are Select (B1), Menu (B2), and Done (B3). B1 is the
left mouse button, B2 is the middle mouse button, and B3 is the right
mouse button.

Note: On PCs only, if a Microsoft–compatible mouse driver is loaded,
the connection port is automatically determined by XDM. This is
indicated by “Mouse: MS Mouse” being displayed on the screen. If
the driver is not loaded you must select the connection port through
this command. In this case, the selected port name is displayed on the
screen (for example, “Mouse: COM1”)
Development System Reference Guide, Volume 1 1-31

Development System Reference Guide, Volume 1
Options

The Options command allows you to select default options for all
Xilinx software programs. Once selected, they are valid for the
current session. Use the SaveProfile command to save these options
in the xdm.pro file.

Palette

The Palette command allows you to choose different color palettes for
customizing your screen color.

Part

The Part command allows you to select a default part type to use
when translating a design. You can select the InDesign option if the
part type is specified in the schematic.

Readprofile

The Readprofile command allows you to load the profile saved in the
xdm.pro file. This command tries to read a custom profile from the
current directory. If one is not found it loads the default configuration
profile in the XACT/data directory.

Saveprofile

The Saveprofile command allows you to save the current profile into
an xdm.pro file in the current directory. Each time XDM is started, it
tries to read an xdm.pro file from the current directory. If one is not
found it will load the default configuration profile from XACT/data.

Settings

The Settings command displays the current profile configuration of
your Design Manager.

Speed

The Speed command allows you to select a speed grade for the device
specified with the Part command. If you have selected InDesign as
your part type, you must specify the speed grade in the design. In
this case, you cannot specify it using the Speed command.
1-32 Xilinx Development System

Chapter 2
Development System Reference Guide, Volume 1 — 0401405 01 2-1

The XMake Program

This program is compatible with the following families.

● XC2000

● XC2000L

● XC3000

● XC3000A

● XC3000L

● XC3100

● XC3100A

● XC4000

● XC4000A

● XC4000D

● XC4000H

● XC5200

The XMake program uses the necessary schematic–to–XNF
translation programs and appropriate design implementation tools in
succession to automatically convert a design file into a BIT file. At the
beginning of this process XMake creates a MAK file. This file contains
information on the programs and options used to process the design.
You can use the MAK file for any subsequent invocations of XMake
on the same design.

If you are using design–entry software supported by the XACT
Design Manager (XDM), XMake automatically activates all the
translation programs needed to convert a design into a BIT file.

Development System Reference Guide, Volume 1
XMake can also automatically translate designs that contain non–
schematic modules such as memory modules and Boolean equations.

You can run XMake from the XDM menu system, or by typing the
command at the system prompt according to the XMake command
line syntax.

Using XMake from the XDM Menu
Using XMake from the XDM menu simplifies starting XMake with
the correct arguments. For detailed information, refer to the section,
“Running XMake from XDM” in the “XACT Design Manager”
chapter.

Use the Select mouse button (default is the left mouse button).

1. Select XMake from the Translate menu.

2. Select the XMake options from the displayed menu.

3. Select Done after you have selected the options.

4. Select the top level design or MAK file to be processed from the
displayed menu.

5. Specify how far you want XMake to process the design by
selecting a target from the displayed menu of targets.

Using XMake from the System Prompt
Use the following syntax to run XMake:

xmake [options] infile [target_file]

where:

● options represents valid XMake options that you can specify.
Refer to “Options” in this chapter for descriptions.

● infile represents the design file you want XMake to process, or the
MAK file generated by the previous run of XMake on the design.

A design file can be one of the following.

● Viewlogic schematic file (design.1)

● OrCAD schematic file (design.sch)

● XSI output file (design.sedif or design.sxnf)
2-2 Xilinx Development System

The XMake Program
● Xilinx–ABEL file (design.abl)

● XNF file (design.xnf)

XMake automatically generates a new MAK file (design.mak), if a
design file is specified as infile.

XMake reads the option profile to determine with which options each
program should be started, when generating a MAK file. This option
profile can be one of two things:

● xdm.pro file, if XMake is run at the system prompt, or

● the current XDM settings in memory, if XMake is run from within
XDM.

Use a previously generated MAK file to reprocess a design to which
changes have been made.

Do not use the existing MAK file for a design if any modules have
been added or deleted.

target_file is an optional entry argument that tells XMake to stop
processing after this file is generated. By default, XMake processes a
design all the way to a configuration bitstream BIT file, unless you
specify a different target. For example, with the design rolldice, you
can specify rolldice.lca as a target, stopping XMake after it has
generated a placed and routed LCA file.

XMake Command Line Usage
XMake checks for the following command line rules, and, if it finds
violations, issues an appropriate error message and aborts
processing.

● infile must exist in the current directory, except when it is a
Viewlogic file (design.1). In this case, infile must exist in the ./sch
directory. You can explicitly state the filename extension, or
specify the design name and XMake supplies the default
extension.

● If you specify design (without an extension) as the infile, XMake
assumes that the file has a valid extension, and checks, in the
following order, for its existence. XMake takes the first file it finds
in this search sequence as its input.

./sch / design.1
Development System Reference Guide, Volume 1 2-3

Development System Reference Guide, Volume 1
./ design.abl

./ design.sch (PC only)

./ design.sedif (Workstation only)

./ design.sxnf (Workstation only)

./ design.xnf

● The -a, -f, and -t options are mutually exclusive; they cannot be
selected together on the same command line.

● XMake ignores the -m and -n options if you explicitly specify a
target in the target field.

● If you select design.xxx as the infile, thereby causing XMake to
generat a new MAK file, the target (either explicitly specified in
the target field, or the default, design.bit, in the absence of the
target field) is recorded in the DEFAULT_TARGET entry of the
generated MAK file.

● If you select design.mak as the infile and do not specify a target in
the target field, XMake uses the target recorded in the MAK file. If
you specify the target, you override the target in the MAK file.

Files
The input files that XMake requires to process a design and the
output files that XMake generates are described below. Note that the
MAK file is both an input file and an output file.

Input Files
To translate a design, XMake requires one of four file formats as
input: a top–level schematic file, an ASCII HDL design description
file, an XMake–generated MAK file, or (if you use the -x option) a
top–level XNF file.

Schematic File

XMake can only accept schematic design files created by Viewlogic
and OrCAD schematic editors. See the appropriate Xilinx interface
user guide for additional information.
2-4 Xilinx Development System

The XMake Program
HDL File

XMake can accept Xilinx ABEL and Xilinx Synopsys Interface ASCII
design description files as input. See the appropriate Xilinx interface
user guide for more details.

design.mak

As XMake runs, it uses and records, in the MAK file, the program
options currently saved in the XDM profile (xdm.pro). If you use a
MAK file as an input file, XMake uses the MAK file instead of
creating a new one. You should create a new MAK file after changing
the hierarchy of the design. Do not use a previously generated MAK
file if the design hierarchy has changed.

design.xnf

XMake can accept an XNF file as a design file. When specifying an
XNF file as input, you must select the -x option.

Output Files
XMake creates a number of output files based on the options
specified. The programs that XMake calls also create output files.
Some of the files that can be generated are listed below.

design.mak

From a schematic file input, XMake creates a text MAK file
(design.mak) that documents how each design submodule is
processed, including the options used by the translation programs.
See the “MAK File” section in this chapter for more details.

design.out

XMake uses various translation programs and directs translation
screen output to a design.out file, unless the -o option is selected. This
is an ASCII text file containing all the screen output from the
programs that XMake uses. Since the OUT file contains all warning
or error messages generated during the design process, always
review it to determine that your design is error-free.
Development System Reference Guide, Volume 1 2-5

Development System Reference Guide, Volume 1
design.xff

XMake creates a flattened XNF file, design.xff, by calling XNFMerge.

design.xtf

XMake produces a completely trimmed and flattened XNF file for the
entire design, which is XTF.

design.xg

If the design involves XBLOX modules, or the you have selected the -
b option, XMake produces an optimized XNF file, design.xg, by
calling XBLOX. This applies only to the XC3000A/L, XC3100A,
XC4000, XC4000A/D/H, and XC5200 designs.

design.map

XMake generates a partitioned XNF file, design.map, by calling
XNFMAP. This applies only to the XC2000, XC2000L, XC3000,
XC3100, XC3000A/L, and XC3100A designs.

design.lca

XMake creates an LCA file that is partitioned, placed, and routed by
either the Automatic Place and Route (APR) program or the Partition,
Place, and Route (PPR) program.

design.bit

XMake creates a bitstream file for all designs that successfully route
with either APR or PPR. You can download the BIT file to an LCA.
The configuration options for the bitstream generator are determined
by the options set in the XDM profile (xdm.pro).

Options
XMake options are listed in alphabetical order with brief functional
descriptions.
2-6 Xilinx Development System

The XMake Program
-a Use map–then–merge Strategy

Supports XC2000, XC2000L, XC3000, XC3100, XC3000A/L, XC3100A
only.

The -a option causes XMake to use the map–then–merge mapping
strategy. XMake automatically selects the -a option for XNFMAP,
regardless of your settings in the option profile. XNFMAP options -q
and -u are ignored, if selected.

-b Perform X–BLOX Optimization

Supports XC3000A/L, XC3100A, XC4000, XC4000A/D/H, XC5200
only.

The -b option causes XMake to generate a MAK file that includes X–
BLOX optimization in the design–implementation flow. First,
XNFPrep runs, next X–BLOX runs, then XNFPrep runs again
generating a design.xg file. PPR takes this file as its input, rather than
design.xtf.

Note: If the design file contains the DEF=BLOX or DEF=X-BLOX
attribute, then X–BLOX automatically runs during processing. In this
case, specifying the -b option ensures X–BLOX is run with
‘archopt=TRUE’, regardless of your settings in the option profile.

-f Use map–FILE=–then–merge Strategy

Supports XC2000, XC2000L, XC3000, XC3100, XC3000A/L, XC3100A
only.

The -f option causes XMake to use the map–FILE=–then–merge
mapping strategy. XMake automatically selects the -q option for
XNFMAP, regardless of your settings in the option profile. XNFMAP
options -a and -u are ignored, if selected.

- g Generate MAK File/Do Not Process Design

The -g option causes XMake to create a MAK file only, without
continuing with the commands in the MAK file to implement the
design. Use this option when you want to create a custom MAK file,
forcing XMake to generate an initial script that you can edit.
Development System Reference Guide, Volume 1 2-7

Development System Reference Guide, Volume 1
-i Use APR/PPR Guide File

The -i option causes XMake to automatically select the guide file
option for APR (-g) and PPR (guide=). If APR -g or PPR guide=
option is already selected in the profile, the guide file name specified
on the XMake command line after the -i option overrides the
currently selected guide file name.

The guide file must have a .lca extension. If the guide file is specified
without an extension on the XMake command line, XMake
automatically appends .lca to the file name.

For XC2000, XC2000L, XC3000, XC3100, XC3000A/L, and XC3100A
designs, XMake also ensures that the mapping of the CLBs is guided
via the XNFMAP -k option. [XMake automatically runs LCA2XNF on
the guide LCA file to generate a design.pgf file for use by XNFMAP.]

For XC2000, XC2000L, XC3000 and XC3100, {XMake automatically ...
by XNFMAP.} For XC3000A/L and XC3100A, a design-pgf file must
be present in the current directory. Otherwise XMake will issue an
appropriate error message suggesting how to generate this file.

-l Use Old Library Only

The -l option causes XMake to automatically select the ‘use–old–
library–only’ option when starting translators with such an option. If
you do not select this option, XMake defaults to use the Unified
Library on the selected design.

-m Make Placed and Routed Design

The -m option sets the target to design.lca. The MakeBits program
will not be run by XMake. If you specify a target file in the target
field, XMake ignores this option.

-n Stop to Review DRC

The -n option sets the target to design.xtf if you are processing XC4000
or XC5200 devices. XMake will not run PPR, XDelay, or MakeBits
during the process. The -n option sets the target to design.map if you
are processing XC3000A/L devices. XMake will not run PPR, XDelay,
or MakeBits during the process. The -n option sets the target to
design.map if you are processing XC2000, XC3000, or XC3100 devices.
XMake will not run MAP2LCA, APR, or MakeBits during the
2-8 Xilinx Development System

The XMake Program
process. If you specify a target in the target field, XMake ignores this
option.

-o Direct Output to Screen

The -o option causes XMake to direct all program output to the screen
instead of generating a design.out file.

-p Use Specified Part Type

The -p option allows you to set or change the part type for the design.

-r Re–Execute All Commands to Translate Design

The -r option guarantees that XMake reprocesses the entire design,
including unchanged submodules from the last time the design was
processed. There is a difference between running XMake with the -r
option on a MAK file and a schematic file, as described below.

MAK File Input with –r
XMake performs every step in the MAK file, regardless of whether
the files have been changed since the design was last processed. If
you do not use the -r option, XMake only reprocesses those parts of
the design that have been changed.

Schematic File Input with –r
XMake recreates the MAK file and reprocesses the entire design. If
you do not use the -r option, XMake recreates the MAK file and only
reprocesses those modules that have changed.

-t Use merge–then–map Strategy

Supports XC2000, XC2000L, XC3000, XC3100, XC3000A/L, XC3100
only.

The -t option causes XMake to use the merge–then–map mapping
strategy. XMake automatically excludes the -a, -q, and -u options for
XNFMAP, regardless of your settings in the option profile.
Development System Reference Guide, Volume 1 2-9

Development System Reference Guide, Volume 1
-v Verbose Mode

The -v option causes XMake to display explanatory information on its
progress.

-x XNF Only (Interface to Third–Party Schematics)

The -x option causes XMake to search for XNF files only, instead of
schematic files. This option allows you to use third–party design–
entry tools not directly supported by XMake to translate a design (in
XNF file format) into an LCA file.

Each time you reprocess your design, you must do the following.

● Manually (perhaps using a batch file) translate each design
submodule into an XNF file using the interface program(s) for
your design–entry program.

● Use XMake with the -x option and any other required options.

To compile the design into a BIT file, XMake bypasses the design–to–
XNF translation (since the files are already in XNF format) and runs
the required design–implementation programs.

XMake Design Flow
This section contains flow diagrams to explain the design flows that
XMake performs on the Xilinx FPGA devices. Refer to the flow
applicable to the device family that you are using.
2-10 Xilinx Development System

The XMake Program
Figure 2-1 XMake Flow for XC2000, XC2000L, XC3000, XC3100
Designs

X4250

Schematic

Translator

XNF

XNFMerge

Schematic Schematic

XNF XNF

XFF*

XNFMAP

MakeBits

Note: This is the default target.BIT*

XTF*

XNFPrep

MAP*

MAP2LCA

LCA (unrouted)

APR

LCA (routed)*

XMake packages these
steps. It is not possible to
specify the unrouted LCA
file as a target.

Note:

When using the -x option, the
XMake process starts with the
XNF files.

Note:

* Files that can be specified as a target
Development System Reference Guide, Volume 1 2-11

Development System Reference Guide, Volume 1
Figure 2-2 XMake Flow for XC3000A, XC3000L, XC3100A Designs

X4248

Schematic

Translator

XNF

XNFMerge

XTF*

Schematic Schematic

XNF XNF

Note: When using the -x option,
												the XMake process starts
 with the XNF file.

XFF*

XNFMAP

X-BLOX

PPR

MakeBits

Note: This path is followed if
 the design involves
	 X-BLOX symbols, or when the
 -b option is used.

Note:

MAP*

LCA (no delay information)

BIT*

XTG*

XNFPrep

XG*

XNFPrep

* Files that can be specified as a target

XDelay

LCA(with delay information)*

XMake packages these steps.
It is not possible to specify
the LCA file with no delay information
as a target.
2-12 Xilinx Development System

The XMake Program
Figure 2-3 XMake Flow for XC4000, XC4000A, and XC4000H
Designs

X4249

Schematic

Translator

XNF

XNFMerge

XFF*

MakeBits

X-BLOX

Schematic Schematic

XNFXNF

XNFPrep

XTG*

XTF*

XNFPrep

XG*

BIT*

Note: When using the -x option,
 the XMake process starts
	 with the XNF file.

Note: This path is followed
 if the design involves
 X-BLOX symbols, or
 the -b option is used.

Note: This is the default target.

* Files that can be specified as a target

PPR
Note:

LCA (no delay information)

XDelay

LCA(with delay information)*

XMake "packages" these steps.
It is not possible to specify
the LCA file with no delay information
as a target.
Development System Reference Guide, Volume 1 2-13

Development System Reference Guide, Volume 1
Figure 2-4 XMake Flow with Floorplanner for XC4000, XC4000A,
XC4000D, XC4000H, and XC5200 Designs

X6230

Schematic

Translator

XNF

XNFMerge

XFF*

MakeBits

X-BLOX

Schematic Schematic

XNFXNF

XNFPrep

XTG*

XTF*

XNFPrep

XG*

BIT*

Note: When using the -x option,
 the XMake process starts
 with the XNF file.

Note: This path is followed
 if the design involves
 X-BLOX symbols, or
 the -b option is used.

Note: This is the default target.

* Files that can be specified as a target

PPR

PPR

MAP

CST

Note:

Note:

LCA (no delay information)

XDelay

LCA(with delay information)*

XMake "packages" these steps.
It is not possible to specify
the LCA file with no delay information
as a target.

In XDM, select
Prep for Floorplanner

XMake stops here if
you specify a .MAP file.

XMake resumes here when
you use the resulting .MAK
file as input to the next run.

Note:
If you select design.map, XMake generates
a . MAK file that calls PPR twice. The first time it
generates a .map file without .lca. The purpose is
to manually run the floorplanner between the two
PPR calls.

Floorplanner
(run manually)
2-14 Xilinx Development System

The XMake Program
MAK File
The MAK file is generated by the system, and is a file you can edit. It
contains a series of target entries (statements and commands)
required to produce a BIT file for the design. Each entry specifies
which type of file (target_file) is generated, based on the changes in
the dependent_file, and the programs (command) used.

Each target file entry has the following format.

target_file: dependent_file ...
command [options] ...
.
.
.

The following list explains the specific syntax requirements for the
MAK file.

● The target file name must start in the first column. Leading blank
spaces or tabs are not permitted.

● Each field (file name, command name, command line argument,
etc.) must be separated from any others by at least one space or
tab character.

● Command lines must start with at least one space or tab character.

● Blank lines are ignored.

● Comment lines must start with a # in the first column.

A Simple MAK File Example
The simple MAK file example in Table 2-1 instructs XMake to convert
the Viewlogic schematic select.1 into an XC4000 BIT file. If you want
to perform a manual translation, follow these steps:

1. Use WIR2XNF to convert the WIR file into an XNF file.

2. Use XNFMerge to create a flattened XNF file.

3. Use XNFPrep to perform design rule check and trim redundant
logic.

4. Use PPR to convert the XNF file into an LCA file.
Development System Reference Guide, Volume 1 2-15

Development System Reference Guide, Volume 1
5. Use XDelay with the -d and -w options to add delay information
to the LCA file

6. Use MakeBits to create a bitstream file for configuring the LCA.

Table 2-1 shows an extremely simpleMAK file that accomplishes
these steps. The command syntax might vary depending upon the
current profile.

Table 2-1 Contents of a MAK File

When instructed to make select.bit for the first time, XMake
automatically follows these steps (only the Viewlogic schematic file
exists at first), starting from the first target entry at the top of the file.

1. Select.bit depends on select.lca which currently does not exist, so
XMake searches the MAK file to see how to make select.lca.

2. Select.lca depends on select.xtf which currently does not exist, so
XMake searches the MAK file to see how to make select.xtf.

3. Select.xtf depends on select.xff which currently does not exist, so
XMake searches the MAK file to see how to make select.xff.

4. Select.xff depends on select.xnf which currently does not exist, so
XMake searches the MAK file to see how to make select.xnf.

5. Select.xnf depends on select.1, which does exist, so XMake runs
WIR2XNF, which creates select.xnf.

MAK File Contents

select.bit : select.lca
 makebits select.lca

select.lca : select.xtf
 ppr select.xtf parttype=4005pc84-5
 xdelay -D -W select.lca

select.xtf : select.xff
 xnfprep select.xff select.xtf parttype=4005pc84-5

select.xff : select.xnf
 xnfmerge -P 4005pc84-5 select.xnf select.xff

select.xnf : sch\select.1
 wir2xnf -B select select.xnf
2-16 Xilinx Development System

The XMake Program
Note: Step 5 is slightly different, if you started with an OrCAD
schematic. In this case, select.xnf depends on select.sch, which does
exist, so XMake runs ANNOTATE, INET, and SDT2XNF, which
creates select.xnf.

6. Now that select.xnf exists, XMake makes select.xff by running
XNFMERGE.

7. Now that select.xff exists, XMake makes select.xtf by running
XNFPREP.

8. Now that select.xtf exists, XMake makes select.lca by running
PPR.

9. To add delay information to the select.lca, XMake runs XDelay
with the -d and -w options.

10. Now that select.lca exists, XMake makes select.bit by running the
MakeBits program.
Development System Reference Guide, Volume 1 2-17

Development System Reference Guide, Volume 1
A Complete MAK File Example
An example of a complete XC4000–type MAK file is provided below
for reference. The demo design is an XC4003 design that was created
using Viewlogic.

#
Created by XMAKE Version 5.2.0 on Thu Apr 27 14:31:05 1995
#
The following options were used: -G
#
The following is the hierarchy of the design 'sch/zoundz.1'
#
sch/zoundz.1
sch/peak_mtr.1
z_rom.mem
sch/a_d_st.1
approx.abl
sch/a_d_reg.1
sch/a_d_io.1
sch/zero.1
sch/sys_osc4.1
sch/dbfaeio.1
sch/freq_ctr.1
sch/clkgen.1
sch/dec_disp.1
sch/sel_disp.1
#
DEFAULT_TARGET zoundz.bit

zoundz.bit : zoundz.lca
makebits zoundz.lca

zoundz.lca : zoundz.cst zoundz.xtf
ppr zoundz.xtf parttype=4003PC84-5
xdelay -D -W zoundz.lca

zoundz.xtf : zoundz.xg
xnfprep zoundz.xg zoundz.xtf parttype=4003PC84-5
2-18 Xilinx Development System

The XMake Program
Macros in the MAK File
XMake does not create macros in the MAK file. However, user–
created MAK files can include user–defined macros in which the
macro value replaces the macro name in any subsequent occurrences
in the MAK file.

The syntax for defining a macro is as follows.

macro_name=value

The macro name must start in the first column; the value is the string
between the first non–space character after the equal sign to the end
of the line.

zoundz.xg : zoundz.xtg
xblox zoundz.xtg zoundz.xg

parttype=4003PC84-5

zoundz.xtg : zoundz.xff
xnfprep zoundz.xff zoundz.xtg

parttype=4003PC84-5

zoundz.xff : xnf/sel_disp.xnf xnf/dec_disp.xnf xnf/
clkgen.xnf \
xnf/freq_ctr.xnf xnf/dbfaeio.xnf xnf/sys_osc4.xnf xnf/
zero.xnf xnf/a_d_io.xnf \
xnf/a_d_reg.xnf xnf/approx.xnf xnf/a_d_st.xnf xnf/
z_rom.xnf xnf/peak_mtr.xnf \
xnf/zoundz.xnf

xnfmerge -A -D xnf -D . -P 4003PC84-5 xnf/
zoundz.xnf zoundz.xff

xnf/zoundz.xnf : sch/sel_disp.1 sch/dec_disp.1 sch/
clkgen.1 sch/freq_ctr.1 \
sch/dbfaeio.1 sch/sys_osc4.1 sch/zero.1 sch/a_d_io.1 sch/
a_d_reg.1 \
sch/a_d_st.1 sch/peak_mtr.1 sch/zoundz.1

wir2xnf -B -OD xnf zoundz zoundz.xnf

xnf/z_rom.xnf : z_rom.mem
memgen z_rom.mem output_directory=xnf
Development System Reference Guide, Volume 1 2-19

Development System Reference Guide, Volume 1
To use the macro, include the following string wherever you want the
macro value inserted in the MAK file. If the macro name is more than
one character, it must be enclosed in parentheses.

%(macro_name)

The following example shows how to use a part type macro when the
part number is used in several programs.

NEWPART=3020PC68-100

rolldice.lca : rolldice.map
map2lca -p%(NEWPART) rolldice.map rolldice.lca
apr -w -y rolldice.lca rolldice.lca

rolldice.map : rolldice.xtf
xnfmap -p%(NEWPART) rolldice.xtf rolldice.map

rolldice.xtf : rolldice.xff
xnfprep rolldice.xff rolldice.xtf parttype=%(NEWPART)

Error Messages and Recovery Techniques
Error: Command command failed (rc= n), file removed.

A fatal error occurred in a program called by XMake. Check your
design.out file for details and correct any errors.

Error: Command command not found, file removed.

A program called by XMake was not found. Verify that the program
is installed correctly, and that the required path and environment
variables are specified correctly.

Error: Command line length exceeds maximum
allowed by the system (n chars). Cmd= command.

The command line is too long. The maximum characters allowed is
127 characters on a PC, 2047 on a Sun, and 511 on an Apollo.

Error: Corrupted speeds file file.

XMake found a corrupted speeds file. Reinstall the relevant data files
to obtain the correct speeds files.

Error: :design Design must not have a preceeding
path name.
2-20 Xilinx Development System

The XMake Program
XMake must be run on files in the current directory. Change
directories to the directory containing the design, and rerun XMake
on the design name without the preceding pathname.

Error: Encryption checksum failed for speeds file
file.

XMake failed to validate the reported encrypted speeds file. The
speeds file might be corrupted. Reinstall the relevant data files to
obtain the correct speeds files.

Error: Expanded line length exceeds maximum
allowed by the program (1024 characters).

The MAK file contains a line with an expanded XMake macro (not a
design macro) that is too long. The maximum characters allowed in
an expanded line is 1024.

Error: Failed to find part type part_type in
‘partlist.xct’.

Specified part type is not available. Select another, valid part type.

Error: Failed to find speed grade speed for part
parttype in part list.

XMake was unable to find the specified speed grade for the specified
part type. Make sure you have specified a valid speed grade.

Error: Failed to find user–defined subhierarchy
symbol in file.

While scanning an XNF file, XMake found a user–defined symbol
with no corresponding schematic or XNF file. Check the design and
ensure there is a design file for this symbol in the current directory.
For user-created libraries in Viewlogic, the library components must
have a LEVEL=MXILINX attribute.

Error: Failed to make file.

XMake failed to produce the specified file. Check the design.out file
for error details.

Error: Failed to open file.

XMake could not open the specified file. This could be a system
environment problem. On a PC, check in the config.sys file to see that
the ‘FILES=’ command is present and set to a value of at least 20.
Development System Reference Guide, Volume 1 2-21

Development System Reference Guide, Volume 1
Error: Failed to copy stderr handle to term.

System error, which is not recoverable. There are no known recovery
techniques. XMake cannot be executed on this machine. Manually
run the appropriate design implementation tools.

Error: Failed to force term to be unbuffered.

System error, which is not recoverable. There are no known recovery
techniques. XMake cannot be executed on this machine. Manually
run the appropriate design implementation tools.

Error: Failed to join stdout and outfile.

Due to a system error, XMake cannot redirect the output message
from each tool into a design.out file. Use XMake with the -o option.
This enables output messages to display on the screen.

Error: Failed to reopen file.

Due to a system error, XMake cannot redirect the output message
from each tool into a design.out file. Use XMake with the -o option.
This enables output messages to display on the screen.

Error: Failed to join stderr and outfile.

Due to a system error, XMake cannot redirect the output message
from each tool into a design.out file. Use XMake with the -o option.
This enables output messages to display on the screen.

Error: Failed to touch file.

The attempt to update the time stamp failed on the reported file. If
the file is protected against such changes, remove the protection and
rerun XMake.

Error: family not supported by this program.

XMake supports the following device families:

XC2000/XC2000L/XC3000/XC3100
XC3000A/XC3000L/XC3100A
XC4000/XC4000A/XC4000D/XC400H

For XC7200 and XC7300 run XEMAKE.
2-22 Xilinx Development System

The XMake Program
Error: In ‘partlist.xct’. Missing alias name.

Error: In ‘partlist.xct’. Missing aliased-to
part.

Error: In ‘partlist.xct’. Missing device name.

Error: In ‘partlist.xct’. Missing STYLE.

Error: In ‘partlist.xct’. Missing SPEEDFILE.

Error: In ‘partlist.xct’. Unknown STYLE style.

Error: In ‘partlist.xct’. Unknown aliased-to part
part_type.

These seven messages indicate that the partlist.xct file is corrupted.
You can obtain the correct partlist.xct file by reinstalling partlist.xct.

Error: In speeds file file. Expecting ‘VERSION”,
found string.

Error: In speeds file file. Missing format.

Error: In speeds file file. Expecting format format,
found string.

These three messages indicates that the reported speeds file is
corrupted. Reinstall the relevant data files to obtain the correct speeds
files.

Error: Invalid argument argument.

The reported argument violates XMake command line syntax. Refer
to the “Using XMake from the System Prompt” section in this chapter
for the valid XMake syntax.

Error: Invalid option option.

The reported option is not a valid XMake option. Refer to the Options
information for valid XMake options.

Error: Invalid speed grade speed_grade for part part-
type.

Specified speed grade is not available for the part. Select another
valid speed grade for the desired part.

Error: Item length exceeds maximum allowed by the
program (64 chars).
Development System Reference Guide, Volume 1 2-23

Development System Reference Guide, Volume 1
The MAK file contains an item, such as file name or macro value that
is too long. The maximum characters allowed in a MAK file is 64.

Error: Macro name length exceeds maximum allowed
by the program (64 chars).

The MAK file contains a line with an XMake macro that is too long.
The characters allowed for a macro name in a MAK file is 64.

Error: Mismatch between ‘partlist.xct’ and file.

The partlist.xct file and the reported speeds file are incompatible. The
speeds file might be corrupted. Reinstall the relevant data files to
obtain the correct speeds files.

Error: Missing design name.

The command line is missing an input design name or a MAK file
name. Check the syntax and correct the error.

Error: Missing macro name to follow macro
modifier ‘%’.

While reading the MAK file, XMake encountered a macro modifier %
without a macro name to expand. Refer to the Macro information in
this chapter and edit the MAK file to correct the error.

Error: Missing ‘)’ to complete macro name
macro_name.

While reading the MAK file, XMake found a macro name to be
expanded which consisted of more than one character (indicated by
the opening parenthesis), but failed to find the closing parenthesis.
Refer to the Macro information in this chapter and edit the MAK file
to correct the error.

Error: Missing part type to follow option ‘-P’.

The -p option was specified on the command line without a part type.
Select a valid part type.

Error: Not allowed to read unencrypted speeds
file file.

XMake is only allowed to read the reported speeds file in the
encrypted form.

Error: Not enough memory to execute command
command ,file removed.
2-24 Xilinx Development System

The XMake Program
There is insufficient memory to execute the command. Make
additional memory available by removing any TSRs or, rerun XMake
from the command line instead of from within XDM.

Error: Number of hierarchy levels exceeds maximum
allowed by the program (100 levels).

The design has too many levels of hierarchy. The maximum number
of levels allowed by XMake is 100. There is no workaround, except to
reduce the levels of hierarchy to meet the program requirements.

Error: Options ‘-A’, ‘-F’ and ‘-T’ cannot be
specified together.

Option -a (Use ‘map–then–merge’ strategy), -f (Use ‘map–FILE=–
then–merge’ strategy), and option -t (Use ‘merge–then–map’
strategy) are mutually exclusive. Select the most appropriate strategy
and specify the corresponding option on the command line.

Error: Original line length exceeds maximum
allowed by the program (1024 chars).

The MAK file contains a line that is too long. The maximum
characters allowed for a line in a MAK file is 1024.

Error: Out of memory. Needed n objects of n
bytes.

There is insufficient memory for XMake to continue execution. Make
additional memory available by removing any TSRs, and rerun
XMake from the command line instead of from within XDM.

Error: Part type not specified on the command
line or in the top level XNF file.

The attempt to get the part type failed. XMake finds the part type
from the command line if you selected the -p option or, from the top
level design file (if none is specified on the command line). This
message is issued only if you selected the -x option on the command
line, and the top level design file is an XNF file.

Error: Party type not specified on the command
line or in the top level schematic file.

The attempt to get the part type failed. XMake finds the part type
from the command line if you selected the -p option or, from the top
level design file (if none is specified on the command line.) This
Development System Reference Guide, Volume 1 2-25

Development System Reference Guide, Volume 1
message is issued only if you did not select the -x option on the
command line and the top level design file is a schematic file.

Error: Recursive reference made to file.

XMake found a recursive loop in the schematic design or in the MAK
file. Either there is a schematic functional block that contains itself, or
there is an error in the MAK file made during editing. Check either
the design or the MAK file.

Error: Syntax error in file. ‘=’ expected following
FILE parameter.

Error: Syntax error in file. ‘=’ expected following
MAP parameter.

Error: Syntax error in file. ‘=’ expected following
DEF parameter.

These three messages indicates that the reported XNF file is
corrupted. Use XMake with the -r option, if the schematic–to–XNF
translation for the design is directly supported by XMake (Viewlogic
or OrCAD); or, manually regenerate the XNF file, and use XMake
with the -x option.

Error: Target target not found in makefile file.

XMake failed to find the specified target file name in the MAK file.
Target file name must match one of the output files generated by the
programs called by XMake such as design.xtf, design.lca, etc.

Error: Top level XNF file for design design does
not exist.

XMake failed to find the top–level design file, design.xnf. Make sure
you are in the directory that contains the specified design files. This
message is issued only if you selected the -x option from the
command line in which case the top–level design file must be an XNF
file.

Error: Top level schematic file for design design
does not exist.

XMake failed to find the top level schematic file for the specified
design. Make sure you are in the directory that contains the specified
design files. This message is issued if you did not select the -x option
2-26 Xilinx Development System

The XMake Program
on the command line in which case the top–level design file must be a
schematic file.

Error: Unable to create subdirectory name.

XMake failed in an attempt to create a subdirectory name in the
current directory. Check for a pre–existing file or directory by that
name and remove it from the current directory.

Error: Unable to create subdirectory name. File
name exists.

XMake failed in an attempt to create a subdirectory name in the
current directory, because such a subdirectory already exists.
Remove the existing name file and rerun XMake.

Error: Unable to write to file. Disk full.

There is insufficient disk space for XMake to write to the reported file.
Provide additional disk space and rerun XMake.

Error: Unable to write to subdirectory name.

The subdirectory name is write–protected. Remove the protection
and rerun XMake.

Error: Undefined macro macro_name.

While reading the MAK file, XMake tried to expand a macro name
but found it to be undefined. Edit the MAK file and correct the error.

Error: ‘xdm.pro’ contains the following invalid
program options.

This error message can be issued if you are running XMake at the
system prompt (not from within XDM), and there is an old ‘xdm.pro’
file in the current directory, which contains program options that are
obsolete or invalid. Run XDM to generate a correctly customized
‘xdm.pro’ and try again.

Warning Messages and Recovery Techniques
Warning: Option - option is ignored when using
makefile.

Options -a -b, -f, -g, -i, -l, -m, -n, -p, -t, and -x only control the MAK
file generation phase of the XMake program, and are ignored by
XMake if a MAK file is specified as input.
Development System Reference Guide, Volume 1 2-27

Development System Reference Guide, Volume 1
Warning: Option ‘-M’ is redundant when ‘-N’ is
specified.

Option -n implies that the -m option has also been selected.

Warning: Option - option is ignored when target is
specified.

XMake interprets the -m and -n options to set the target appropriately
in the absence of the target field on the Command Line. Both options
are ignored if the target is explicitly stated on the command line.

Warning: Option - option is ignored when using
family part.

Options -a, -f, and -t apply only to the following device families:

XC2000/XC2000L/XC3100/XC3000
XC3000A/XC3000L/XC3100A

Option -b applies only to the following device families:

XC3000A/XC3000L/XC3100A
XC4000/XC4000H/XC4000A

Warning: No speed grade specified for part
part_type. Default speed_grade will be used.

If a valid part type is selected without speed grade, XMake uses the
default speed grade for the part.
2-28 Xilinx Development System

Chapter 3
Development System Reference Guide, Volume 1 — 0401405 01 3-1

The MemGen Program

This program is compatible with the following families.

● XC4000

● XC4000A

● XC4000H

MemGen creates RAMs or ROMs that can be from to 1 to 32 bits wide
and up to 256 words deep. It generates an XNF file for the specified
memory, and optionally creates a schematic symbol to represent it. It
creates address-boundary-checking logic for memories with depths
that are not powers of two.

Running MemGen from Windows
You can run MemGen manually from Windows without using
PROflow. In Windows, MemGen is called the Memory Generator.

1. In the Xilinx Program Group, double-click on Memory
Generator .

The dialog box shown in Figure 1-1 appears.

Development System Reference Guide, Volume 1
Figure 3-1 Memory Generator Utility Dialog Box

2. In the input field for FileName, enter the name of the top-level
design file. If you are unsure of the exact filename, press Set. . to
browse the list of file names and select the one you want.

3. In the PartType field, indicate whether you want to use the part
type that the design currently uses or a new part type. If you use a
new part type, enter the name of the part in the box.

4. To generate a symbol, select ViewLogic or OrCAD. If you want to
bypass this step, select None.

5. Click in the box Use Bus Pins to generate a symbol with bus pins
rather than individual pins for data and address.

6. Select Use Pre-XACT 5 Library Format to generate Pre-XACT 5
netlist formats.

7. Use the up and down arrows to set the Depth and Width of the
memory data structure. As you vary these numbers, the changes
are reflected in the device represented in the upper-right portion
of the dialog box.
3-2 Xilinx Development System

The MemGen Program
8. Select Memory Info for RAM or ROM. If you set a Default Value, it
gets placed in all undefined memory cells.

9. If you choose a ROM and would like to edit it, press Edit Mem.
Select Compile upon completion.

Running MemGen from DOS

Syntax
MemGen accepts a memory definition (MEM) file to describe a
memory. The syntax for executing MemGen is shown below.

memgen filename[.mem][options]

MemGen requires one input file and generates several output files as
described below.

Input Files

filename.mem

The input file must have a MEM extension, but you do not need to
specify the extension on the command line, since MEM files are
recognized when MemGen is run. See the “Memory Definition File”
section for more.

If the specified file does not exist, MemGen prompts you for the
memory type, its width and depth, and the type of symbol to
generate. If given a new file name, you can use MemGen interactively
to completely define a RAM and its symbol. Where applicable, you
can interactively define a ROM except for its initialization value and
bus representation style, which must be defined in the MEM file.

Output Files

filename.xnf

This output file is an XNF file that contains a description of the
memory specified in the MEM file.
Development System Reference Guide, Volume 1 3-3

Development System Reference Guide, Volume 1
filename.cmd

This file is the command file that MemGen creates when you specify
the -o option. This command file is used within the OrCAD LibEdit
program to create an OrCAD/SDT symbol for the specified memory.

filename.1

This file is the Viewdraw symbol file that MemGen creates when you
specify the -v option. The symbol file is placed in the /sym
subdirectory of the current project directory.

memgen.log

This is the log file that contains all the information displayed on the
screen during MemGen execution. You can specify a different log file
name by using the Logfile parameter. Refer to the “Options and
Parameter” section for a description of the Logfile parameter.

Memory Definition File Example
A memory definition file, or MEM file, defines a memory and its
contents to MemGen. A description of the commands used in this file
follows the example. An example of a MEM file is shown here.

;==
; EXAMPLE.mem: A 256-word deep by 16-bit wide ROM memory.
;==
TYPE ROM ; The memory is a ROM
DEPTH 256 ; The memory is 256 words deep
WIDTH 16 ; Each memory word is 16 bits wide
SYMBOL VIEWLOGIC BUS ; Build a VIEWLOGIC symbol with bus

; inputs ;
DEFAULT FFFF ; Each unspecified location is set to HIGH

DATA 2#1111_0000_1111_0000#, ; Binary data
 8#177777#, ; Octal data
 10#23#, ; Decimal data
 16#4a#, ; Hexadecimal data

4f ; Unspecified base assumed
; to be hexadecimal

Specifying Memory Characteristics
A MEM file consists of a series of commands that specify the
dimensions and contents of a memory. The commands used in a
3-4 Xilinx Development System

The MemGen Program
MEM file include Type, Depth, Width, Symbol, Default, and Data (see
the example above). With the exception of the Data and Default
commands, you can use parameters to specify all memory
characteristics listed in the MEM file. See the ”Options and
Parameters” section for more information.

Type

The Type command defines the type of memory to build. RAMs are
read-write memories; ROMs are read-only memories.

type [RAM| ROM]

Depth

The Depth command defines the depth, in words, of the memory.
Each word is “width” bits wide. Specify the memory depth with a
positive decimal integer value between 2 and 256, inclusive.

depth memory_depth

Any memory-depth value less than 2 or greater than 256 is flagged as
an error.

Width

The Width command defines the width of the memory, which is the
number of bits in each word. Specify the memory width with a
positive integer between 1 and 32, inclusive

width memory_width

Any memory-width value larger than 32 is flagged as an error.

Symbol

The Symbol command specifies the schematic editor for which
MemGen should create the memory symbol. It also defines the
format of the data and address lines, which are created as either
individual pins or as bus signals.

symbol editor [bus | pins]

The editor is one of the following: Viewlogic, OrCAD, or None.
Development System Reference Guide, Volume 1 3-5

Development System Reference Guide, Volume 1
The first field of the Symbol command defines the type of schematic
editor. The second field specifies the format for address and data
lines, either bus (BUS) or individual pins (PINS). Since the OrCAD/
SDT schematic editor does not support the creation of bus pins on
symbols, you can only specify the PINS selection for an OrCAD
symbol.

If no symbol is to be created, specify None for the Symbol command,
or omit the Symbol command from the MEM file.

The Symbol command directs MemGen to generate a new symbol or
command file every time it is run. You can prohibit MemGen from
generating a new symbol or command file by removing the Symbol
command from the .mem file. The XNF file will still be generated if
the Symbol command is removed.

Note: If a memory module is to be used in an unsupported schematic
editor, you must manually create a symbol. MemGen supports only
Viewlogic, and OrCAD schematic editors.

Default

The Default command defines the value of any ROM location not
specified by the Data command. If no default value is specified, all
unspecified locations are zeros. Use the Default command to fill
unspecified locations with a value other than zero. The Default
command is not permitted for RAMs, since initial values are not
supported on XC4000 RAMs.

default datavalue

You can write the specified datavalue in binary, octal, decimal, or
hexadecimal. See the “Data Formats” section later in this chapter for
more details.

Data

The Data command specifies the complete contents of a ROM.

data datavalue1, datavalue2, ... datavaluen

When used, the data specification must be the last command in a
MEM file. The Data command is not permitted for RAMs, since initial
values are not supported on XC4000 RAMs.
3-6 Xilinx Development System

The MemGen Program
Note: The Data command can be specified over multiple lines,
although the data keyword is used only once. Individual data values
must be separated by commas or by blank characters, such as spaces,
carriage returns, or tabs.

You can write the specified data values in binary, octal, decimal, or
hexadecimal. See the “Data Formats” section later in this chapter for
more details. The first datavalue is location zero; the next datavalue is
location one, and so forth.

Comments

; comment_strings

MemGen ignores all text to the right of a semicolon until the end of
the line.

Data Formats
The data values specified in either the Default or Data commands can
be binary, octal, decimal, or hexadecimal. Hexadecimal is the default
numeric base for data values. For the other values, precede the data
with the appropriate numeric base in the following format.

base#value#

● base — The base is a decimal number and must be either 2
(binary), 8 (octal), 10 (decimal), or the default, 16 (hexadecimal).
The default need not be specified.

● value — The data value must contain only characters valid for the
specified numeric base. Table 3-1 defines valid characters. You can
use an underscore character (_), which MemGen ignores, to
format data within a field.

For example, the following value is difficult to read.

2#00010010011100100110011101101001#

Using the underscore character, data fields are easier to read, as seen
below.

2#0001_0010_0111_0010_0110_0111_0110_1001#
Development System Reference Guide, Volume 1 3-7

Development System Reference Guide, Volume 1
Table 3-1 Various Numerical Bases and Their Valid Characters

The following example shows how to express the decimal value 17.

2#10001# (binary)
8#21# (octal)
10#17# (decimal)
16#11# (hexadecimal)

Options
The following options and parameters control the type of memory
and schematic symbol that MemGen creates. With the exception of
the Logfile parameter, you can specify all options from the MEM file.

memory_dheadepth= Number of Words in Memory

The memory_depth= parameter specifies the number of words in the
memory. The depth must be a number between 2 and 256, inclusive.

parttype= Target LCA Device

The parttype= parameter specifies the target LCA device part. This
parameter defines the PART record in the output XNF file that
MemGen creates. If you do not specify a part type, MemGen uses
4005PG156 as the default.

Note: The part type you specify should be a valid XC4000 device.

type= Memory Type

The type= parameter specifies either a ROM or a RAM.

Base Type Base Valid Characters

Binary 2 0 1 _
Octal 8 0 1 2 3 4 5 6 7 _
Decimal 10 0 1 2 3 4 5 6 7 8 9 _
Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 _

a b c d e f A B C D E F
3-8 Xilinx Development System

The MemGen Program
word_width= Number of Bits per Memory Word

The word width= parameter specifies the number of bits in each
memory word. The word width must be between 1 and 32, inclusive.

-b Bus Notation

If you enable the -b option, MemGen uses bus notation for data and
address lines. The bus naming convention that MemGen uses for the
symbol and the XNF file is determined by the specified schematic
editor. Therefore, it is important to specify the correct schematic-
editor option when using this option, otherwise the symbol does not
bind correctly.

Note: This parameter does not apply to OrCAD, which does not
support bus notation or the symbols.

-o OrCAD/SDT Symbol

If you use the -o option, MemGen creates a memory symbol for the
OrCAD/SDT schematic editor. The symbol description stored in
filename.cmd is an import file for the OrCAD LibEdit symbol editor
program.

-v Viewlogic Viewdraw Symbol

If you enable the -v option, MemGen creates a symbol file for the
memory symbol in the Viewlogic Viewdraw schematic editor. The
Symbol file (filename.1) is placed in the /sym subdirectory of the
current project directory.

logfileMemGen Log File Name

By default, the screen output from MemGen is stored in a file called
memgen.log. You can specify an alternate file name with this
parameter.

logfile = filename.extension

If you do not specify a file name extension, MemGen uses the default
extension LOG. If the Logfile parameter is not used, MemGen writes
the screen output to the file memgen.log, overwriting any previous
versions of this LOG file.
Development System Reference Guide, Volume 1 3-9

Development System Reference Guide, Volume 1
old_library= Output XNF File for Old (non-Unified)
Libraries

Set the old_library= parameter to TRUE if the output XNF file is to be
included in a design that was created from a schematic symbol
library that existed prior to the Xilinx Unified Library. Designs for the
“old” libraries do not include the new LIBVER parameter on the
symbols. Designs from the Unified Library are distinguished by the
presence of the LIBVER= parameter on the symbols. If old_library is
set to TRUE, the LIBVER= parameter is omitted from the output
design so the XNF file is compatible with the old library.

The default value is old_library=FALSE. The default generates an
XNF file that includes LIBVER parameters on the symbols so that the
file is compatible with the Unified Library.

Note: Xilinx requires all files in each completed design to be
consistent with either the Unified Library or an old library. If your
design is drawn using the Unified Library leave the old_library=
parameter set to the default of FALSE. If your design is not from the
Unified Library, set the old_library= parameter to TRUE.

output_directory= Set Output Directory

Set the output_directory= parameter to a directory name if you want
the XNF file put in a directory other than the current directory. The
other MemGen-generated files are not affected by the
output_directory= parameter setting. The default is to put the XNF
file into the current directory.

Examples
This example shows how to use MemGen to create an XNF file and a
Viewlogic memory symbol from a memory definition file called
juke.mem, using the bus notation

memgen juke -v -b

This syntax creates a file called juke.1 that is placed in the /sym
subdirectory of the current project directory. If a MEM file that
already contains information that contradicts the command line
arguments exists, the MEM file information overrides the command
line. For example, if an existing juke.mem is specified in the ORCAD
editor, the -v option for the Viewlogic editor would be ignored. In this
3-10 Xilinx Development System

The MemGen Program
case, if the Viewlogic editor was desired, you would have to either
edit the juke.mem file or create a new MEM file.

Address Boundary Checking
The MemGen memory compiler automatically includes logic to
check address boundaries for any memory where the depth is not a
power of two. In this case, MemGen adds an active-High output
called ERR, or ADDR-ERR if bus notation has been specified for the
memory.

An example of automatic address boundary checking is shown in
Figure 3-2. Four address lines are required to access the 12 memory
locations. However, using 4 address lines, 16 address values are
possible. Since only 12 locations are valid for this example, there are 4
illegal or invalid addresses. If any of these four locations are
addressed, the ERR output would go High, indicating that the
address inputs are attempting to address an invalid location.

Figure 3-2 Address Boundary Checking

The ERR or ADDR-ERR output is not created for memories that have
depths that are a power of 2 (for example, memories that are 8, 16, or
32 words deep).

PPR automatically removes all unused extra logic created for address
boundary checking from the design.

D0

D1

A0

A1

A2

A3

O0
O1

ERR

X2563

An address boundary
checking output is
automatically added.

RAM

12 X 2
0.5 CLBs
1 Level
Development System Reference Guide, Volume 1 3-11

Development System Reference Guide, Volume 1
3-12 Xilinx Development System

Chapter 4
Development System Reference Guide, Volume 1 — 0401405 01 4-1

XACT-Performance Utility

This program is compatible with the following families.

● XC3000A

● XC3000L

● XC3100A

● XC4000

● XC4000A

● XC4000H

● XC5200

XACT-Performance enables you to specify precise timing
requirements for your Xilinx FPGA designs. Use XACT-Performance
to specify the maximum allowable delay on any given set of paths in
your design. You identify a set of paths by identifying a group of
start and end points. The start and end points can be flip-flops, I/O
pads, IOB latches, XC4000 RAMs, or XC5200 DLATs. You can control
the worst-case timing on the set of paths by specifying a single delay
requirement for all paths in the set.

The primary method of specifying timing requirements involves
entering them on the schematic. However, you can also specify
timing requirements via the constraints file as well as PPR command-
line options. These command-line options do not provide as much
control and flexibility as entering timing information directly on the
schematic. See the “PPR” chapter in the Development System Reference
Guide for more information about PPR command-line options. For
detailed information about the constraints you can use with your
schematic-entry software, refer to the Libraries Guide.

Development System Reference Guide, Volume 1
Once you define timing specifications, PPR maps, places, and routes
your design based on these requirements.

To analyze the results of your timing specifications use the XDelay
program. Refer to ‘‘The XDelay Timing Analysis Program” chapter in
the Development System Reference Guide for more information.

This chapter covers the following topics:

● Defining timing requirements using groups

● Defining timing requirements using path-type specifications

Warning: Although you can use end-point specifications (using
groups) in the same design with existing path-type specifications,
Xilinx discourages mixing the two methods. If you are modifying an
existing design that uses path-type timing specifications, refer to the
‘‘Defining Timing Requirements Using Path-Type Specifications”
section in the middle of this chapter.

Defining Timing Requirements Using Groups
You can specify timing requirements by specifying a set of paths and
the maximum allowable delay on these paths. You specify the set of
paths by grouping start and end points in one of the following ways:

● You can refer to a predefined group by specifying one of the
corresponding keywords — FFS, PADS, LATCHES, or RAMS.

● You can create arbitrary groups within a predefined group by
tagging symbols with TNM (pronounced tee-name) attributes.

● You can create groups that are combinations of existing groups
using TIMEGRP symbols.

● You can create groups by pattern matching on signal names.

The following sections discuss each method in detail.

Understanding the Basics
This section introduces the following concepts that you need to know
to begin using XACT-Performance:

● TIMESPEC Primitive

● From-To Statement Syntax
4-2 Xilinx Development System

XACT-Performance Utility
TIMESPEC Primitive

The TIMESPEC primitive, as illustrated in Figure 4-1, serves as a
placeholder for timing specifications, which are called TS attribute
definitions. Every TS attribute must be defined in a TIMESPEC
primitive. Every TS attribute begins with the letters ‘‘TS” and ends
with a unique identifier that can consist of letters, numbers, or the
underscore character (_).

OrCAD Users — The implementation of XACT-Performance
described in this chapter differs slightly from the OrCAD
implementation; for example, the TIMESPEC primitive does not exist
in the Xilinx OrCAD library. For more details, refer to the OrCAD
Interface/Tutorial Guide.

Mentor Graphics Users — The term attribute in this chapter is
equivalent to property as used in the Mentor Graphics environment.

The TIMESPEC primitive is 30 characters wide; however, you can
create TS attribute definitions of any length. Each TIMESPEC
primitive can hold up to eight TS attributes. If you want to include
more than eight TS attributes, you can use multiple TIMESPEC
primitives in your schematic.

Figure 4-1 TIMESPEC Primitive

How you add a TIMESPEC primitive to your schematic depends on
your specific schematic-entry software. Refer to the appropriate
Xilinx Interface User Guide for step-by-step instructions.

X4332

TIMESPEC
TS01=FROM:FFS:TO:PADS=25
Development System Reference Guide, Volume 1 4-3

Development System Reference Guide, Volume 1
From-To Statement Syntax

You can use From-To statements to specify timing requirements
between specific end points by using the following syntax within the
TIMESPEC primitive:

TSidentifier=FROM:group1:TO: group2=delay

From-To statements are TS attributes that reside in the TIMESPEC
primitive. The parameters group1 and group2 must be predefined
groups, previously created TNM identifiers, or groups defined in
TIMEGRP symbols. Predefined groups consist of FFS, LATCHES,
RAMS, or PADS and are discussed in the ‘‘Using Predefined Groups”
section. TNMs are introduced in the ‘‘Creating Arbitrary Groups
Using TNMs” section. TIMEGRP symbols are introduced in the
‘‘Creating New Groups from Existing Groups” section.

Note: Keywords, such as FROM and TO, appear in the
documentation in upper case; however, you can enter them in the
TIMESPEC primitive in either upper or lower case.

The delay parameter defines the maximum delay for the attribute.
Nanoseconds are the default units for specifying delay time in TS
attributes. You can also specify delay using other units, such as
megahertz. Refer to the ‘‘Specifying Time Delay in TS Attributes”
section later in this chapter for more information on time delay.

The following examples illustrate the use of From-To TS attributes:

TS01=FROM:FFS:TO:FFS=30
TS_OTHER=FROM:PADS:TO:FFS=25
TS_THIS=FROM:FFS:TO:RAMS=35
TS_THAT=FROM:PADS:TO:LATCHES=35

Note: Latches refer to input latches (INLATs or ILDs) only. Using
From-To syntax is the only way you can specify timing requirements
for a RAM.

You can place TS attributes containing From-To statements in either
of two places: in the TIMESPEC primitive on the schematic as
discussed in this chapter or in the PPR constraints (CST) file. See the
Libraries Guide for more information about specifying timing
requirements in the constraints file.
4-4 Xilinx Development System

XACT-Performance Utility
You can also define timing requirements by creating groups using
TNMs, creating TIMEGRP attributes, and creating groups by pattern
matching. These methods are discussed in the following sections.

Using Predefined Groups
You can refer to a group of flip-flops, input latches, pads, or RAMs by
using the corresponding keywords:

XACT-PerformanceFrom-To statements enable you to define timing
specifications for paths between predefined groups. The following
examples are TS attributes that reside in the TIMESPEC primitive.
This method enables you to easily define default timing
specifications for the design, as illustrated by the following examples:

TS01=FROM:FFS:TO:FFS=30
TS02=FROM:LATCHES:TO:LATCHES=25
TS03=FROM:PADS:TO:RAMS=70
TS04=FROM:FFS:TO:PADS=55

As used in the previous example, the predefined groups represent all
symbols of that type. To create more specific groups see the next
section, ‘‘Creating Arbitrary Groups Using TNMs.”

Creating Arbitrary Groups Using TNMs
A TNM (timing name) is a flag that you place directly on your
schematic to tag specific pads, flip-flops, input latches, or RAMs. All
symbols tagged with the TNM identifier are considered a group.
Place TNM attributes directly on your schematic using the following
syntax:

TNM=identifier

where identifier is a value that consists of any combination of letters,
numbers, or underscores. Keep the TNM short for convenience and
clarity.

FFS CLB or IOB flip-flops
LATCHES Input latches only; not latches built from function

generators
PADS Input/output pads
RAMS For the XC4000 family only
Development System Reference Guide, Volume 1 4-5

Development System Reference Guide, Volume 1
Warning: Do not use reserved words, such as FFS, LATCHES, RAMS,
or PADS, for TNM identifiers.

You can specify as many groups of end points as is necessary to
describe the performance requirements of your design. However, to
simplify the specification process and reduce the place-and-route
time, use as few groups as possible.

You can use several methods for tagging groups of end points —
placing identifiers on primitive symbols, macro symbols, nets, or load
pins. Which method you choose depends on how the path end points
are related in your design. The following subsections discuss the
different methods.

Placing TNMs on Primitive Symbols

You can group individual logic primitives explicitly by flagging each
symbol, as illustrated by the following figure:

Figure 4-2 TNM on Primitive Symbols

In Figure 4-2, the flip-flops tagged with the TNM form a group called
‘‘FLOPS.” The untagged flip-flop is not part of the group.

D

TNM=FLOPS

TNM=FLOPS

Q

D Q

D Q

LOGIC

LOGIC

X4679
4-6 Xilinx Development System

XACT-Performance Utility
Note: You cannot use TNMs to group instances of incompatible
symbols; for example, it is incorrect to tag a pad and a flip-flop with
the same TNM. The only compatible predefined groups are flip-flops
and input latches, on which you can use the same TNM.

Place only one TNM on each symbol, load pin, or macro load pin. If
you want to assign more than one identifier to the same symbol,
include all identifiers on the right side of the equal sign (=) separated
by a semicolon (;), as follows:

TNM=joe;fred

Placing TNMs on Macro Symbols

When a macro contains only one symbol type, you can place a TNM
directly on the macro. If the macro contains only flip-flops, all the
flip-flips are identified by the given TNM.

When a macro contains more than one symbol type, use the TNM
identifier in conjunction with one of the predefined groups: FFS,
RAMS, PADS, or LATCHES as indicated by the following syntax
examples:

TNM=FFS:identifier
TNM=RAMS:identifier
TNM=LATCHES:identifier
TNM=PADS:identifier

If you want to place an identifier on more than one symbol type,
separate each symbol type and identifier with a semicolon (;) as
illustrated by the following examples:

TNM=FFS:FLOPS;PADS:OPADS
TNM=RAMS:MEMS;LATCHES:INLATS

For example, if multiple flip-flops are contained in the same
hierarchical block, you can simply flag that hierarchical symbol, as
illustrated by the following figure.
Development System Reference Guide, Volume 1 4-7

Development System Reference Guide, Volume 1
Figure 4-3 TNM on Macro Symbol

In Figure 4-3, all flip-flops included in the macro are tagged with the
TNM ‘‘FLOPS” and all RAMs are tagged with the TNM ‘‘MEM.” By
tagging the macro symbol, you do not have to tag each underlying
symbol individually.

Placing TNMs on Signals or Pins to Group Flip-Flops

You can easily group flip-flops by flagging a common input signal,
typically either a clock signal or an enable signal. If you attach a TNM
to a signal or load pin, that TNM applies to all flip-flops and/or input
latches that are reached through the signal or pin. That is, PPR traces
forward on that path, through any number of gates or buffers, until it
reaches a flip-flop or input latch. PPR adds that element to the
specified TNM group. This mechanism is called forward tracing.

EN
D Q

EN

D Q
I

O

DI DO

ADDRS

TNM=FFS:FLOPS;RAMS:MEM

WE

DI DO

ADDRS
WE

Q5
Q4
Q3
Q2
Q1
Q0
EN

POS
PH0
PH1
PH2
PH3
NEG

X4678
4-8 Xilinx Development System

XACT-Performance Utility
Placing a TNM on a signal is equivalent to placing that TNM
attribute on every load pin of the signal. Use pin TNM attributes
when you need finer control.

The following figure illustrates the use of a TNM on a net that traces
forward to create a group of flip-flops:

Figure 4-4 TNM on Signal Used to Group Flip-Flops

In Figure 4-4, the TNM traces forward to the first two flip-flops,
which form a group called FLOPS. The bottom flip-flop is not part of
the group FLOPS.

The following figure illustrates placing a TNM on a clock pin, which
traces forward to all three flip-flops and forms the group Q_FLOPS:

AND

FD Q

O

Pxx X4677

FD Q

FD Q

Pxx

Pxx O

O

O

D1 D

C

D

C

D

C

IBUF
TNM=FLOPS

IBUF

GCLK

O

O

O CLK

XNOR

INV

INV

CLKNI

IPAD

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1

2

1

2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2

D3

D2

Pxx

Pxx

Pxx
Development System Reference Guide, Volume 1 4-9

Development System Reference Guide, Volume 1
Figure 4-5 TNM on Clock Pin Used to Group Flip-Flops

The TNM parameter on signals or pins is allowed to have a qualifier.

For example:

TNM=FFS:data

TNM=RAMS:fifo

TNM=LATCHES:capture

A qualified TNM is traced forward until it reaches the first storage
element (flip-flop, latch, or RAM). If that type of storage element
matches the qualifier, the storage element is given that TNM value.
Whether or not there is a match, the TNM is NOT traced through that
storage element.

The PADS qualifier cannot be used on a TNM parameter on a signal
or pin. To assign a TNM to an I/O pad, use a TNM parameter directly
on that pad (or on its connected signal)

If a TNM parameter on a signal or pin is not qualified, it defaults to
the FFS qualifier.

If your design contains TNM parameters on signals or pins, they will
behave as before with the following exceptions.

D Q

Q1

D Q

CLOCK

TNM=Q_FLOPS

D Q
D1

D3

D2 Q2

Q3

X4676
4-10 Xilinx Development System

XACT-Performance Utility
● Unqualified TNM parameters default to type FFS, and are NOT
traced forward to tag input latches. If you rely on this behavior,
add the LATCHES qualifier to the TNM parameter. (If the existing
TNM is also intended to tag flip-flops, add a new LATCHES-
qualified TNM parameter.) PPR issues a warning whenever it
detects an unqualified TNM that would have previously tagged
an input latch.

● TNM parameters on signals or pins are never traced through a
storage element (flip-flop, latch or RAM). Previously, they were
traced through some pins on input latches and RAMs. If you rely
on this behavior, move the TNM parameter so that it reaches the
target flip-flop directly; or use a TNM parameter directly on the
target flip-flop symbol.

If your design contains groups that include both flip-flops and
latches, the group will be rejected by XNFPREP. (If the mixing is done
via an unqualified TNM, it will no longer include the latches, as
described above.)

To achieve the same results, keep the flip-flop and latch groups
separate, and apply two equivalent TIMESPEC statements, one using
the flip-flop group as an endpoint, and one using the latch group.

Creating New Groups from Existing Groups
In addition to naming groups using the TNM identifier, you can also
define groups in terms of other groups. You can create a group that is
a combination of existing groups by defining a TIMEGRP attribute as
follows:

newgroup=existing_grp1:existing_grp2 [:existing_grp3 . . .]

where newgroup is a newly created group that consists of existing
groups created via TNMs, predefined groups, or other TIMEGRP
attributes.

Mentor Users — You must specify a leading equal sign (=) when
defining TIMEGRP attributes, for example, =newgroup. The preceding
equal sign lets Mentor know that this is a user-defined attribute.
Refer to the Mentor Graphics Interface/Tutorial Guide for more
information.

TIMEGRP attributes reside in the TIMEGRP primitive, as illustrated
in Figure 4-6. Once you create a TIMEGRP attribute definition within
Development System Reference Guide, Volume 1 4-11

Development System Reference Guide, Volume 1
a TIMEGRP primitive, you can use it in the TIMESPEC primitive.
Each TIMEGRP primitive can hold up to eight group definitions.
Since your design might include more than eight TIMEGRP
attributes, you can use multiple TIMEGRP primitives.

Figure 4-6 TIMEGRP Primitive

You can place TIMEGRP attributes in either of two places: in the
TIMEGRP primitive on the schematic as discussed in this section or
in the constraints (CST) file. See the Libraries Guide for more
information about specifying timing requirements in the constraints
file.

You can use TIMEGRP attributes to create groups using the following
methods:

● Combining multiple groups into one

● Creating groups by exclusion

● Defining flip-flop subgroups by clock sense

The following subsections discuss each method in detail.

Combining Multiple Groups into One

You can define a group by combining other groups. The following
syntax example illustrates the simple combining of two groups:

big_group=small_group:medium_group

In this syntax example, small_group and medium_group are existing
groups defined using a TNM or TIMEGRP attribute. Within the
TIMEGRP primitive, TIMEGRP attributes can be listed in any order;

X4330

TIMEGRP
some_ffs=flips:flops
4-12 Xilinx Development System

XACT-Performance Utility
that is, you can create a TIMEGRP attribute that references another
TIMEGRP attribute that appears after the initial definition.

Warning: A circular definition, as shown below, causes an error.

many_ffs=ffs1:ffs2
ffs1=many_ffs:ffs3

Creating Groups by Exclusion

You can define a group that includes all elements of one group except
the elements that belong to another group, as illustrated by the
following syntax examples:

group1=group2:EXCEPT: group3

where group1 represents the group being defined; group2 and group3
can be a valid TNM, predefined group, or TIMEGRP attribute.

As illustrated by the following example, you can specify multiple
groups to include or exclude when creating the new group.

group1=group2:group3:EXCEPT: group4:group5

Warning: Do not use reserved words, such as FFS, PADS, RISING,
FALLING, TRANSHIGH, TRANSLOW, or EXCEPT, as group names
or TNMs. The symbol attributes in Table 4-1 are also reserved words
and should not be used as group names or TNMs.

Table 4-1 Symbol Attributes

Attribute

ADD

ALU

ASSIGN

BEL

BLKNM

CAP

CLBNM

CMOS

CYMODE
Development System Reference Guide, Volume 1 4-13

Development System Reference Guide, Volume 1
DECODE

DEF

DIVIDE1_BY

DIVIDE2_BY

DOUBLE

EQN

FAST

FBKINV

FILE

F_SET

HBLKNM

HU_SET

H_SET

INIT

INTERNAL

LIBVER

LOC

LOWPWR

MAP

MEDFAST

MEDSLOW

MINIM

NODELAY

OPT

OSC

RES

RLOC

RLOC_ORIGIN

RLOC_RANGE

Attribute
4-14 Xilinx Development System

XACT-Performance Utility
Defining Flip-Flop Subgroups by Clock Sense

You can create subgroups using the keywords RISING and FALLING
to group flip-flops triggered by rising and falling edges.

group1=RISING :ffs
group2=RISING : ffs_group
group3=FALLING: ffs
group4=FALLING: ffs_group

where group1 to group4 are new groups being defined. The ffs_group
must be a group that includes only flip-flops.

Note: Keywords, such as EXCEPT, RISING, and FALLING, appear in
the documentation in upper case; however, you can enter them in the
TIMESPEC primitive in lower or upper case.

The following example defines a group of flip-flops that switch on
the falling edge of the clock.

falling_ffs=FALLING:ffs

Grouping Latches
Groups of type LATCHES (no matter how these groups are defined)
can be easily separated into transparent High and transparent Low
subgroups. The TRANSHIGH and TRANSLOW keywords are
provided for this purpose, and are used in TIMEGRP statements like

SCHNM

SLOW

SYSTEM

TNM

TRIM

TS

TTL

TYPE

USE_RLOC

U_SET

Attribute
Development System Reference Guide, Volume 1 4-15

Development System Reference Guide, Volume 1
the RISING and FALLING keywords for flip-flop groups. For
example:

lowgroup=TRANSLOW:latchgroup
highgroup=TRANSHIGH:latchgroup

Flip-flops and latches were previously allowed to be grouped
together in the same group. In order to support qualified TNM
parameters on signals and pins, mixed flip-flop/latch groups are no
longer allowed.

Creating Groups by Pattern Matching
When creating groups, you can use wildcard characters to define
groups of symbols whose associated signal names match a specific
pattern:

group=predefined_group(pattern)

where predefined_group can only be one of the following predefined
groups — FFS, LATCHES, PADS, or RAMS. A pattern is any string of
characters used in conjunction with one or more wildcard characters.

Warning: When specifying a signal name, you must use its full
hierarchical path name so PPR can find the signal in the flattened
design.

For flip-flops, input latches, and RAMs, specify the output signal
name. For pads, specify the external signal name unless you placed a
BLKNM or HBLKNM on the pad in the schematic; in this case, you
should specify its value instead.

In XACT-Performance, any place you specify a predefined group, you
can specify a predefined group qualified by a pattern as follows:

TSidentifier=FROM: group(pattern):TO: group(pattern)=delay

The following example illustrates creating a group that includes the
flip-flops that source signals whose names begin with $1I3/FRED.

group1=ffs($1I3/FRED*)

The following example illustrates a group that excludes certain flip-
flops whose output signal names match the specified pattern:

this_group =ffs:EXCEPT:ffs(a*)
4-16 Xilinx Development System

XACT-Performance Utility
In this example, this_group includes all flip-flops except those whose
output signal names begin with the letter ‘‘a.”

How to Use Wildcards to Specify Signal Names

The wildcard characters, * and ?, enable you to select a group of
symbols whose output signal names match a specific string or
pattern. The asterisk (*) represents any character string. The question
mark (?) indicates a single character.

For example, DATA* indicates any signal name that begins with
“DATA,” such as DATA1, DATA22, DATABASE, and so on. The
string NUMBER? specifies any signal names that begin with
‘‘NUMBER” and end with one single character, for example,
NUMBER1, NUMBERS but not NUMBER12.

You can also specify more than one wildcard character. For example,
*AT? specifies any signal names that begin with any series of
characters followed by ‘‘AT” and end with any one character such as
BAT1, CAT2, and THAT5.

How to Define Groups by Signal Name

This subsection gives you more examples of how to create groups by
pattern matching. The following defines a group name
‘‘some_latches”:

some_latches=latches($1I3/xyz*)

The group some_latches contains all input latches whose output
signal names start with ‘‘$1I3/xyz.”

Instead of specifying just one pattern, you can also specify a list of
patterns separated by a colon (:) as illustrated below:

some_ffs=ffs(a*:b?:c*d)

The group ‘‘some_ffs” contains flip-flops whose output signal names:

● Start with the letter ‘‘a”

● Contain two characters; the first character is ‘‘b”

● Start with ‘‘c” and end with ‘‘d”
Development System Reference Guide, Volume 1 4-17

Development System Reference Guide, Volume 1
When Multiple Specifications Apply to the Same Path
When you apply more than one From-To specification to the paths
between a given pair of end points, PPR analyzes all of them. In this
case, PPR chooses the fastest one, which might not be the
specification you want. For example, suppose you have the following
timing requirements:

TS_ALL=FROM:PADS:TO:FFS=30
TS_SLOWER=FROM:PADS:TO:SLOW_FFS=40

For TS_SLOWER to control the paths to SLOW_FFS, it would have to
disable TS_ALL on these paths; however, no specification can disable
another. Therefore, the TS_SLOWER paths inherit the TS_ALL
specifications and are specified faster than intended. You can avoid
this problem by either of two methods:

● Make sure your broad specifications are always the slowest ones.
You could create a FAST_FFS group instead of a SLOW_FFS
group, as follows:

TS_ALL=FROM:PADS:TO:FFS=40
TS_FASTER=FROM:PADS:TO:FAST_FFS=30

● Explicitly exclude slower paths from faster, more general
specifications by using a TIMEGRP EXCEPT statement, as
explained in the ‘‘Creating Groups by Exclusion” section.

Using this method, you could create a TIMEGRP attribute to
define the FAST_FFS group as a complement of the SLOW_FFS
group as follows:

FAST_FFS=FFS:EXCEPT:SLOW_FFS

In the TIMESPEC primitive, you can define two non-overlapping
specifications:

TS_FASTER=FROM:PADS:TO:FAST_FFS=30
TS_SLOWER=FROM:PADS:TO:SLOW_FFS=40

Ignoring Selected Paths
In a design, some paths do not require path analysis. These are paths
that exist in the design, but are never used during time-critical
operations. If you indicate a timing requirement on these paths, more
important paths might be slower, which can result in failure to meet
4-18 Xilinx Development System

XACT-Performance Utility
the timing requirements. You can use IGNORE to disable any paths
that you do not need to control by using the following syntax within
the TIMESPEC primitive:

TSid=IGNORE

After you have included this line in the TIMESPEC primitive,
attaching the TSid flag to a net or load pin causes PPR to ignore any
paths that include the net or load pin.

You cannot perform path analysis in the presence of combinational
loops. Therefore, PPR ignores certain connections to break
combinational loops. You can use IGNORE to direct PPR to ignore
specified nets or load pins, consequently controlling how loops are
broken.

Specifying Time Delay in TS Attributes
Nanoseconds are the default units for specifying delay times in TS
attributes. However, after specifying the maximum delay or
minimum frequency numerically, you can enter the unit of measure
by specifying the following:

● NS for nanoseconds

● MHZ for megahertz

● US for microseconds

● KHZ for kilohertz

The XNFPrep program converts all units to nanoseconds and rounds
them to 0.1 ns accuracy.

The following subsections discuss alternate methods of specifying
time delay in TS attributes:

● Selecting Automatic Delay

● Specifying a TS Attribute Delay in Terms of Another

Selecting Automatic Delay (AUTO)

If you want to minimize delays along a certain group of paths but are
unsure what delay to request, use AUTO in place of numerical values
on the TS attributes as follows:

TS_PADS=FROM:PADS:TO:PADS=AUTO
Development System Reference Guide, Volume 1 4-19

Development System Reference Guide, Volume 1

t

PPR chooses a moderately aggressive path delay target for the
specified paths and attempts to meet this target.

Specifying a TS Attribute Delay in Terms of Another

Instead of specifying a time or frequency in a TS attribute definition,
you can specify a multiple or division of another TS attribute. This is
useful in a system where all clocks are derived from a master clock; in
this situation, changing the timing specification for the master clock
changes the specification for all clocks in the system.

Use the syntax below to specify a TS attribute delay in terms of
another.

TSidentifier=specification=reference_TS_attribute[* |/] number

where number can be either a whole number or a decimal. The
specification can be any From-To statement as illustrated by the
following examples:

FROM:PADS:TO:PADS
FROM:group1:TO: group2
FROM:tnm_identifier:TO:FFS
FROM:LATCHES:TO:group1

Use “*” to represent multiplication and “/” to represent division. The
specification type of the reference TS attribute does not need to be the
same as the TS attribute being defined; however, it must not be
specified in terms of AUTO or IGNORE.

Examples of specifying a TS attribute in terms of another are as
follows. In these cases, assume that the reference attributes were
specified as delays (not frequencies).

TS08=FROM:FFS:TO:PADS=TS05*10 The paths between flip-flops and pads are
placed and routed so that their delay is at
most 10 times the delay specified in the
TS05 attribute.

TS1=FROM:PADS:TO:PADS=TS07/8 The paths between input and output pads are
placed and routed so that their delay is at mos
one-eighth the delay specified in the TS07
attribute.
4-20 Xilinx Development System

XACT-Performance Utility
Note: When a reference attribute is specified as a frequency, a
multiple represents a faster specification; a division represents a
slower specification.

You can also specify a TS attribute in terms of a TS attribute that is
already a specification of another. The following example provides an
illustration.

TS09=FROM:FFS:TO:FFS=50
TS10=FROM:FFS:TO:PADS=TS09*2
TS11=FROM:PADS:TO:PADS=TS10*4

Sample Schematic Using End-Point Specifications
TNM identifiers define symbols or groups of symbols that are used in
timing specifications. They can also define other groups. Figure 4-7
shows an example of a TNM attribute attached to an individual
symbol. In this circuit, the flip-flop D_FF has the attribute
TNM=D_FF attached to it.
Development System Reference Guide, Volume 1 4-21

Development System Reference Guide, Volume 1
Figure 4-7 Example of Using TNMs and TIMEGRPs in Your
Schematic

The TIMEGRP symbol contains an attribute that defines a group of
flip-flops called Q_FFS, which includes all flip-flops in the schematic
except the one labeled D_FF. You can then use the group Q_FFS to
create timing specifications in the TIMESPEC primitive. The flip-flop
D_FF has its clock enable driven at 1/16th of the clock frequency;
therefore, its flip-flop to pad and pad to flip-flop timing specifications
are longer than the flip-flop to pad specifications in the Q_FFS group.

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

C
CE

D Q

CLR

Q3

Q2

Q1

Q0

Q0

Q1

Q2

Q3D3

D2

D1

D0

+5

�
VCC

FDCE

FDCE

FDCE

FDCE

FDCE

D_FF

TNM=D_FF

AND4

D_EN

RDATA RD_OUT

Q3_OUT

Q2_OUT

Q1_OUT

Q0_OUT

OPAD

OPAD

OPAD

OPAD

OPAD
OBUF

OBUF

OBUF

OBUF

OBUF

GND

INV

XOR2

XOR2

XOR2

DATA

CLK

IPAD

IPAD

D_IN

K_IN
IBUF

BUFG

C3

C2

AND2

AND3

X6170

Q_FFS=FFS:EXCEPT:D_FF TS_CLK_CYCLE=FROM:FFS:TO:FFS:50

TS_CTR=FROM:Q_FFS:TO:PADS=25

TS_D_O=FROM:D_FF:TO:PADS=50

TS_D_I=FROM:PADS:TO:D_FF=50

TIMEGRIP TIMESPEC
4-22 Xilinx Development System

XACT-Performance Utility
Default Specifications Inserted by PPR
The three types of paths that involve flip-flops — flip-flops to flip-
flops, pads to flip-flops, and flip-flops to pads — usually benefit from
timing specifications. If you do not specify any timing specification to
control these paths, PPR applies the following specifications:

● Paths that start at pads and end at flip-flops

TS_DEFAULT_FROM_PADS_TO_FFS=FROM:PADS:TO:FFS=
AUTO

● Paths that start at flip-flops and end at flip-flops

TS_DEFAULT_FROM_FFS_TO_FFS=FROM:FFS:TO:FFS=AUTO

● Paths that start at flip-flops and end at pads

TS_DEFAULT_FROM_FFS_TO_PADS=FROM:FFS:TO:PADS=
AUTO

Defining Timing Requirements Using Path-Type
Specifications

The path-type specifications described in this section are provided for
backward compatibility with previous versions of XACT-
Performance. Since it is more complicated to define arbitrary timing
requirements using path-type specifications, Xilinx strongly
recommends that you use From-To statements, TIMEGRP attributes,
and TNMs. Refer to ‘‘Defining Timing Requirements Using Groups”
at the beginning of this chapter for more information.

This section discusses the following concepts:

● The Four Basic Path Types

● When Multiple Path-Type Specifications Apply to the Same Flip-
Flop

● The Forward Tracing Mechanism

● Combinational Delay and Timing Specifications on Clock-Related
Paths

● Specifying a Path-Type TS Attribute Delay in Terms of Another

● Placing TS Flags
Development System Reference Guide, Volume 1 4-23

Development System Reference Guide, Volume 1
● Other Specification Parameters

● How are Path-Type and End-Point Specifications Different?

The Four Basic Path Types
There are four basic path types in any design:

● Pad to setup (P2S) — A path that starts at an input to the device
and ends at an input pin of a flip-flop.

● Clock to setup (C2S) — A path that starts at the Q pin of a flip-flop
and ends at an input pin of a flip-flop.

● Clock to pad (C2P) — A path that starts at the Q pin of a flip-flop
and ends at an output of the device.

● Pad to pad (P2P) — A purely combinatorial path that starts at a
device input and ends at a device output.

Note: The P2S and C2S paths also include the setup time of the flip-
flop. The C2P path also includes the delay from the clock to the Q pin
of the flip-flop.

You can define TS attributes that correspond to these four basic path
types. TS attributes reside in the TIMESPEC attribute, decribed at the
beginning of this chapter. For clock-related paths (C2S, C2P, P2S), you
need to assign a TS attribute to the schematic by attaching a TS flag,
described in the ‘‘Placing TS Flags” section. For P2P specifications,
you do not need to place TS flags on your schematic.

TS flags are propagated forward until they reach a flip-flop. When
more than one clock-type specification applies to the same flip-flop,
some specifications override others. See ‘‘When Multiple Path-Type
Specifications Apply to the Same Flip-Flop” for more information.

Warning: Although you can use TNMs and From-To syntax in the
same design with path types, Xilinx discourages mixing end-point
and path-type specifications.

The following subsections describe each path type in detail.

Clock to Setup (C2S, DC2S)

TSidentifier=C2S: clock_period [:high_time]
TSidentifier=DC2S:default_clock_period [:high_time]
4-24 Xilinx Development System

XACT-Performance Utility
The C2S or DC2S parameter enables you to specify timing
information for paths from Q outputs to non-clock flip-flop inputs,
that is, D, CE, PRE/SD, or CLR/RD. The following figure illustrates a
C2S path:

Figure 4-8 Clock-to-Setup Configuration

Clock_period represents the length of one clock signal, which indicates
the interval from a rising edge to the next rising edge. High_time is an
optional parameter that represents the clock period high time.
High_time must be less than clock_period, and is only required when
there are paths between flip-flops clocked by different edges of the
same clock net. If high_time is not specified, PPR assumes it is one-
half of the clock period (50% duty cycle).

A C2S or DC2S specification applies to a path between two flip-flops
if it applies to both the sourcing and the destination flip-flops.

In its default mode, PPR does not control paths between two flip-
flops tagged by different C2S specifications. To control such paths, set
the PPR command-line parameter ‘‘user_faster_c2s” to TRUE. In this
case, PPR uses the faster of the requirements at the two ends and the
complete period, even if different edges clock the two flip-flops. Refer
to the Libraries Guide for more information.

If the flip-flop at either end of a path has no associated timing
specification, the path is not controlled.

Note: With end point specifications, you can directly specify different
requirements for arbitrary source → destination pairs. Since the end
point method is easier than attaching C2S specifications to flip-flops
so that the faster of the two is always appropriate, the end point style
is preferable. Refer to ‘‘Defining Timing Requirements Using
Groups” at the beginning of this chapter for more information on
using end points.

X4314

D Q

CLOCK

INTERCONNECT
& COMBINATORIAL

LOGIC
D Q
Development System Reference Guide, Volume 1 4-25

Development System Reference Guide, Volume 1
If the same specification governs two flip-flops in a clock-to-setup
path clocked by different clock edges, the high time or the low time of
the C2S specification controls the path. The high time is used if the
sourcing flip-flop is rising-edge triggered, and the low time is used if
the sourcing flip-flop is negative-edge triggered. If you do not specify
the optional high time in the C2S specification, the system assumes a
50% duty cycle.

Examples of TS attributes using C2S and DC2S are as follows:

Pad to Setup (P2S, DP2S)

TSid=P2S: pad_to_setup_time:source
TSid=DP2S:default_pad_to_setup_time

The P2S or DP2S parameter enables you to specify timing
information from external pads to non-clock flip-flop inputs, that is,
D, CE, PRE/SD, or CLR/RD. The following figure illustrates a P2S
path:

Figure 4-9 Pad-to-Setup Configuration

Pad_to_setup_time represents the desired time from external pads to
the inputs. Source specifies an external pad. When specifying the

TS01=DC2S:40:25 The default clock-to-setup time is a period of 40
ns with a high time of 25 ns. You do not need to
attach a TS flag for TS01 to any nets or load
pins in the schematic because it represents a
default value.

TS02=C2S:200 The clock-to-setup time for any pair of flip-
flops reachable from a net with a TS02 flag
attached is 200 ns.

TS03=C2S:40MHZ The clock-to-setup frequency for any pair of
flip-flops reached by tracing forward from a net
with a TS03 flag attached is 40 MHz.

X4312

PAD
INTERCONNECT

& COMBINATORIAL
LOGIC

D Q

CLOCK
4-26 Xilinx Development System

XACT-Performance Utility

s
lt
source pad, you must use the hierarchical name for the pad listed in
the XNF file. You can substitute part of the pad name with a wildcard
character (* or ?). You cannot specify only a wildcard symbol as the
source pad; use DP2S if you want to specify a default timing
specification for all paths from external pads to inputs. Refer to the
following table for the proper usage.

Occasionally, two or more unqualified P2S TS attributes propagate
forward to the same flip-flop. In this case, PPR uses the fastest
specification to control all paths from pads to this flip-flop. In
addition, PPR applies all P2S specifications qualified by a pad name
or partial pad name to the paths from the corresponding pads.

Examples of TS attributes using P2S and DP2S are as follows:

Clock to Pad (C2P, DC2P)

TSid=C2P: clock_to_pad_time[:destination]
TSid=DC2P: default_clock_to_pad_time

The C2P parameter enables you to specify timing information from Q
outputs to external pads. DC2P represents the default timing
specification for all paths from Q outputs to external pads in the
design. The following figure illustrates a C2P path.

TS02=DP2S:10 The default pad-to-setup time is 10 ns. You do
not need to attach a TS flag for TS02 to any net
in the schematic because it represents a defau
value.

TS04=P2S:110US The pad-to-setup time for any flip-flop
reachable from a net with a TS flag for TS04 is
110µs.

TS06=P2S:25MHZ:
A*

The frequency of paths from pads named with
“A” as the first character to flip-flops that can be
reached by tracing forward from a net with the
TS06 flag attached is 25 MHz.
Development System Reference Guide, Volume 1 4-27

Development System Reference Guide, Volume 1

s
lt
Figure 4-10 Clock-to-Pad Configuration

Clock_to_pad_time represents the desired time from Q outputs to
external pads. Destination specifies an external pad. When specifying
the destination pad, you must use the hierarchical name for the pad
listed in the XNF file.

You can substitute part of the pad name with one or more wildcard
characters. You cannot specify only a wildcard symbol as the
destination pad; use DC2P if you want to specify a default timing
specification for all paths from Q outputs to external pads. Refer to
the following table for examples of proper usage.

Occasionally, two or more unqualified C2P TS attributes propagate
forward to the same flip-flop. In this case, PPR uses the fastest
specification to control all paths from flip-flops to pads. In addition,
PPR applies all C2P specifications qualified by a pad name or partial
pad name from the paths to the corresponding pads.

Examples of TS attributes using C2P and DC2P are as follows:

TS01=DC2P:25 The default clock-to-pad time is 25 ns. You do
not need to attach TS01 to any nets or load pin
in the schematic because it represents a defau
value.

TS04=C2P:110US:
*/A_OUT

The delay of a path signal from a Q output to a
pad whose name ends with “/A_OUT” is 110µs
if the flip-flop is reachable from a net or load
pin with the TS04 flag attached.

TS07=C2P:8MHZ The frequency of paths to pads from a flip-flop
reached by tracing forward from a net with
TS07 attached to it is 8 MHz.

X4315

D Q

CLOCK

INTERCONNECT
& COMBINATORIAL

LOGIC

PAD
4-28 Xilinx Development System

XACT-Performance Utility
Pad to Pad (P2P, DP2P)

TSid=P2P: pad_to_pad_time:source:destination
TSid=DP2P:default_pad_to_pad_time

The P2P parameter enables you to specify timing information for
paths between external pads. DP2P represents the default timing
specification for all paths between external pads. The following
figure illustrates a P2P path:

Figure 4-11 Pad-to-Pad Configuration

Pad_to_pad_time represents the desired time for paths running
between external pads. Source and destination are required parameters
that specify specific pads. When specifying a source or destination
pad, you must use the hierarchical name for the pad listed in the XNF
file. You can substitute part of the pad name with a wildcard
character (* or ?). Refer to the following table for an example.

Examples of TS attributes using P2P and DP2P are listed below.

You cannot, however, use a wildcard for both the input and output
pad names, as illustrated by the following example.

TS10=P2P:70:*:*

This TS attribute generates an error because you should use DP2P to
specify default timing requirements for this path type.

Warning: The default P2P specification must define the slowest P2P
requirement of the system because the default specification applies
globally to all pad-to-pad paths.

TS03=DP2P:
100KHZ

The default frequency for pad-to-pad signals is
100 kHz. TS03 is not attached to any nets.

TS05=P2P:25:*:
DI*

The time from any pad input to pad outputs
with names that begin with “DI” is 25 ns.

X4313

PAD
INTERCONNECT

& COMBINATORIAL
LOGIC

PAD
Development System Reference Guide, Volume 1 4-29

Development System Reference Guide, Volume 1
For P2P specifications, you do not need to place TS flags on nets in
your schematic since they identify by name the IOBs to which they
apply. The IOB name is usually the name of the signal between the
pad and I/O primitives, unless you use a BLKNM attribute to name
an IOB explicitly. See the appropriate CAE Interface User Guide for
more information.

Figure 4-12 shows an example of a purely combinatorial circuit and
its corresponding timing specification. The timing requirement is 50
ns for all P2P paths except those leading to CS1, for which the timing
requirement is 30 ns.

Figure 4-12 Specifying Timing Requirements on Combinatorial
Paths

X2796

CS1

OBUF

ADDR0 A0

IBUF

ADDR1 A1

IBUF

ADDR2 A2

IBUF

ADDR3 A3

IBUF

ADDR4 A4

IBUF
ADDR5 A5

IBUF

ADDR6 A6

IBUF

ADDR7 A7

IBUF

ADDR8 A8

IBUF

AND5B1

SEL1

TIMESPEC

TS01=DP2P:50

TS02=P2P:30:*:CS1

AND5B3

CS2

OBUF

SEL2
4-30 Xilinx Development System

XACT-Performance Utility
When Multiple Path-Type Specifications Apply to the
Same Flip-Flop

Sometimes two or more timing specifications apply to the same path.
XACT-Performance must then determine which timing specification
to use. Since C2S, P2S, and C2P path-type specifications use flip-flops
as anchor points, the pin at which the signal arrives at a flip-flop
determines which timing specification takes precedence for each type
as follows:

● Default TS attributes, such as DC2S, DP2S, and DC2P, have the
lowest priority. A ‘‘D” preceding the path type indicates a default
value.

● TS attributes of type C2S, P2S, and C2P that have a flag attached
to a net that can be traced forward to the flip-flop’s clock pin
override default TS attributes.

● TS attributes of type C2S, P2S, and C2P that have a flag attached
to a net that can be traced forward to an input pin (other than a
clock pin) override TS attributes of other types.

Note: PPR analyzes all P2S or C2P specifications qualified by a pad
or partial pad name.

The Forward Tracing Mechanism
The forward tracing mechanism propagates an attribute through
multiple levels of combinatorial logic until it reaches a flip-flop.

Specifications apply only at those flip-flops that can be reached by
tracing forward from the tagged net or load pin. Whenever the
system reaches a flip-flop by forward tracing, it stops. The examples
in Figure 4-13 and Figure 4-14 show cases where improper placement
of TS attributes results in the system ignoring timing specifications.

In Figure 4-13, the C2S specification TS01 is forward traced and
attached to flip-flop B only. To control the path from A to B, some
DC2S or C2S specification must also be applied to flip-flop A. Since
no such specification for A is supplied here, that path is not
controlled.
Development System Reference Guide, Volume 1 4-31

Development System Reference Guide, Volume 1
Figure 4-13 Improper Specification — Example 1

In Figure 4-14, the system cannot forward trace the C2P specification
TS22 to any flip-flops and it is ignored. When a timing specification is
ignored, PPR generates appropriate warnings onscreen and in the log
file.

Figure 4-14 Improper Specification — Example 2

Combinational Delays and Timing Specifications on
Clock-Related Paths

Flip-flop specifications (C2S, P2S, and C2P) incorporate delays, such
as setup time, input/output buffer delays, and clock-to-Q delays. For
example, if a P2S time is specified as 30 ns, and the clock signal has a
setup time of 6 ns, then PPR uses 24 ns (30 - 6 = 24) as the maximum
time allowed from the pad, through the input buffer and any
intervening logic, to the D pin on the flip-flop.

X2748

D Q
D_B Q_B B_OUT

OBUF

CTRL_IN CTRL

TIMESPEC

TS01=C2S:50

B

D Q
A_IN

CLK1_IN

IBUF

IBUF

BUFGP

A

D_A

CLK1

TS01

Q_A

X2795

D Q
D_B Q_B B_OUT

OBUF

CTRL_IN CTRL

TIMESPEC

TS22=C2P:15

B

D Q
A_IN

CLK1_IN

IBUF

IBUF

BUFGP

A

D_A

CLK1

TS22

Q_A
4-32 Xilinx Development System

XACT-Performance Utility
Specifying a Path-Type TS Attribute Delay in Terms
of Another

Use the syntax below to specify a TS attribute in terms of another.

TSidentifier=path_type: reference_TS_attribute[* , /] integer

where path_type is P2P, C2P, C2S, or P2S. The path type must not be
specified in terms of a LINK, AUTO, or IGNORE path type. Use “*”
to represent multiplication and “/” to represent division.

Examples of specifying a TS attribute in terms of another are as
follows. In these cases, assume that the reference attributes were
specified as delays.

A circular definition, as follows, causes an error:

TS01=C2P:TS02*2
TS02=P2P:TS01*3

Note: When a reference attribute is specified as a frequency, a
multiple represents a faster specification; a division represents a
slower specification.

Placing TS Flags
This section describes general guidelines for placing TS flags. For
specific instructions on placing TS flags with your particular CAE
interface, refer to the appropriate Xilinx Interface User Guide for
your schematic editor.

A TS flag attaches timing information from a non-default TS attribute
to a net, load pin, or macro load pin in the schematic.

Warning: You cannot place a TS flag on a source pin.

TS08=C2P:TS05*
10

A C2P path associated with the TS08 attribute
is placed and routed so that its delay is at most
10 times the delay
specified in the TS05 attribute.

TS14=P2P:TS07/8 A P2P path associated with the TS14 attribute is
placed and routed so that its delay is at most
one-eighth the delay
specified in the TS07 attribute.
Development System Reference Guide, Volume 1 4-33

Development System Reference Guide, Volume 1
After you place the TS flags on the schematic, PPR reads this timing
information and applies it to the relevant paths in the design using
the forward tracing mechanism to determine the flip-flop to which
the specification applies.

If your schematic entry package does not allow you to place TS flags
on pins, you can place the TS flag on the net that propagates forward
to the appropriate load pin. If you need to flag only part of a net, use
a buffer to separate these pins from others on the net. Then place the
TS flag on the output net of the buffer.

You do not need to place TS flags on the schematic for default TS
attributes because timing information from default TS attributes
applies throughout the design. Also, you do not need to place TS
flags for P2P attributes.

Careful placement of TS flags ensures that PPR properly interprets
your timing specifications. The following sections discuss the proper
placement of TS flags.

Placing TS Flags on the Schematic

Figure 4-15 provides an example of how PPR interprets information
represented by TS attributes and TS flags. TS01 represents a default
specification that applies to the entire design. TS01 ensures that PPR
maps, places, and routes the net so that no clock-to-setup paths in the
design exceed 50 ns. TS02 is a non-default specification and has a
TS02 flag attached to a net (CLK2). TS02 supersedes the default
specifications for paths that start and end at a flip-flop reachable by
CLK2.

Figure 4-15 Default and Non-Default Timing Specifications

D Q

CLK1

D Q

CLK2

TS02

TS01=DC2S:50

TS02=C2S:30

TIMESPEC

X2555
4-34 Xilinx Development System

XACT-Performance Utility
As illustrated by the following figure, flip-flop-related timing
specifications (C2P, P2S, C2S) do not need to be attached to a net
directly connected to the flip-flop. PPR uses forward tracing to
determine which flip-flops the timing specification controls. In both
cases, TS02 traces forward to the flip-flop.

Figure 4-16 Equivalent Specifications on Clock Net

The timing specification for TS flags attached to a clock net are
applied to every flip-flop to which the clock net can be forward
traced. However, since TS flags can be placed on signals other than
clock nets, you can attach TS flags so that flip-flops clocked by the
same signal have different timing specifications. Forward tracing
stops upon reaching a flip-flop or input latch.

Figure 4-17 illustrates an example of flip-flops with a common clock
but different timing specifications. The C2P specification for paths
sourced by Q2 and Q3 is 80 ns, and the C2P specification for paths
sourced by Q1 is 120 ns.

D Q

CLOCK

D Q

CLOCK

TS02

CLKIN

CLKIN

TS02

X2556
Development System Reference Guide, Volume 1 4-35

Development System Reference Guide, Volume 1
Figure 4-17 Flip-Flops Clocked by Same Signal, but with
Different Timing Specifications

A TS flag can be attached to any of a flip-flop’s input nets, since its
corresponding specification is traced forward to the flip-flop.

As illustrated by the following figure, a TS flag attached to a net
sourced by the flip-flop’s Q output does not apply to the flip-flop, as
the flip-flop is not along the forward path from the net to which the
TS flag is attached. In Figure 4-18, the P2S specification represented
by TS02 is applied only to flip-flop B.

D Q

Q1

D Q

CLOCK

TS02

TS02=C2P:80

TS03=C2P:120

TIMESPEC

D Q
D1

D3

TS03

D2 Q2

Q3

X2557
4-36 Xilinx Development System

XACT-Performance Utility
Figure 4-18 Example of Timing Specification that Cannot Be
Traced to Both Flip-Flops

To apply the P2S specification to flip-flops A and B, place the TS02
flag as shown in Figure 4-19.

D Q

D Q D Q
TS02

TS02=P2S:75
TIMESPEC

A B

LOGIC

LOGIC

X2558
Development System Reference Guide, Volume 1 4-37

Development System Reference Guide, Volume 1
Figure 4-19 Example of Timing Specification that Can Be Traced
to Both Flip-Flops

As illustrated by the following example, you need to carefully place
TS flags that represent C2S specifications because they involve pairs
of flip-flops. Figure 4-20 shows a design where the C2S timing
specification cannot be interpreted because it can only be traced
forward to one flip-flop.

D Q

D Q D Q

TS02

TS02=P2S:75
TIMESPEC

A B

LOGIC

LOGIC
4-38 Xilinx Development System

XACT-Performance Utility
Figure 4-20 Improper Placement of TS Flag for Clock-to-Setup
Specification

To ensure the specification is applied correctly, apply the TS flag to a
net that feeds all flip-flops to which it applies, as illustrated in
Figure 4-21, where TS10 is attached to the clock enable net.

D Q D Q
TS10

TS10=C2S:50
TIMESPEC

LOGIC

CE CE

LOGIC

X2560
Development System Reference Guide, Volume 1 4-39

Development System Reference Guide, Volume 1
Figure 4-21 Proper Placement of TS Flag for Clock-to-Setup
Specification

Placing TS Flags on Cascaded Counters

If your design contains a cascaded counter where a signal from one
counter enables another via its CE pin and both counters are driven
by the same clock, the whole circuit does not need to work at the
frequency of the clock signal. If you place a single TS flag as shown in
Figure 4-22, then the specification is applied to the whole circuit.

D Q D Q

TS10

LOGIC

CE CE

LOGIC

TS10=C2S:50
TIMESPEC

X2561
4-40 Xilinx Development System

XACT-Performance Utility
Figure 4-22 Cascaded Counter with Timing Controlled by One TS
Attribute

You can use an additional TS flag, placed on the net connecting the
counters, to clock the second counter at a fraction of the first, as
illustrated in Figure 4-23.

X2546

CE

C16BCRD

Q0

TS14=C2S:40

TIMESPEC

Q1

Q2

Q3

TC
RD

+5

CE

C16BCRD

Q0

Q1

Q2

Q3

TC
RD

ENABLE
CLOCK

TS14
Development System Reference Guide, Volume 1 4-41

Development System Reference Guide, Volume 1
Figure 4-23 Cascaded Counter with Timing Controlled by Two TS
Attributes

Other Specification Parameters
The following subsections describe other parameters you can use
when defining TS attributes:

LINK (Link TS Attributes)

The LINK parameter creates one TS attribute that incorporates
multiple TS attributes. You can use the LINK parameter to reduce
clutter from TS attributes within your schematic.

LINK:TS id_1:TS id_2[:TS id_3]

For example, suppose TS05 represents a clock-to-pad value, TS06
represents a pad-to-setup value, and TS07 represents a clock-to-setup
value. TS08 is defined as follows:

TS08=LINK:TS05:TS06:TS07

A TS flag for TS08 could then be attached to a net, creating the same
effect as attaching TS flags for TS05, TS06, and TS07 to the net.

X2547

CE

C16BCRD

Q0

TS15=C2S:TS14*16

TIMESPEC

Q1

Q2

Q3

TC
RD

+5

CE

C16BCRD

Q0

Q1

Q2

Q3

TC
RD

ENABLE
CLOCK

TS14

TS14=C2S:40

TS15
4-42 Xilinx Development System

XACT-Performance Utility
TS05, TS06, TS07 must represent a clock-to-pad, clock-to-setup, pad-
to-setup, or LINK parameter. If you specify other values, XNFPrep
generates an error in its report file.

IGNORE (Ignore Path Type)

When a TIMESPEC attribute is defined using the following syntax,
PPR ignores paths of the specified type that are not explicitly defined.

TSid=default_path_type:IGNORE

Sample Schematic Using Path-Type Specifications
The following notes explain the example in Figure 4-24.

● TS01=DC2P:50 is a TS attribute that specifies a default clock-to-
pad time of 50 ns. Only one default specification is allowed for
each path type.

● The TS02=C2P:40 TS attribute has a corresponding TS flag
attached to net CLK2. This net drives the clock pins of flip-flops B,
C, and D. TS02 overrides the default specification (TS01) for these
flip-flops.

The clock-to-pad paths that TS02 is specifying run from these flip-
flops forward to output pads. The net CLK2, flagged with TS02, is
not itself on these paths. Instead, the single flag on a clock net
controls several paths associated with the flip-flops that the clock
net drives.

● The TS03=C2P:30 TS attribute has a corresponding TS flag
attached to net B_OUT. This net can be forward traced to the data
inputs of flip-flops C and D. It overrides the default specification
(TS01) and other specification (TS02) for each flip-flop.

● The TS04=C2P:20 TS attribute has a corresponding TS flag
attached to the net D_ENABLE. This net drives the clock-enable
input of flip-flop D. TS04 is the second specification that arrives at
flip-flop D; it overrides TS03 because it is a faster specification.
The general rule is that when two or more specifications of the
same level arrive at a flip-flop, the system applies the fastest
timing specification unless a pad name is specified.
Development System Reference Guide, Volume 1 4-43

Development System Reference Guide, Volume 1
All flip-flop-related path-type timing specifications are assumed to be
relative to the clock pin on the flip-flops being analyzed. Clock skew
and input clock delay are not considered during the path analysis.

Figure 4-24 Example of Schematic Using XACT-Performance

How are Path-Type and End-Point Specifications
Different?

You can use both path-type specifications and end-point
specifications to specify the same set of paths as shown in the
following table:

Path-Type
Specifications

End-Point Specifications

TS01=C2S:20 TS01=FROM:FFS:TO:FFS=20

TS02=P2S:20 TS02=FROM:PADS:TO:FFS=20

TS03=C2P:20 TS03=FROM:FFS:TO:PADS=20

TS04=P2P:20 TS04=FROM:PADS:TO:PADS=20

X2747

D Q
D_D

CE

Q_D D_OUT

OBUF

D Q
D_C Q_C C_OUT

OBUF

B_OUT

OBUF

A_OUT

OBUF

D Q
D_B Q_B

NA4_IN NA4

IBUF

NA3_IN NA3

IBUF

NA2_IN NA2

IBUF

NA1_IN NA1

IBUF

NA0_IN NA0

IBUF
D_EN_IN D_ENABLE

IBUF

A_IN D_A

IBUF

CLK1_IN CLK1

BUFGP

CLK2_IN CLK2

BUFGP

D Q
Q_A

A B

NAND5

NAND_O

DFF
DFF

DFF

XOR2

NOR2B1

DFF

AND2
TS03

TS02

TS04

TIMESPEC

TS01=DC2P:50

TS02=C2P:40

TS03=C2P:30

TS04=C2P:20

C

D

4-44 Xilinx Development System

XACT-Performance Utility
However, the two specification types differ in the following ways:

● A C2S or P2S specification does not control a path that ends at the
clock pin of a flip-flop. An end-point specification, on the other
hand, can control a path that ends at the clock pin of a flip-flop.
Therefore, the end-point specification can limit clock skew.

● A slower path-type specification can override a path-type
specification as explained in the section ‘‘When Multiple Path-
Type Specifications Apply to the Same Flip-Flop.” No end-point
specification overrides another.

● End-point specifications are the only way to specify timing
requirements on paths that start or end at RAMs or input latches.

Syntax Summary
The following sections summarize the XACT-Performance syntax.

TNM Attributes
The following table lists the syntax used when creating TNMs, which
you enter directly on the primitive symbol, macro symbol, signal, or
load pin.

TIMEGRP Attributes
The following lists the syntax used within the TIMEGRP primitive.

Flag Type TNM Attribute Syntax

Symbol
Macro symbol

TNM=group1[;group2 . . .]
TNM=predefined_group: group1[;predefined_group: group2 . ..]

Signal TNM=group

Load pin TNM=group

Group Type TIMEGRP Attribute Syntax

Combine new_group=group1: group2 [: group3 . . .]

Exclude new_group=group1: [: group2 . . .]:EXCEPT: group3: [: group4 . . .]

Clock Edge new_group=RISING: group1
new_group=FALLING: group1
Development System Reference Guide, Volume 1 4-45

Development System Reference Guide, Volume 1
TIMESPEC Attributes
The following lists the syntax used for parameters that define TS
attributes, which reside in the TIMESPEC primitive.

Spec Type TIMESPEC Attribute Syntax
TS Flag

Required?

From-To TSid=FROM:group:TO: group=delay No

C2S TSid=C2S: delay [:high_time] Yes

C2P TSid=C2P: delay [:to_pad_name] Yes

P2S TSid=P2S: delay [:from_pad_name] Yes

P2P TSid=P2P: delay : from_pad_name: to_pad_name No

DC2S TSid=DC2S:delay [:high_time] No

DC2P TSid=DC2P:delay No

DP2S TSid=DP2S:delay No

DP2P TSid=DP2P:delay No

Ignore TSid=IGNORE Yes

Link TSid=LINK:TS id_1:TS id_2 [:TSid_3 . . .] Yes

Auto TSid=path_type:AUTO Yes
4-46 Xilinx Development System

Chapter 5
Development System Reference Guide, Volume 1 — 0401405 01 5-1

The XNFCVT Program

This program is compatible with the following families.

● XC2000

● XC2000L

● XC3000

● XC3000A

● XC3000L

● XC3100

● XC3100A

● XC4000

● XC4000A

● XC4000H

XNFCVT converts a version 5 Xilinx Netlist Format (XNF) file to a
version 4 or version 1 XNF file. XNFCVT also converts a version 4
XNF to a version 2 XNF, or a version 2 XNF to a version 1 XNF.

XNF syntax has been modified to support improved design flow, new
design features, and new LCA families. As a result, some programs
that function with a version 1 XNF file might not function if a version
2 XNF file is used as input.

A similar situation occurs if a version 4 netlist is used as an input to a
program that expects a version 2 netlist. The XNFCVT program
translates the netlist to the desired version without impacting design
function.

Note: Version 4 and 5 XNF files that contain XC4000 specific symbols
cannot be converted to version 1 or version 2 XNF files.

Development System Reference Guide, Volume 1
Currently there are four XNF versions — version 1, version 2, version
4, and version 5. To determine the version of an XNF file, look at the
first line of the file.

LCANET, 1 (this is a version 1 XNF file)
LCANET, 2 (this is a version 2 XNF file)
LCANET, 4 (this is a version 4 XNF file)
LCANET, 5 (this is a version 5 XNF file)

Syntax
Use the syntax shown here to create a lower version XNF file from
your XNF file.

xnfcvt [options] input[.xnf] output[.xnf]

Files
This section describes the files associated with the XNFCVT program.

input.xnf
This is the version 5, 4, or 2 XNF file that you want to convert to a
lower version.

output.xnf
This is the target, version 4, 2, or 1 XNF file. You must specify the file
name. See the -v option description in the “Options” section for
information on specifying the target version.

Options
The XNVCVT program has two command line options.

-a Do Not Use an AKA File

This option instructs XNFCVT not to use the existing AKA file for
generating hierarchical prefixes; instead, XNFCVT generates a new
AKA file. If you do not specify the -a option, XNFCVT automatically
looks for an AKA file with the same name as the input file. If one is
found, XNFCVT uses that file to generate shortened name prefixes.
This option allows you to use prefixes from previous runs.
5-2 Xilinx Development System

The XNFCVT Program
-v Specifies the Version of the XNF File

The -v option specifies the version (4, 2, or 1) of the target XNF file. If
no version number is specified, XNFCVT converts the input XNF file
to the previous netlist version with one exception. If the input file is a
version 4 netlist for an XC4000 design, XNFCVT does not translate
the XNF file. If no version is specified, XNFCVT defaults to the earlier
version (5 to 4, 4 to 2, 2 to 1).

Summary of Version Differences
The differences between version 1 and version 2 XNF files are
summarized below.

● MAP=type Symbol parameter is added for use with the CLBMAP
and IOBMAP symbols

● A Pin Lock signal flag is added (P flag)

● A Save signal flag is added (S flag)

● Each symbol and signal now have a full hierarchical path name

● The “/” character is included in signal and symbol names

● The LCANET parameter (line 1 of the file) changed from 1 to 2

The changes from version 2 to version 4 are listed below.

● Pin parameters have been added to aid delay-driven routing

● Symbols have been added to support XC4000 architecture, such
as, WAND, BSCAN, BUFGP, and so forth

● Bus record has been added

● OUTFFZ and OBUFZ have been changed to OUTFFT and OBUFT

● Parameters have been added to help with logic placement

● The LCANET parameter (line 1 of the file) has changed from 2 to 4

The changes from version 4 to version 5 are listed below.

● The TIMGRP symbol has been added for XACT Performance

● CY4_01 to CY4_42 carry mode symbols have been added

● The BUFG symbol has been added
Development System Reference Guide, Volume 1 5-3

Development System Reference Guide, Volume 1
● The TS parameter associated with the TIMESPEC symbol are no
longer user parameters (no preceding equal sign is necessary,
although Xilinx supports these as user parameters, too)

● The PAD and PADU symbols are obsoleted and replaced in the
Unified Library by IPAD, OPAD, IOPAD, and UPAD symbols

● The DOUBLE parameter on a PULLUP that is connected to an
external is considered an error; it is not ignored

● Signal names are no longer valid in EQN symbol; use pin names
instead

● LOC ranges must be specified with a colon (:) instead of a semi–
colon (;)

● The INFF and INLAT symbols no longer have the buffered input
as part of the symbol

● The I pin is the invertible pin on a WAND with DECODE specified
instead of the O pin

● Pin names have changed for the following (LCANET 4 pin names
are still supported)

● Combinatorial gates have changed input pin names from 1-5 to
I0-I4

● WORAND input pin names have changed from I1 and I2 to I0
and I1

● INLAT and DLAT L pin name has been changed to G

● DFF and DLAT RD pin name has been changed to CLR (clear)

● DFF and DLAT SD pin name has been changed to PRE (preset)

● New signal and pin parameters TNM and TSidentifier have been
added

● New symbol and EXT parameters TNM and HBLKNM have been
added

● The following new IO parameters TTL, CMOS, RES, and CAP
have been added for the XC4000H architecture

● The following new symbol parameters CYMODE, SCHNM,
LIBVER, TS, RLOC, USER_R–LOC, U_SET, HU_SET,
RLOC_ORIGIN, and RLOC_RANGE have been added
5-4 Xilinx Development System

The XNFCVT Program
XNFCVT Program Process
The XNFCVT program removes all attributes for the target LCA file
that are illegal and performs the following functions on an XNF file:

1. Reads in an XNF file

2. Reads and updates the AKA (alias names) file (version 2 to
version 1)

3. Shortens hierarchical path names of symbols and signals (version
2 to version 1)

4. Generates an XNF file that corresponds to the specified version

5. Removes bus records (version 4 to version 2 or 1)

6. Changes OUTFFT and OBUFT to OUTFFZ and OBUFZ (version 4
to version 2 or 1)

The AKA File (Version 2 to Version 1 Only)
The first time XNFCVT is run on a file, it generates an AKA file
containing automatically generated prefix names and the
corresponding path name that the prefixes represent. In each
successive run without the -a option, the AKA file is read with the
XNF file. The program uses existing prefixes from the AKA file for
identical path names and only generates new prefixes when a new
path name is encountered. You can also edit this file to make prefix
names more meaningful, as in the following examples.

design.aka alias file created by XNFCVT on Tue Oct 13
14:00:45 1992
WARNING! If you edit the prefix names, DO NOT use the
WARNING! ’$’ character as the first character in your
WARNING! own prefix names.
$1 /TOP/U12
$2 /TOP/U28
$3 /TOP/U12/COUNTER

In the XNF file produced by XNFCVT, symbols and signals that are at
the /TOP/U12 level have a shortened name: $1 replaces the path /
TOP/U12. For example, if there is a signal in the input XNF file called
/TOP/U12/SIG1, it is called $1-SIG1 in the output XNF file.
Development System Reference Guide, Volume 1 5-5

Development System Reference Guide, Volume 1
Note: Since XNF version 1 does not support the slash “/” character,;
the hyphen “-” character is used to separate the prefix from the
symbol or signal name.

If you run XNFCVT again after adding a new hierarchy level called
U30 and deleting the one called U28, the changes in the AKA file
looks like the following example:

$1 /TOP/U12
$3 /TOP/U12/COUNTER
$4 /TOP/U30

If you run XNFCVT with the -a option, the existing AKA file is
ignored. The new generated AKA file looks like the following
example:

$1 /TOP/U12
$2 /TOP/U12/COUNTER
$3 /TOP/U30

You can edit the prefixes to make them more meaningful. Prefix
names should not contain the separator character “-”.

Error Messages and Recovery Techniques
Error 201 Unable to open file file_name for reading/
writing.

You can get this error if the input file cannot be opened for reading or
it does not exist; check the file name. If the output file cannot be
opened for writing, check if the hard disk is full and if the output file
already exists and is write–protected.

Error 203 Illegal part, [%s] for target LCANET
version.

Designs containing XC4000 parts cannot be converted to any
LCANET version lower than LCANET 4. If you are converting from
an LCANET version 4 or version 5 to any lower version, you must
ensure that you are using either an XC2000 or XC3000 part.

Error 205 No parttype specified in source file.

The part type must be specified in the input XNF file.

Error 206 Invalid LCANET %s. Valid types 2 and 4
and 5.
5-6 Xilinx Development System

The XNFCVT Program
XNFCVT converts only XNF versions 5, 4, and 2. (There is no
version 3.)

Error 207 Invalid conversion path from LCANET
version source version to target version.

The only legal conversion paths are from:
LCANET version 5 to 4, 2, or 1.
LCANET version 4 to 2 or 1.
LCANET version 2 to 1.
All other conversion paths are illegal.

Error 208 Bad command line option.

The –v option requires an input number. This value must be an
integer.

Error 211 sym name of type symtype is illegal for
target LCANET net version target version.

A symbol of a type that is illegal in the target LCANET version was
found.
Development System Reference Guide, Volume 1 5-7

Development System Reference Guide, Volume 1
5-8 Xilinx Development System

Chapter 6
Development System Reference Guide, Volume 1 — 0401405 01 6-1

HM2RPM

This program is compatible with the following families.

● XC4000

● XC4000A

● XC4000H

The HM2RPM program translates a hard macro (HM) file into an
XNF file that contains a relationally placed macro (RPM). This
translation is necessary for some designs because the XACT 5
software release only supports the RPM files that replace hard macro
files.

Hard macros are encoded files representing segments of XC4000 LCA
logic that are mapped into LCA logic blocks, then placed and routed
for a specific FPGA part. RPMs are a super-set of soft macros that,
unlike hard macros, include standard logic gates that can be
simulated. RPMs group logic into LCA blocks where appropriate.
They replace the hard macro placement information with relative
location (RLOC) constraints. RPMs can include carry logic symbols
and BUFT symbols as well as other CLB-related logic. Unused logic is
automatically trimmed from RPMs so that only the necessary logic is
implemented in the FPGA.

For designs that currently include user-created hard macro files but
that are enhanced or completed with the XACT 5 release, you must
translate the hard macro files into RPM files. Using the HM2RPM
translator is also necessary if you want to move your current hard
macro files into a form that is usable with the Xilinx Unified Libraries.
You do not need to use HM2RPM when you use a schematic entry
tool to design new RPMs with the Unified Libraries, or use the Xilinx-
supplied RPM macros. The standard schematic translator translates

Development System Reference Guide, Volume 1
the Unified Libraries’ RPM logic into XNF files that can be merged
into the complete design like any other soft macro.

There are two types of hard macros: macros that you create and
macros that Xilinx supplied with libraries created before the Unified
Libraries. With the XACT 5 release, Xilinx provides the RPM
replacement files for the hard macro files found in the previously
supplied libraries. If your design uses these libraries and includes
Xilinx-supplied hard macros, you do not need to translate any files or
make any modifications to the symbols that instantiate the hard
macros. The file-flattening program, XNFMerge, automatically finds
the Xilinx-supplied RPM replacement files. If you created your own
hard macro files, you must use the HM2RPM program to convert the
hard macro files and place the new RPM files in a search directory so
that XNFMerge can find them to include in the design.

When hard macros were generated, the HMGEN program prompted
for default logic values for each of the hard macro’s input pins. If
some of the input pins are left unconnected when the hard macro is
placed in a design, PPR ties those symbol pins to their defined default
logic values. For example, if a counter hard macro in a schematic is
left with its CE pin unconnected with a default logic value of 1, PPR
ties this symbol pin to VCC. No logic is trimmed from this hard
macro.

When HM2RPM translates a hard macro, it reads the default logic
value information from the HM file, then creates additional logic that
multiplexes either a default logic value or the input signal to the
symbol pin. XNFPrep trims this additional logic appropriately. If any
input pin on the symbol is left unconnected, XNFPrep trims this
additional logic so that the default logic value is applied. If any input
pin on the symbol is connected, XNFPrep trims this additional logic
to remove the default logic and propagate the input signal correctly.

When XNFPrep trims logic, the trimmed logic and nets contain the
FLOAT_HMINPUT string in their names and can be safely ignored.

User-Created Hard Macros
You must convert any user-created hard macros into RPMs with the
HM2RPM program when you use these macro symbols in a design.
When you perform this conversion, you must specify whether your
design uses elements from the Unified Libraries or from previous
6-2 Xilinx Development System

HM2RPM
libraries. By default, HM2RPM outputs an XNF file that is compatible
with schematics generated with previous library elements. The
r=true option generates an XNF file compatible with the Unified
Libraries. This option is described in more detail in the ‘‘HM2RPM
Options” section later in this chapter.

You do not need to modify the original user-created hard macro
symbols in your design. Simply run HM2RPM on the HM file to
which each of these symbols points.

When you run XNFMerge on a design containing user-created hard
macro symbols, it automatically searches for the corresponding XNF
file in the following order: in the current directory, in the -d search
directories that you specify, and in the $XACT/data/hmlib directory.
Because of this search order, it is recommended that you place all
user-created RPMs in the current directory or in the -d directory.

Note: Before the XACT 5 release, LOC constraints on hard macros
applied to the lower left corner of the CLB. They anchored the corner
of the hard macro structure at a specific location. With the XACT 5
software, the LOC attribute is still applied to the lower left corner of
the CLB if the DEF=HM attribute is retained on the symbol.
However, if the DEF=HM attribute is removed from the symbol, the
software treats the LOC constraint on the symbol as it does any other
soft macro. It propagates the same LOC constraint to all the symbols
in the macro that do not already have a LOC or RLOC constraint. It
does not anchor the underlying structure of logic. You can use the
RLOC_ORIGIN attribute to anchor RPM logic in the same way as
you formerly used the previous hard macro symbols.

Designs with Elements from Previous Libraries
Hard macro symbols in designs composed of elements from libraries
created before the Unified Libraries retain the DEF=HM attribute
originally attached to them so that XNFMerge can later correctly
process any LOC constraints on the hard macro symbol.

When using symbols from previous libraries, do not use the r=true
option during the conversion. By default, HM2RPM outputs an XNF
file that is compatible with schematics generated with previous
library elements.
Development System Reference Guide, Volume 1 6-3

Development System Reference Guide, Volume 1
Designs with Elements from the Unified Libraries
When using the Unified Libraries symbols, be sure that you use the
r=true option during the conversion of your hard macro HM files so
that HM2RPM will output an XNF file that is compatible with
schematics generated with the Unified Libraries.

Xilinx-Created Hard Macros
Xilinx-created hard macro symbols retain the DEF=HM attribute
originally attached to them so that XNFMerge can correctly process
any LOC constraints on the hard macro symbol.

You do not need to modify the original Xilinx hard macro symbols in
your design.

When you run XNFMerge on a design containing Xilinx hard macro
symbols, it automatically searches for the corresponding XNF file in
the following order: in the current directory, in the -d search
directories that you specify, and in the $XACT/data/hmlib directory.

Designs with Elements from Previous Libraries
The XACT 5 versions of the XNFMerge, XNFPrep, and PPR programs
do not accept hard macros. The hard macros previously found in the
Xilinx hard macro library have already been converted to RPMs and
placed in the $XACT/data/hmlib directory. You can only use the
RPMs in this directory in designs that contain symbols from libraries
released before the Unified Libraries. In these designs, Xilinx hard
macros already point to Xilinx RPM models rather than to HM files,
so you do not need to modify your symbols or convert the Xilinx HM
files. XNFMerge finds and merges these Xilinx RPM files.

Designs with Elements from the Unified Libraries
You can use Xilinx hard macro symbols in a Unified Libraries design,
but it is recommended that you find the equivalent RPM in the
Unified Libraries or create your own at the schematic level. If you use
any hard macro symbols, including Xilinx hard macros, in a Unified
Libraries design, you must convert them into RPMs with the
HM2RPM program.
6-4 Xilinx Development System

HM2RPM
When starting a new design using the Unified Libraries symbols, be
sure that you use the r=true option during the HM2RPM conversion
so that the output XNF file will be compatible with the Unified
Libraries. It is required that you place the XNF file in the current
project directory. If it is not placed there, XNFMerge may find the
wrong file and XNFPrep may fail because the Unified Libraries and
earlier libraries have been mixed.

Table 6-1 summarizes when to use HM2RPM.

Table 6-1 Unified Libraries vs. Previous Libraries

Design Flow
Figure 6-1 describes where HM2RPM fits into the general Xilinx
design flow.

Hard Macro Source Unified Libraries Previous Libraries

Xilinx-created macros Use equivalent RPM or run
HM2RPM r=true.

No action required.

User-created macros Run HM2RPM r=true. Run HM2RPM.
Development System Reference Guide, Volume 1 6-5

Development System Reference Guide, Volume 1
Figure 6-1 HM2RPM in XC4000 Design Flow

Follow these design steps to process an XC4000 design with hard
macros.

1. Install the XACT 5 or later release of the XNFMerge, XNFPrep,
and PPR programs.

2. Run HM2RPM on all hard macros that you have created. The
‘‘How to Use HM2RPM” section later in this chapter gives you
specific instructions on this procedure.

3. Functionally simulate the design, if desired.

If your design does not have any user-created hard macros, X-BLOX
elements, or Xilinx ABEL elements, you can stay within your design
environment to simulate, provided that all the elements of your

X4456

XNF XNF XNF

XNFMerge

HM2RPM

XFF

XNFPrep

XTF

HM

PPR

LCA

XDE

Guide File

MRG

PRP

RPT

Indicates a report file
6-6 Xilinx Development System

HM2RPM
design have simulation models. The Xilinx hard macros have
simulation models.

If your design has user-created hard macros, X-BLOX elements, or
Xilinx ABEL elements, you can use XSimMake to simulate.
XSimMake creates all the simulation models needed for these
elements, which have been processed previously by HM2RPM, X-
BLOX, or Xilinx ABEL, respectively.

1. Run XMake on the top-level design file. XMake automatically
runs XNFMerge.

2. Continue with the rest of the Xilinx design flow.

Files

Input Files
The input to HM2RPM is an HM file containing a hard macro.

Output Files
HM2RPM outputs the following files.

● As a default, HM2RPM outputs a Version 5 XNF file that is
compatible with the schematic libraries that were created before
the Xilinx Unified Libraries.

When you use the r=true option, HM2RPM outputs a version 5
XNF file that is compatible with the Unified Libraries.

HM2RPM always generates XNF files with CY4 primitives when
carry logic is used. It also always generates a version 5 XNF file
since it contains RLOC information.

● The log file contains error, warning, and informational messages
produced by HM2RPM as it processes the design. The name of
this file is hm2rpm.log.
Development System Reference Guide, Volume 1 6-7

Development System Reference Guide, Volume 1
How to Use HM2RPM
This section describes how to use HM2RPM.

Invoking HM2RPM
You can access HM2RPM through the XACT Design Manager (XDM)
or through the operating system command line.

From XDM

To run HM2RPM from XDM, access XDM according to the
instructions in the ‘‘XDM’’ chapter of this manual.

1. Click on Translate → HM2RPM.

2. Click on any options that you want to set. The available options
are listed in the ‘‘HM2RPM Options” section of this chapter.

3. Click on Done.

By default, HM2RPM outputs a version 5 XNF file that is compatible
with the schematic libraries that were created before the Xilinx
Unified Libraries.

From the Command Line

To invoke HM2RPM on the command line, use the following syntax:

hm2rpm inputfile_name.hm outputfile_name.xnf [options]

By default, this syntax outputs a version 5 XNF file that is compatible
with the schematic libraries that were created before the Xilinx
Unified Libraries.

Inputfile_name is the name of the HM input file containing a hard
macro; it must be begin with an alphabetic character. This parameter
is required. If no extension is specified on the input file name, an .hm
extension is used as a default.

Outputfile_name is the name of the output XNF file. It must begin with
an alphabetic character. If no extension is specified on the output file
name, an .xnf extension is assumed.

Options can be any one of the options listed in the ‘‘HM2RPM
Options” section of this chapter.
6-8 Xilinx Development System

HM2RPM
You must run HM2RPM on each hard macro file that you have
created. When the new XNF file is created, place this file in either the
current working directory or in a search directory that is specified for
XNFMerge. When XNFMerge reads a symbol with the DEF=HM
attribute, it searches for the corresponding XNF file in the following
order: the current directory, the -d search directories specified
through the -d option for XNFMerge, and finally the $XACT/data/
hmlib directory. Do not place your translated macro files into the
$XACT/data/hmlib directory, which should be reserved for Xilinx-
supplied files.

Creating Unified Libraries-Compatible XNF File
To generate an XNF file that is compatible with schematics generated
with the Unified Libraries, use the following syntax:

hm2rpm inputfile_name.hm outputfile_name.xnf r=true

Obtaining Help
You can obtain help in two ways when using HM2RPM. You can type
hm2rpm ↵ or hm2rpm -helpall ↵. Either command brings up a
description of the options available in HM2RPM and their settings,
but the latter also gives information on the log file and the parameter
file. Any other options entered at the same time as -Helpall are
ignored.

HM2RPM Options
This section describes the options that are available in HM2RPM.

-Helpall
The -Helpall option brings up a description of the HM2RPM options
and their settings, input files, and output files.

Command line syntax: -helpall

Values: None
Default value: None
Applicable family: XC4000
Development System Reference Guide, Volume 1 6-9

Development System Reference Guide, Volume 1
The r option controls whether the output XNF file is compatible with
schematics generated with the Xilinx Unified Libraries or with
previous libraries.

By default, HM2RPM generates an XNF file that is compatible with
designs from the schematic libraries created before the Xilinx Unified
Libraries. If you select r=true, HM2RPM generates an XNF file that is
compatible with the Unified Libraries. If you select r=false, it
generates an XNF file compatible with previous libraries. The default
value for this option is False.

Error Messages
HM2RPM can issue the following error messages.

Error 12601 Cannot find file name.hm.

HM2RPM cannot find the filename.hm input file.

Error 12602 Cannot open file name.hm.

HM2RPM cannot open the filename.hm input file.

Error 12603 The hard macro file name.hm has been
corrupted and cannot be properly translated.

HM2RPM detected an error in the name.hm hard macro file, which
cannot be translated to an RPM.

Command line syntax: r={true|false}

Values: true , false

Default value: false

Applicable family: XC4000
6-10 Xilinx Development System

Index

A
ABL2PLD

accessing through XDM, 1-17

C2S, 4-24
clock period, 4-25
high time, 4-25
Development System Reference Guide, Volume 1— 0401405 01 i

ABL2XNF
accessing through XDM, 1-16

active window, 1-9
ADDR-ERR output, 3-11
AKA file

XNFCvt, 5-2, 5-5
Annotate

accessing through XDM, 1-17
APR, 2-6

accessing through XDM, 1-20
APRLoop

accessing through XDM, 1-21
arrow keys

defining in XDM, 1-31
ASCTOVST

accessing through XDM, 1-23
AUTO parameter, 4-19, 4-23

B
BIT file

XMake, 2-6
bitstreams

configuration options in XMake, 2-6
Browse

accessing through XDM, 1-27
BUFT symbols, 6-1
bus notation, 3-9

C
C2P, 4-24, 4-27

overlapping specifications, 4-28

overlapping specifications, 4-25
carry logic symbols, 6-1, 6-7
CLBs

flattening before mapping in XMake,
2-9
LOC constraints, 6-3

CleanUp
accessing through XDM, 1-17

clock_period parameter, 4-25
combinational loops, 4-19
command files

executing from XDM, 1-28
Command Line Interface, 1-14
cursor command

accessing through XDM, 1-30
cursors

defining in XDM, 1-30
CY4 primitives, 6-7

D
DC2P, 4-27
DC2S, 4-25

overlapping specifications, 4-25
DEF attribute, 6-3, 6-9
default timing specifications, 4-5
delay

specifying via XACT–Performance, 4-1
Design Entry menu, 1-15
DirClean command

XDM, 1-27
Directory command

Development System Reference Guide, Volume 1
XDM, 1-27
Display Manager, 1-7
DOS

accessing through XDM, 1-28
dos command

XDM, 1-28
DP2P, 4-29
DP2S, 4-26

E
edit command

accessing through XDM, 1-28
ERR output, 3-11
executable files, 1-3
execute command

accessing through XDM, 1-28

F
FALLING, 4-15
family command

accessing through XDM, 1-30
FITEQN

accessing through XDM, 1-21
FITNET

accessing through XDM, 1-22
Fitter menu, 1-21
FLOAT_HMINPUT string, 6-2
forward tracing, 4-31

TS flags, 4-35
From–To statement, 4-4
function keys

defining in XDM, 1-31
functional simulation, 6-6

G
graphic interface, 1-14

H
hard macros

compatibility with Unified Libraries,
6-2, 6-4, 6-9
conversion design flow, 6-6
definition, 6-1

functional simulation, 6-7
HM file, 6-2, 6-4, 6-7
input pin default values, 6-2
LOC constraints, 6-3
logic trimming, 6-2
processing designs with HM2RPM, 6-1
user-created, 6-2, 6-5

designs with previous library ele-
ments, 6-3

designs with Unified Libraries ele-
ments, 6-4

Xilinx-created, 6-2, 6-4, 6-5
designs with previous library ele-

ments, 6-4
designs with Unified Libraries ele-

ments, 6-4
help command

accessing through XDM, 1-29
helpall option, 6-9
high_time parameter, 4-25
HM files, 6-1, 6-2, 6-4, 6-7, 6-8
HM2RPM

accessing through XDM, 1-17
converting user-created hard macros,
6-2

designs with previous library ele-
ments, 6-3

designs with Unified Libraries ele-
ments, 6-4

converting Xilinx-created hard macros,
6-4

designs with previous library ele-
ments, 6-4

designs with Unified Libraries ele-
ments, 6-4

creating logic for unconnected input
pins, 6-2
design flow, 6-5
ii Xilinx Development System

Index
error messages, 6-7, 6-10
generating XNF file compatible with
previous libraries, 6-8, 6-10
generating XNF file compatible with
Unified Libraries, 6-8, 6-10
input, 6-7, 6-8
invoking

command line, 6-8
XDM, 6-8

obtaining help, 6-9
options

-helpall, 6-9
r, 6-3, 6-4, 6-5, 6-7, 6-9, 6-10

outputs
log file, 6-7
XNF file, 6-3, 6-4, 6-5, 6-7, 6-8, 6-10

purpose, 6-1
hm2rpm.log file, 6-7
HMGEN, 6-2
home directory, 1-7

I
IGNORE, 4-18
IGNORE parameter, 4-43
INET

accessing through XDM, 1-17
input pins

default values, 6-2
IOBs

flattening before mapping in XMake,
2-9

J
JED2PLD

accessing through XDM, 1-18

K
KeyCursor command

accessing through XDM, 1-31
keydef command

accessing through XDM, 1-31

L
LCA device part, 3-8
LCA file

XMake, 2-6
LCA2XNF

accessing through XDM, 1-23
LINK parameter, 4-42
LOC constraints, 6-3
location constraints, 6-3
log file

MemGen, 3-4

M
MAC file, 3-4
macros

MAK file, 2-19
main screen in XDM, 1-5, 1-11
MAK file, 2-5

example, 2-15, 2-18
macros, 2-19
purpose, 2-15
recursion, 2-26
syntax, 2-15
XMake, 2-5

MakeBits
accessing through XDM, 1-23
running in XMake, 2-8

MAKEJED
accessing through XDM, 1-23

MAKEPRG
accessing through XDM, 1-24

MakePROM
accessing through XDM, 1-24

Map2LCA
accessing through XDM, 1-18

MEM file, 3-3, 3-4
comments, 3-7
data command, 3-6
default command, 3-6
depth command, 3-5
MemGen, 3-3
Development Sytem Reference Guide, Volume 1 iii

Development System Reference Guide, Volume 1
memory characteristics, 3-5
symbol command, 3-5
type command, 3-5
width command, 3-5

MemGen
accessing through XDM, 1-18
checking address boundaries, 3-11
data formats, 3-7

base, 3-7
value, 3-7

example, 3-10
inputs

MEM file, 3-3, 3-4
options

creating OrCAD/SDT symbol, 3-9
creating Viewlogic Viewdraw

symbol, 3-9
old_library=, 3-10
specifying bus notation, 3-9
specifying LCA device, 3-8
specifying memory depth, 3-8
specifying memory type, 3-8
specifying memory word width,

3-9
options and parameters, 3-8
outputs

log file, 3-4, 3-9
macro files, 3-4
OrCAD/SDT LibEdit command

files, 3-4
XNF files, 3-3

purpose, 3-1
running from DOS, 3-3
running from windows, 3-1
syntax, 3-3

memory
depth, 3-5
symbol, 3-5

type, 3-5
width, 3-5

memory definition file, 3-3
menu bar, 1-5, 1-11
menu colors

defining in XDM, 1-31
menucolors command

accessing through XDM, 1-31
mouse

configuration in XDM, 1-7, 1-14
defining buttons in XDM, 1-31

mouse command
accessing through XDM, 1-31

mwmrc file, 1-7

O
OBUFT components, 5-3, 5-5
OBUFZ components, 5-3, 5-5
Openlook, 1-7
options command

accessing through XDM, 1-32
OrCAD

input to XMake, 2-4
OrCAD (VST)

accessing through XDM, 1-24
OrCAD/SDT LibEdit command file, 3-4
OrCAD/SDT symbol, 3-9
OUTFFT components, 5-3, 5-5
OUTFFZ components, 5-3, 5-5

P
P2P, 4-24, 4-29
P2S, 4-24, 4-26

overlapping specifications, 4-27
PALCONVT

accessing through XDM, 1-22
palette command

accessing through XDM, 1-32
Part command

accessing through XDM, 1-32
path types

clock–to–pad, 4-24
iv Xilinx Development System

Index
clock–to–setup, 4-24
pad–to–pad, 4-24
pad–to–setup, 4-24

path–type timing specifications, 4-23
basic path types, 4-24
clock to pad, 4-27
clock to setup, 4-24
pad to pad, 4-29
pad to setup, 4-26
resolving conflicts, 4-31

PinSave
accessing through XDM, 1-18

PlaceRoute menu, 1-20
PLUSAM

accessing from XDM, 1-18
PPR, 2-6, 2-7

accessing through XDM, 1-21
forward tracing mechanism, 4-31
processing hard macros, 6-2, 6-4, 6-6
timing specifications, 4-1
tying unconnected input pins to default
value, 6-2

predefined groups, 4-5
Profile menu, 1-4, 1-15

XDM, 1-30
proglist.xdm file, 1-3, 1-9
PROLINK

accessing through XDM, 1-24

R
r option, 6-3, 6-4, 6-5, 6-7, 6-9, 6-10
RAMs, 3-5, 3-6, 3-8

created by MemGen, 3-1
Readprofile command

accessing through XDM, 1-32
relationally placed macros, 6-1
relative location constraints, 6-1
report command

accessing through XDM, 1-29
RISING, 4-15
RLOC constraints, 6-1, 6-3
RLOC_ORIGIN attribute, 6-3

ROMs, 3-5, 3-8
bus representation style, 3-3
created by MemGen, 3-1
data values

binary, 3-7
decimal, 3-7
hexadecimal, 3-7
octal, 3-7

initialization value, 3-3
unspecified locations, 3-6

RPMs
converted from Xilinx-created hard
macros, 6-4
definition, 6-1
error in converting, 6-10
logic trimming, 6-1, 6-2
RLOC_ORIGIN constraint, 6-3
Unified Libraries, 6-4

S
Saveprofile command

accessing through XDM, 1-32
ScanDisk command

accessing through XDM, 1-29
SDT2XNF

accessing through XDM, 1-19
Settings command

accessing through XDM, 1-32
soft macros, 6-1
Speed command

accessing through XDM, 1-32
speed grades, 1-32
Sun, 1-8
SYMGEN, 1-15
SYN2XNF

accessing through XDM, 1-19

T
text editor

accessing from XDM, 1-28
TIMEGRP attribute, 4-11
Development Sytem Reference Guide, Volume 1 v

Development System Reference Guide, Volume 1
combining multiple groups, 4-12
grouping by exclusion, 4-13
placement, 4-12
reserved words, 4-13
symbol attributes

reserved words, 4-13
syntax, 4-11

TIMEGRP primitive, 4-11
TIMESPEC primitive, 4-3
timing requirements, 4-1
timing specifications, 4-1
TNMs, 4-5

grouping flip–flops, 4-8
incompatible symbols, 4-7
on macro symbols, 4-7
on primitive symbols, 4-6
on signal, 4-9, 4-10
placement on schematic, 4-6
qualifiers, 4-10

Translate HM2RPM command, 6-8
Translate menu, 1-15
TS attribute, 4-3

C2P, 4-27
C2S, 4-24
delay, 4-20, 4-33
delay time units, 4-19
length, 4-3
P2P, 4-29
P2S, 4-26
placement, 4-4
specifying in terms of another, 4-20

TS attributes
basic path types, 4-24
delay, 4-32

TS flags, 4-24, 4-33
attached to clock net, 4-35
C2P paths, 4-35
default specifications, 4-34
non–default specifications, 4-34
on cascaded counters, 4-40
P2S path, 4-37

placement on schematic, 4-34

U
unconnected pins, 6-2
Unified Libraries, 6-2, 6-3, 6-4, 6-7, 6-8,
6-10
Utilities menu, 1-15, 1-27

V
Verify menu, 1-23
version command

accessing through XDM, 1-30
Viewdraw macro file

MemGen, 3-4
Viewlogic, 2-4

input to XMake, 2-4
Viewlogic Viewdraw symbol, 3-9
VMH2XNF

accessing through XDM, 1-24
VSM

accessing through XDM, 1-25
VSMUPD

accessing through XDM, 1-25

W
warning messages, 2-27
window accelerators, 1-9
window buttons, 1-8
window operations, 1-8
WIR2XNF

accessing through XDM, 1-19
Workview, 3-4

X
XACT–Performance, 4-1

AUTO, 4-19
AUTO parameter, 4-23
automatic delay, 4-19
basic groups, 4-2
basic path types, 4-24
C2P, 4-24
C2S, 4-24
clock–to–pad paths, 4-27
vi Xilinx Development System

Index
clock–to–setup paths, 4-24
combinational loops, 4-19
combining multiple groups, 4-12
default timing specifications, 4-5, 4-23
difference between path–type and end–
point specifications, 4-44
FALLING keyword, 4-15
forward tracing, 4-31
From–To statement, 4-4
group by clock sense, 4-15
group by exclusion, 4-13

reserved words, 4-13
group by signal name, 4-16, 4-17
IGNORE, 4-18, 4-43
ignore selected paths, 4-18
ignoring a path, 4-43
latches, 4-15
LINK, 4-42
multiple specifications, 4-18
new groups from existing groups, 4-11
overlapping specifications, 4-18, 4-31
P2P, 4-24
P2S, 4-24
pad–to–pad paths, 4-29
pad–to–setup paths, 4-26
path–type specifications, 4-23
path–type timing specifications

sample schematic, 4-44
pattern matching, 4-16
predefined groups, 4-5
RISING keyword, 4-15
sample schematic, 4-21
symbol attributes

reserved words, 4-13
TIMEGRP attribute, 4-11
TIMEGRP primitive, 4-12
TIMESPEC primitive, 4-3
TNMs, 4-5
TRANSHIGH keyword, 4-15
TRANSLOW keyword, 4-15
TS attribute, 4-3

placement, 4-4
TS flags, 4-33
wildcards, 4-16

XACTUSER environment variable, 1-3
X-BLOX, 2-7

accessing through XDM, 1-19
X-BLOX elements, 6-7
XC2000 designs

mapping all macros in XMake, 2-7
XC4000 designs

RAM data values, 3-6
running X-BLOX in XMake, 2-7

XChecker
accessing through XDM, 1-25

XDE
accessing through XDM, 1-21

xdefaults file, 1-7
XDelay

accessing through XDM, 1-25
XDM

accessing, 1-3
changing menu colors, 1-31
changing mouse button function, 1-31
Command Line Interface, 1-14
customizing screen color, 1-32
defining function keys, 1-31
Design Entry Menu

SYMGEN, 1-15
determining device family, 1-30
displaying help, 1-2
displaying installed Xilinx programs,
1-30
displaying profile configuration, 1-32
executable files, 1-3
executing command files, 1-28
Fitter menu

FITEQN, 1-21
FITNET, 1-22
PALCONVT, 1-22

graphic interface, 1-14
Development Sytem Reference Guide, Volume 1 vii

Development System Reference Guide, Volume 1
invoking HM2RPM, 6-8
main screen, 1-5, 1-11
managing design directories, 1-27
menu bar, 1-5, 1-11
menus

Design Entry, 1-15
Fitter, 1-21
PlaceRoute, 1-20
Profile, 1-15, 1-30
Translate, 1-15
Utilities, 1-15, 1-27
Verify, 1-23

mouse configuration, 1-14
moving cursor through menus, 1-31
navigating through directories, 1-27
obtaining help, 1-29
Opening Screen, PCs

Directory field, 1-6
Family field, 1-6
Mouse field, 1-6
Part field, 1-6

PC systems, 1-3
menu display, 1-15
obtaining help, 1-2

PlaceRoute menu
APR, 1-20
APRLoop, 1-21
PPR, 1-21
XDE, 1-21

Profile menu
cursor command, 1-30
family command, 1-30
KeyCursor command, 1-31
keydef command, 1-31
Menucolors command, 1-31
Mouse command, 1-31
Options command, 1-32

Palette command, 1-32
Part command, 1-32
Readprofile command, 1-32
Saveprofile command, 1-32
Settings command, 1-32
Speed command, 1-32

proglist.xdm file, 1-3, 1-9
purpose, 1-1
reading profile saved in xdm.pro file,
1-32
redirecting output to text file, 1-29
saving profile to xdm.pro file, 1-32
scanning hard disk drive, 1-29
selecting default part type, 1-32
selecting software default options, 1-32
selecting speed grade, 1-32
setting cursor type, 1-30
Translate menu

ABL2PLD, 1-17
ABL2XNF, 1-16
Anotate, 1-17
CleanUp, 1-17
HM2RPM, 1-17
INET, 1-17
JED2PLD, 1-18
MAP2LCA, 1-18
MemGen, 1-18
PinSave, 1-18
PLUSASM, 1-18
SDT2XNF, 1-19
SYN2XNF, 1-19
WIR2XNF, 1-19
X-BLOX, 1-19
XDRAFT, 1-19
XEMake, 1-16
XMake, 1-16
XNFMAP, 1-20
viii Xilinx Development System

Index
XNFMerge, 1-20
XNFPrep, 1-20

user interface, 1-13
Utilities menu

Browse, 1-27
DirClean, 1-27
Directory, 1-27
dos command, 1-28
edit command, 1-28
execute command, 1-28
help command, 1-29
report command, 1-29
ScanDisk command, 1-29
version command, 1-30

Verify menu
ASCTOVST, 1-23
LCA2XNF, 1-23
MakeBits, 1-23
MAKEJED, 1-23
MAKEPRG, 1-24
MakePROM, 1-24
ORCAD (VST), 1-24
PROLINK, 1-24
VMH2XNF, 1-24
VSM, 1-25
XChecker, 1-25
XDelay, 1-25
XNF2VST, 1-26
XNF2WIR, 1-26
XNFBA, 1-26
XNFCVT, 1-26
XPP, 1-26
XSimMake, 1-25

Workstation
Edit Functions, 1-9

workstation

menu display, 1-15
workstations

active window, 1-9
configuring X–Windows, 1-7
mouse configuration, 1-7
obtaining help, 1-3
window accelerators, 1-8
window buttons, 1-8
window operations, 1-8

xdm.pro file, 1-32, 2-5
X–Windows, 1-9

XDM Opening Screen
Directory field, 1-12
Family field, 1-12
Mouse field, 1-12
Part field, 1-12

XDM opening screen, workstations
Command Line, 1-10
Instruction Line, 1-10
Status Line, 1-10

xdm.pro file, 1-4, 1-32, 2-5
saving options in, 1-32

XDRAFT
accessing through XDM, 1-19

XEMake
accessing through XDM, 1-16

Xilinx ABEL elements, 6-6
XMake, 6-7

accessing through XDM, 1-16
design flow, 2-10
error messages, 2-20
HDL file, 2-5
input file formats

ASCII HDL file, 2-4
MAK file, 2-4
schematic file, 2-4
top-level XNF file, 2-4

inputs
MAK files, 2-5, 2-15
Development Sytem Reference Guide, Volume 1 ix

Development System Reference Guide, Volume 1
schematic drawing files, 2-4
XNF files, 2-5

MAK file input, 2-9
MAP file, 2-6
optimized XNF file, 2-6
options

creating XFT file, 2-9
directing output to screen, 2-9
disabling MakeBits, 2-8
displaying explanations, 2-10
flattening design, 2-9
generating abbreviated MAK file,

2-7
generating X–BLOX MAK file, 2-7
mapping macro logic, 2-7
reprocessing design, 2-9
setting part type, 2-9
translating design to LCA file, 2-10

OUT file, 2-5
outputs

BIT files, 2-6
LCA files, 2-6
MAK files, 2-5, 2-15

partitioned XNF file, 2-6
schematic file input, 2-9
trimmed, flattened XNF file, 2-6
XFF file, 2-6
XG file, 2-6
XNF file, 2-6

XMD
Verify menu

VSMUPD, 1-25
XNF file

converting to different versions, 5-5
MemGen, 3-3
output of HM2RPM, 6-3, 6-4, 6-7, 6-8
versions, 5-1, 5-3
XNFCvt, 5-2

XNF2VST
accessing through XDM, 1-26

XNF2WIR
accessing through XDM, 1-26

XNFBA
accessing through XDM, 1-26

XNFCVT
accessing thorugh XDM, 1-26
syntax, 5-2

XNFCvt
AKA file, 5-2, 5-5
conversion process, 5-5
error messages, 5-6
inputs, 5-2
name prefixes, 5-5
options, 5-2

excluding AKA file, 5-2
specifying XNF file version, 5-3

outputs, 5-2
purpose, 5-1
syntax, 5-2
XNF file differences, 5-3
XNF target file version, 5-3

XNFMap
accessing through XDM, 1-20

XNFMerge
accessing through XDM, 1-20
processing hard macros, 6-2, 6-3, 6-4,
6-5, 6-6, 6-9

XNFPrep
accessing through XDM, 1-20
processing hard macros, 6-4, 6-5, 6-6
trimming hard macro default logic, 6-2

XPP
accessing through XDM, 1-26

XSimMake, 6-7
accessing through XDM, 1-25

X–terminal window, 1-7
X–terminal windows, 1-7
x Xilinx Development System

Trademark Information

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of
Xilinx. All XC-prefix product designations, XACT-Floorplanner, XACT-Performance,
XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell,
LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock,
VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are
trademarks of International Business Machines Corporation. DASH, Data I/O and
FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-PLA are
trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-
Silos and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered
trademark and MS-DOS is a trademark of Microsoft Corporation. Centronics is a
registered trademark of Centronics Data Computer Corporation. PAL and PALASM are
registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices,
Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard Corporation.
Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim,
QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of
Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation.
Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne
Electronic Design Automation Group. DECstation is a trademark of Digital Equipment
Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product
described or shown herein; nor does it convey any license under its patents, copyrights, or
maskwork rights or any rights of others. Xilinx reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product
possible. Xilinx will not assume responsibility for the use of any circuitry described herein
other than circuitry entirely embodied in its products. Xilinx devices and products are
protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216;
4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626;

R

Development System Reference Guide, Volume 1 — 0401405 01

Trademark Information
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821;
5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248;
5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125;
5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; RE
34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does
not represent that devices shown or products described herein are free from patent
infringement or from any other third party right. Xilinx assumes no obligation to correct
any errors contained herein or to advise any user of this text of any correction if such be
made. Xilinx will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems.
Use of a Xilinx product in such applications without the written consent of the
appropriate Xilinx officer is prohibited.
Xilinx Development System

	COVER PAGE
	TRADEMARK INFORMATION
	BOOK CONVENTIONS
	TABLE OF CONTENTS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

	GO TO OTHER BOOKS
	Chapter 1 The XACT Design Manager
	Online Help
	The Program List File
	Using XDM on a PC
	Using XDM on a Workstation
	About X-Windows and Graphic User Interfaces
	Mouse Configuration
	Window Operations
	Window Buttons
	Window Accelerator Keys
	Active Window
	Edit Functions

	Starting XDM

	Running XMake within XDM
	XDM User Interface
	The Graphical Interface
	The Command Line Interface

	The XDM Menu
	The Design Entry Menu
	SYMGEN

	The Translate Menu
	XMake
	XEMake
	ABL2XNF
	ABL2PLD
	Annotate (OrCAD Interface Only)
	CleanUp (OrCAD Interface Only)
	HM2RPM
	INET (OrCAD Interface Only)
	JED2PLD
	MAP2LCA
	MemGen
	PinSave
	PLUSASM
	SDT2XNF (OrCAD Interface Only)
	SYN2XNF (Synopsys Interface Only)
	WIR2XNF (Viewlogic Interface Only)
	X-BLOX
	XDRAFT (OrCAD Interface Only)
	XNFMAP
	XNFMerge
	XNFPrep

	The PlaceRoute Menu
	APR
	APRLoop
	PPR
	XDE

	The Fitter Menu (XC7200 and XC7300 only)
	FITEQN
	FITNET
	PALCONVT

	The Verify Menu
	ASCTOVST (OrCAD Interface Only)
	LCA2XNF
	MakeBits
	MAKEJED
	MAKEPRG
	MakePROM
	ORCAD (VST)
	PROLINK
	VMH2XNF
	VSM (Viewlogic Interface Only)
	VSMUPD (Viewlogic Interface Only)
	XSimMake
	XChecker
	XDelay
	XNFBA
	XNFCVT
	XNF2VST (OrCAD Interface Only)
	XNF2WIR (Viewlogic Interface Only)
	XPP

	The Utilities Menu
	Browse
	DirClean
	Directory
	DOS (PC Only)
	Edit
	Execute
	Help
	Report
	ScanDisk
	Version

	The Profile Menu
	Cursor
	Family
	KeyCursor
	Keydef
	Menucolors
	Mouse
	Options
	Palette
	Part
	Readprofile
	Saveprofile
	Settings
	Speed

	Chapter 2 The XMake Program
	Using XMake from the XDM Menu
	Using XMake from the System Prompt
	XMake Command Line Usage
	Files
	Input Files
	Schematic File
	HDL File
	design.mak
	design.xnf

	Output Files
	design.mak
	design.out
	design.xff
	design.xtf
	design.xg
	design.map
	design.lca
	design.bit

	Options
	MAK File Input with –r
	Schematic File Input with –r

	XMake Design Flow
	MAK File
	A Simple MAK File Example
	A Complete MAK File Example

	Macros in the MAK File
	Error Messages and Recovery Techniques
	Warning Messages and Recovery Techniques

	Chapter 3 The MemGen Program
	Running MemGen from Windows
	Running MemGen from DOS
	Syntax
	Input Files
	filename.mem

	Output Files
	filename.xnf
	filename.cmd
	filename.1
	memgen.log

	Memory Definition File Example
	Specifying Memory Characteristics
	Type
	Depth
	Width
	Symbol
	Default
	Data
	Comments

	Data Formats
	Options
	Examples
	Address Boundary Checking

	Chapter 4 XACT-Performance Utility
	Defining Timing Requirements Using Groups
	Understanding the Basics
	TIMESPEC Primitive
	From-To Statement Syntax

	Using Predefined Groups
	Creating Arbitrary Groups Using TNMs
	Placing TNMs on Primitive Symbols
	Placing TNMs on Macro Symbols
	Placing TNMs on Signals or Pins to Group Flip-Flops

	Creating New Groups from Existing Groups
	Combining Multiple Groups into One
	Creating Groups by Exclusion
	Defining Flip-Flop Subgroups by Clock Sense

	Grouping Latches
	Creating Groups by Pattern Matching
	How to Use Wildcards to Specify Signal Names
	How to Define Groups by Signal Name

	When Multiple Specifications Apply to the Same Path
	Ignoring Selected Paths
	Specifying Time Delay in TS Attributes
	Selecting Automatic Delay (AUTO)
	Specifying a TS Attribute Delay in Terms of Another

	Sample Schematic Using End-Point Specifications
	Default Specifications Inserted by PPR

	Defining Timing Requirements Using Path-Type Specifications
	The Four Basic Path Types
	Clock to Setup (C2S, DC2S)
	Pad to Setup (P2S, DP2S)
	Clock to Pad (C2P, DC2P)
	Pad to Pad (P2P, DP2P)

	When Multiple Path-Type Specifications Apply to the Same Flip-Flop
	The Forward Tracing Mechanism
	Combinational Delays and Timing Specifications on Clock-Related Paths
	Specifying a Path-Type TS Attribute Delay in Terms of Another
	Placing TS Flags
	Placing TS Flags on the Schematic
	Placing TS Flags on Cascaded Counters

	Other Specification Parameters
	LINK (Link TS Attributes)
	IGNORE (Ignore Path Type)

	Sample Schematic Using Path-Type Specifications
	How are Path-Type and End-Point Specifications Different?

	Syntax Summary
	TNM Attributes
	TIMEGRP Attributes
	TIMESPEC Attributes

	Chapter 5 The XNFCVT Program
	Syntax
	Files
	input.xnf
	output.xnf

	Options
	Summary of Version Differences
	XNFCVT Program Process
	The AKA File (Version 2 to Version 1 Only)
	Error Messages and Recovery Techniques

	Chapter 6 HM2RPM
	User-Created Hard Macros
	Designs with Elements from Previous Libraries
	Designs with Elements from the Unified Libraries

	Xilinx-Created Hard Macros
	Designs with Elements from Previous Libraries
	Designs with Elements from the Unified Libraries

	Design Flow
	Files
	Input Files
	Output Files

	How to Use HM2RPM
	Invoking HM2RPM
	From XDM
	From the Command Line

	Creating Unified Libraries-Compatible XNF File
	Obtaining Help

	HM2RPM Options
	-Helpall

	Error Messages

