
DEVELOPMENT
SYSTEM

 ™

REFERENCE GUIDE
VOLUME 2

ONLINER

0401406

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

Contents

Copyright 1990-1995 Xilinx Inc. All Rights Reserved.
Chapter 1 The XNFMerge Program
Terms... 1-2

Hierarchical File .. 1-2
Flattened File .. 1-2
Top-Level File ... 1-2
Lower-Level File ... 1-2
Signal Binding... 1-2
Resolving a Symbol .. 1-2

Syntax .. 1-3
File Name Extensions on Design Names 1-3

Files ... 1-4
Input Files ... 1-4

input_name.xnf .. 1-4
Output Files .. 1-4

output_name.xff ... 1-4
output_name.mrg .. 1-4

Options... 1-5
Determining Which Files are Symbol References 1-7

Searching for XNF Files.. 1-7
Binding Signals Between Levels... 1-8
Binding by Signal Name ... 1-8

Renaming Signals and Symbols .. 1-10
Propagating Location Parameters ... 1-11
Expressing Hierarchy in an XNF File ... 1-12
Relationally Placed Macros.. 1-12
XACT-Performance Parameter Manipulation in XNFMerge 1-13
Warnings and Error Messages .. 1-14

Warnings and Recovery Techniques...................................... 1-14
Error Messages and Recovery Techniques................................. 1-19

Chapter 2 XNFPrep
Design Flow ... 2-2
Files ... 2-4

Input Files ... 2-4
Development System Reference Guide, Volume 2 — 0401406 01 i

Development System Reference Guide, Volume 2
Output Files... 2-4
How to Use XNFPrep... 2-5

Invoking XNFPrep... 2-6
From the Command Line ... 2-6
From XDM ... 2-6

Running XNFPrep in XMake... 2-7
Obtaining Help .. 2-7
Trimming Signals .. 2-7
Ignoring Parameters ... 2-8
Submitting a Constraints File .. 2-8
Naming Files ... 2-8
Specifying Part Type... 2-9

Examples ... 2-9
Options... 2-10

Cstfile .. 2-10
-Helpall.. 2-10
Ignore_xnf_locs... 2-11
Ignore_rlocs .. 2-11
Ignore_timespec ... 2-12
Logfile ... 2-13
Outfile.. 2-13
Paramfile... 2-13
Parttype... 2-14
Report ... 2-14
Savesig ... 2-15
Split_report.. 2-15

Chapter 3 The XNFMAP Program
Syntax .. 3-2
Using XACT Design Manager (XDM)... 3-2
Files.. 3-3

Input Files ... 3-3
Output Files... 3-3

Options... 3-4
The XNFMAP Process ... 3-9

Input Design and Design Guide Files 3-9
CLB Mapping .. 3-9
Logic Mapping into FPGA Resources..................................... 3-10
Output Files... 3-10

Register Ordering... 3-10
Naming Conventions... 3-11
ii Xilinx Development System

Contents
Register Ordering for OrCAD/SDT Designs 3-12
Using a Partitioning Guide File .. 3-12

Guide by PGF ... 3-13
Guide by LCA File... 3-16

Creating a Guide File from an LCA File............................. 3-16
Using the Guide File to Partition Your Design 3-17
Preserving Original Partitioning ... 3-17

Partitioning Logic on a Schematic.. 3-19
Opened and Closed CLBMAPs .. 3-19
Locked or Unlocked CLBMAP Pins .. 3-20
Using a CLBMAP in a XC3000 Design................................... 3-20

Using Explicit (X) Attributes ... 3-22
Using the BLKNM, HBLKNM, and LOC Parameters to
Partition and Place Logic ... 3-23

BLKNM Assignments.. 3-23
HBLKNM Assignments ... 3-24
LOC= and LOC< > Constraints.. 3-24

Single-Block CLB Placement... 3-25
Multiple-Block LOC Placement.. 3-26
IOB Placement Examples.. 3-26
TBUF and Pull-up Placement .. 3-27

Files ... 3-28
Output File .. 3-28

Header... 3-28
Status Messages ... 3-28
Design Summary ... 3-29

Cross-Reference File.. 3-29
File Header .. 3-30
Guide Symbol Summary.. 3-30
Check of Mapped Logic Blocks ... 3-30
Design Summary ... 3-30
CLB Cross-reference... 3-30
IOB Cross-reference.. 3-30

MAP File for MAP2LCA and APR... 3-32
File Header .. 3-32
IOB Symbol and Model Records 3-32
CLB Symbol and Model Records 3-32

MAP File for PPR.. 3-34
File Header .. 3-34
IO Symbols .. 3-34
Combinatorial Symbols.. 3-34
Development System Reference Guide, Volume 2 iii

Development System Reference Guide, Volume 2
DFF Symbols ... 3-34
Function Generator Symbols ... 3-35

Warning Messages and Recovery Techniques............................ 3-36
Error Messages and Recovery Techniques 3-46

Chapter 4 The MAP2LCA Program
Syntax .. 4-1
Files.. 4-1

Input Files ... 4-2
design.map .. 4-2

Output Files... 4-2
design.lca... 4-2
design.scp.. 4-2
design.aka ... 4-2

Options... 4-2
MAP2LCA Example ... 4-4

design.aka... 4-6
Warning Messages and Recovery Techniques............................ 4-8
Error Messages and Recovery Techniques 4-10

Chapter 5 APR
Using XACT Design Manager .. 5-1

Syntax ... 5-2
Options.. 5-2

Positioning Options on the Command Line 5-2
Incremental Design.. 5-4
Block, Pin, and Net Matching... 5-5

Command-Line Options Summary.. 5-8
Useful Option Combinations .. 5-9
Using a Batch File for Multiple Runs .. 5-11
Running APR as a Background Process 5-11
Interrupting APR During Processing .. 5-11

Annealing and Quenching Phases.. 5-12
Routing Phase .. 5-12

Design File Names... 5-13
File Name Extensions ... 5-13
Leading Path Specifiers .. 5-13

PC.. 5-14
Sun Workstation, HP700, and RS6000 5-14
Apollo... 5-14

Input Files... 5-14
iv Xilinx Development System

Contents
Input Design File... 5-15
Schematic Constraints File ... 5-15
User Constraints File .. 5-15
Guide Design File ... 5-16
Device, Package, and Speed Information Files...................... 5-16

APR Constraints .. 5-16
SCP Files.. 5-17
CST Files .. 5-17
Case Sensitivity in Constraints Files....................................... 5-18
Definitions ... 5-18
Constraints.. 5-20

Allow Block .. 5-20
Flag IOB .. 5-21
Flag Net ... 5-22
Include ... 5-22
Lock Block ... 5-23
Lock IOBs .. 5-23
Lock Net .. 5-23
Lock Pin... 5-24
Place Block.. 5-24
Place Net ... 5-25
Prohibit Block... 5-25
Prohibit Location.. 5-26
Weight Net... 5-26

Improving APR Results... 5-27
Output Files.. 5-29

Output Design File .. 5-29
Report File .. 5-29
Message File .. 5-29

APR Reports .. 5-30
Header Information ... 5-31
Final Results Summary... 5-31
Unrouted Nets Listing ... 5-32
Net Routing Order... 5-32
Block Placement and Pin Swapping Table 5-32
Net, Block, and Location Flags Tables 5-33
Net Delay Table .. 5-34

Net Status.. 5-34
Net Name .. 5-34
Source Pins ... 5-34
Delay ... 5-35
Development System Reference Guide, Volume 2 v

Development System Reference Guide, Volume 2
Load Pins... 5-35
APR Annealing Progress Messages .. 5-36
Placing and Routing Larger Designs.. 5-36

Running APR Iteratively on the Same Design 5-37
Differentiating Between Iterations ... 5-38
Redirecting the Output .. 5-38

Chapter 6 PPR
Design Flow ... 6-2

Default PPR Flow.. 6-2
XC4000 and XC5200 Designs .. 6-3
XC3000A/L and XC3100A Designs .. 6-4
XC4000 and XC5200 Designs with X-BLOX 6-6
XC3000A/L and XC3100A Designs with X-BLOX................... 6-7

Files.. 6-9
Input Files ... 6-9
Output Files... 6-10

Guided Design ... 6-10
Types of Guided Design ... 6-11
Obtaining the Best Results from Guided Design 6-12
Guided Design Flow for XC4000 and XC5200 Designs 6-13
Guided Design Flow for XC3000A/L
and XC3100A Designs.. 6-13
PPR Options for Guided Design ... 6-14

Iterative Design.. 6-15
Locking Partial Routes... 6-15
Incremental Design.. 6-15
Placement and Routing in XDE ... 6-17
Lock_routing and Guide_thru_routes Options 6-20

Guided Design and XACT-Performance................................. 6-21
Guided Design and Constraints .. 6-21
XC3000A/L and XC3100A Guided Design with PPR.............. 6-22

Constraints ... 6-23
How to Use PPR .. 6-24

Invoking PPR .. 6-24
From XDM ... 6-24
From the Command Line ... 6-25

Running PPR in XMake .. 6-26
Suspending PPR Operation.. 6-26
Using xactinit.dat Files .. 6-27
Setting General Processing Options....................................... 6-28
vi Xilinx Development System

Contents
Changing Output LCA and RPT File Names 6-28
Changing Log File Name... 6-28
Determining Device Utilization... 6-28
Placing and Routing a Partial Design 6-29

Controlling Constraints ... 6-29
Specifying an Alternate CST File....................................... 6-29
Ignoring MAP Symbols .. 6-29
Ignoring Absolute Location Constraints............................. 6-30
Ignoring Relative Location Constraints.............................. 6-30

Controlling Placement and Routing .. 6-30
Setting Level of Placement Effort 6-30
Setting Level of Router Effort .. 6-31
Controlling the Timing-Insensitive Quick Route................. 6-31
Controlling Through-Routes .. 6-32
Routing Through Global Buffers .. 6-32

Controlling Guided Design.. 6-33
Specifying a Guide File.. 6-33
Guiding Placement of Routed Blocks 6-33
Guiding Routing of Unchanged Signals Only 6-33
Locking Routing from Guide File 6-34
Copying Guide File Without Finishing Routing 6-35

Using XACT-Performance Specifications 6-35
Specifying Default Path Delays ... 6-35
Controlling Delay When C2S Specifications Differ 6-36
Controlling PPR if Specifications Cannot Be Met 6-36
Ignoring Path Delays in Place and Route.......................... 6-36
Ignoring Specified Timing Requirements........................... 6-37
Controlling Delays on Incomplete Paths............................ 6-37

Options... 6-37
Complete .. 6-37
Cstfile.. 6-38
Dc2p ... 6-38
Dc2s.. 6-39
Dflt_sig_dly ... 6-40
Dp2p ... 6-40
Dp2s ... 6-41
Estimate.. 6-42
Guide .. 6-42
Guide_blks.. 6-43
Guide_only.. 6-43
Guide_routing ... 6-44
Development System Reference Guide, Volume 2 vii

Development System Reference Guide, Volume 2
–Helpall ... 6-45
Ignore_maps ... 6-45
Ignore_rlocs .. 6-46
Ignore_timespec ... 6-46
Ignore_xnf_locs... 6-47
Lock_routing ... 6-47
Logfile ... 6-48
Open_guide_blocks .. 6-48
Outfile.. 6-49
Paramfile... 6-49
Parttype... 6-50
Path_timing ... 6-51
Placer_effort.. 6-51
Report_pagelength ... 6-52
Report_leftmargin ... 6-52
Report_textwidth ... 6-53
Route .. 6-53
Route_thru_blks.. 6-53
Route_thru_bufg ... 6-54
Router_effort ... 6-55
Rpt_net_loc... 6-56
Rpt_net_loc... 6-56
Rpt_sym_loc ... 6-57
Save_files ... 6-57
Seed.. 6-58
Stop_on_miss ... 6-58
Timing ... 6-59
Use_faster_c2s ... 6-59
User_search_path... 6-60

Options Summary .. 6-61
Constraints File Syntax .. 6-65

Attributes, Constraints, and Carry Logic 6-65

Chapter 7 The MakeBits Program
Syntax .. 7-2
Files.. 7-2

Input Files ... 7-2
design.lca... 7-2

Output Files... 7-3
design.bit ... 7-3
design.ll.. 7-3
viii Xilinx Development System

Contents
design.mbo .. 7-3
design.rbt... 7-3
design.msk .. 7-3
_design.lca .. 7-3

Options (Stand-Alone Version) .. 7-4
Startup Sequences (-f option)... 7-6

Cclk_Nosync.. 7-6
Cclk_Sync.. 7-6
Uclk_Nosync.. 7-6
Uclk_Sync.. 7-7

Startup Sequence Options.. 7-9
CRC... 7-9
ConfigRate... 7-9
DonePin... 7-9
TdoPin (XC4000 Only) .. 7-9
M1Pin (XC4000 Only).. 7-9
BSReconfig (XC5200 Only)... 7-10
OscClk (XC5200 Only) .. 7-10
ReadCapture ... 7-10
ReadAbort ... 7-10
ReadClk... 7-10
StartupClk.. 7-10
SyncToDone.. 7-11
DoneActive .. 7-11
OutputsActive .. 7-11
GSRInactive .. 7-12

Stand-Alone Command Line Examples 7-20
Running MakeBits from XDE ... 7-21
The MakeBits Screen... 7-22

Configure — Change Configuration Options 7-23
XC2000 Configuration .. 7-24

Input... 7-24
DonePad.. 7-24
Read .. 7-24

XC3000 Configuration .. 7-24
DonePad.. 7-24
DoneTime .. 7-25
Input... 7-25
Read .. 7-25
ResetTime ... 7-25
XTALOSC.. 7-25
Development System Reference Guide, Volume 2 ix

Development System Reference Guide, Volume 2
XC4000 and XC5200 Configuration.. 7-26
CRC ... 7-26
ConfigRate... 7-26
DonePin ... 7-26
TdoPin ... 7-26
M1Pin... 7-26
BSReconfig (XC5200 Only) ... 7-27
OscClk (XC5200 Only) .. 7-27
ReadCapture ... 7-27
ReadAbort.. 7-27
ReadClk ... 7-27
StartupClk .. 7-28
SyncToDone .. 7-28
DoneActive .. 7-28
OutputsActive .. 7-29
GSRInactive... 7-29

Defaults — Select From Four Startup Defaults....................... 7-30
Cclk_Nosync.. 7-30
Cclk_Sync.. 7-31
Uclk_Nosync.. 7-31
Uclk_Sync.. 7-31

DOS — Enter Temporary DOS Shell (PC Only) 7-32
Download — Transfer the Current Bitstream to an FPGA 7-32
DRC — Invoke the Design Rules Checker 7-32

Net ... 7-33
Nonet ... 7-33
Block .. 7-33
Noblock.. 7-33
Noroute .. 7-33
Verbose ... 7-33
Informational .. 7-33

Execute — Perform Commands from a Command File.......... 7-34
Exit — Return to the XACT Executive 7-34
Keydef — Define a Function Key.. 7-34

Norestore ... 7-38
Verbose ... 7-38
IgnoreCriticalNetFlags ... 7-38
UseCriticalNetsLast ... 7-38
Makell .. 7-39

Makeconfigset — Create a Configuration Set......................... 7-39
Makemask — Write a Bitstream Mask to a File 7-40
x Xilinx Development System

Contents
Mouse — Change the Mouse Configuration........................... 7-40
Select... 7-41
Done .. 7-41
Menu.. 7-41
Switch .. 7-41

Port — Specify the XChecker/Download Cable Port 7-41
Print — Create a Printable File of Display Information 7-42
Printer — Set the Printer Type for the Print Command 7-43
Queryconfigset — Display Configuration Sets........................ 7-43
Querynet — Display Net Information for the Design............... 7-43
Rawbits — Create an ASCII Configuration File 7-45
Readbits — Read the Specified Bitstream File....................... 7-45
Readprofile — Update Profile ... 7-46
Report — Create a Report.. 7-46
Restore — Restore Design to Untied State 7-46
Saveprofile — Save Current Profile.. 7-47
Selftest — Test Download Cable (PC Only) 7-48
Setconfigset — Apply Configuration Set
to MakeBits Options.. 7-48
Settings — Change Current Profile .. 7-48

Chapter 8 The MakePROM Program
Stand-Alone MakePROM... 8-2

Syntax... 8-2
Options ... 8-2
Examples .. 8-4

Using MakePROM in the XACT Design Editor 8-5
MakePROM Screen.. 8-5
MakePROM Menus .. 8-6

Command Descriptions.. 8-7
Clear — Clear PROM ... 8-7
Delete — Remove File at Address from PROM 8-7
DOS — Temporarily Suspend MakePROM
and Enter Operating System (PC Only).................................. 8-8
Directory — Change Working Directory.................................. 8-8
Execute — Perform Commands in Command File................. 8-8
Exit — Quit MakePROM ... 8-9
Format — Select the PROM File Format................................ 8-10
Keydef — Define a Function Key.. 8-10
Load — Load a Bitstream File into PROM
Memory at Specified Address... 8-10
Development System Reference Guide, Volume 2 xi

Development System Reference Guide, Volume 2
Mouse — Change the Mouse Configuration........................... 8-12
Print — Print the Current PROM Memory Image Screen 8-12
Query — Display the Current Setting for the PROM Size....... 8-13
Readprofile — Set MakePROM Options to
Settings in makeprom.pro File .. 8-13
Save — Save Currently Specified, Formatted
Data into File... 8-14
Saveprofile — Save Current MakePROM
Options Settings to makeprom.pro File................................... 8-14
Set (PROMSize) — Specify PROM Size 8-14
Set (Endclocks) — Modify Daisy-Chain Length 8-15
Settings — Display Current Values of
MakePROM Settings .. 8-15

Index ... i

Trademark Information
xii Xilinx Development System

Chapter 1
Development System Reference Guide, Volume 2 — 0401406 01 1-1

The XNFMerge Program

This program is compatible with the following families.

● XC2000

● XC2000L

● XC3000

● XC3000A

● XC3000L

● XC3100

● XC3100A

● XC4000

● XC4000A

● XC4000H

● XC5200

XNFMerge combines Xilinx Netlist Format (XNF) files to form a
single, flat (nonhierarchical) file with an .xff extension. An input XNF
file that contains FILE= references or non-primitive symbols such as
macro symbols is hierarchical and must be flattened by XNFMerge.

XNFMerge also propagates some location parameters down the
design hierarchy, resolves relative location constraint parameters,
and performs some preprocessing functions for XACT-Performance.
Therefore, it is necessary to process designs through XNFMerge even
if the design is already flattened.

Development System Reference Guide, Volume 2
Terms
This section defines several important terms that are used in this
chapter.

Hierarchical File
An XNF file that contains references to other files. A hierarchical file
contains non-primitive symbols and XBLOX symbols.

Flattened File
An XNF file that contains no references to other files. XNFMerge
generates a flattened file (XFF). The only non-primitive symbols that
should exist in the output file of XNFMerge are XBLOX symbols.

Top-Level File
An XNF file that references other XNF files. XNFMerge is always run
on a top-level file.

Lower-Level File
An XNF file that is referenced by a top-level XNF file.

Signal Binding
The process of joining nets from a lower-level XNF file to pins in a
top-level XNF file.

Resolving a Symbol
The process of replacing a symbol in a top-level XNF file that
references a lower-level XNF file with the logic contained in the
lower-level file.
1-2 Xilinx Development System

The XNFMerge Program
Syntax
Use the following syntax to execute XNFMerge. XNFMerge accepts
any output file extension, but the automatic design flow program
(XDM/XMAKE) requires the default XFF extension.

xnfmerge [options] input_name[.xnf]
output_name[.xff | . extension]

Note: The output_name file is optional. If you do not specify this
option, XNFMerge defaults to the input_name.xff.

XNFMerge reads an XNF file that describes the top-level of a
hierarchical design. When XNFMerge finds a symbol that represents
logic contained in another XNF file, it searches for and reads the
referenced file. XNFMerge then replaces the symbol in the top-level
file with the logic contained in the lower-level file and continues this
process of flattening until no symbols that reference other XNF files
remain. Then XNFMerge writes out the flattened design into a new
XFF file.

A process called signal binding links the different levels of the
hierarchical design. In this process, a signal contained in the top level
of the hierarchy is bound to a corresponding signal contained in a
lower level. Which signals are bound together is an important aspect
of XNFMerge’s operation.

When XNFMerge flattens the hierarchical structure of a design, it
might modify the names of some signals and symbols in the design.
This modification of symbol and signal names is necessary because
logic contained in different parts of the hierarchy might have the
same name. In the flattened version of the design, these names
conflict. XNFMerge modifies the name of every signal and logic
symbol (except those contained in the top level) to prevent name
conflicts. Wherever possible, the new name consists of the original
name prefixed with the instance name of the encompassing macro
symbol.

File Name Extensions on Design Names
You can specify file name extensions. It is not necessary to include the
XNF extension for the input file name. If the file name extension for
the input file is omitted, XNFMerge reads in an XNF file.
Development System Reference Guide, Volume 2 1-3

Development System Reference Guide, Volume 2
Note: During execution, XNFMerge displays informational as well as
error or warning messages on the screen.

Files
XNFMerge requires one top-level input file and generates two output
files.

Input Files

input_name.xnf

The file that describes the top level of a hierarchical design.

Output Files

output_name.xff

The file to which XNFMerge writes the flattened design.

output_name.mrg

The merge report file that is created by XNFMerge. The default file
name is the same as the name of the output design file, but with the
MRG extension. You can use the -o option to change the name of the
merge report file.

The merge report file contains the following information.

● The files that XNFMerge read

● The errors and warnings

● The signals bound together

● The symbols not expanded

● The hard macros translated to RPMs (relationally placed macros)

● The RLOC sets created

● The number of signals, primitive symbols, and unresolved
symbols in the output design
1-4 Xilinx Development System

The XNFMerge Program
Options
These options require that you type a hyphen in front of the option
letter.

–a Abbreviate Messages to Report File

This option causes XNFMerge to report each unique file name only
once in the MRG file and on the screen. Even if a file is read more
than once for multiple instantiations in the design, its file name
appears only once in the reports. This option is not recommended for
general use, since it suppresses useful information about file
flattening.

–d Directory Search for XNF Files

This option searches for XNF files in a specified directory. Relative
and absolute directory path names are acceptable. Use this option for
each directory when adding multiple directories to the list.
XNFMerge searches the directories in the order of their appearance
on the command line. XNFMerge always searches for XNF files in the
current directory first unless the input file is specified to be in another
directory. In this case, XNFMerge first searches all the lower-level
files in the directory of the specified input file.

xnfmerge -d counters -d \xnflib input output

This example directs XNFMerge to search for XNF files first in the
current directory, then in the counters subdirectory (relative to the
current directory), and then in the \xnflib directory.

–f Do Not Record Hierarchy in Output File

By default, XNFMerge reserves hierarchy boundary information in
the flattened output file. XNFMAP uses this data (when either the -a
or -q option is used) to constrain the mapping of logic into blocks
based on hierarchical boundaries. This is a re-implementation of the
former map-then-merge design flow. Do not use the -f option if you
intend to use XNFMAP with either the -a or -q options.
Development System Reference Guide, Volume 2 1-5

Development System Reference Guide, Volume 2
–i Ignore RLOC-Related Information

XNFMerge resolves all RPM (relationally placed macros) sets of
design symbols that are associated by relative location (RLOC)
attributes. XNFMerge also resolves all RLOC-related attributes
(RLOC_ORIGIN, USE_RLOC, and so forth) in the design. This option
directs XNFMerge to remove all RPM (RLOC) information from the
design, with the exception of RLOC attributes on carry logic symbols.
The XACT Development system requires carry logic symbols to have
RLOC or LOC attributes.

–o Change the Merge Report Filename

This option changes the name of the merge report (MRG) file that
XNFMerge creates. By default, the report file has the name
output_design.mrg. If you specify a different extension, XNFMerge
issues an error message and stops. If no extension is specified,
XNFMerge adds the MRG extension. You can include a leading path
specifier as part of the merge report file.

–p Specify the Target FPGA Device Type

This option tells XNFMerge which FPGA device type is being used. It
overrides any FPGA device type information contained in the input
design.

–q Allow Unresolved Hierarchy References

This option directs XNFMerge to treat those symbols, which reference
XNF files that could not be found, as if they were primitive elements
of an unknown function. It also directs XNFMerge to pass these
symbols, unaltered, into the output design. If this option is not used,
XNFMerge treats these symbols as errors and aborts before creating
the XFF file. This option is useful if you only want a partial flattening
of the hierarchy.
1-6 Xilinx Development System

The XNFMerge Program
Determining Which Files are Symbol References
An XNF file contains “primitive” or “non-primitive” symbols. A
primitive symbol is a simple, standard, predefined logic element such
as an AND gate, an OR gate, a TBUF, or a flip-flop. Non-primitive
symbols represent user logic modules or macros that are contained in
separate XNF files.

XNFMerge passes each primitive symbol from the input design into
the output design, and tries to replace each non-primitive symbol
with the logic it represents by using a process called “resolving a
symbol.” The information associated with the symbol itself
determines exactly which XNF file XNFMerge uses to resolve a
symbol.

Some symbols can have an explicit file name (by using the
File= parameter). For each such symbol, XNFMerge searches for and
uses an XNF file specified by the FILE= parameter.

If a symbol does not have an explicit file name, XNFMerge uses the
symbol type to construct the name of the XNF file. It is important to
distinguish between the type and the name of a symbol. Every AND
symbol has the same type, but each symbol has a unique name. A
design might contain several non-primitive symbols of the same
type, each with a different name. Each symbol is replaced with the
logic contained in the XNF file whose file name is the symbol type
with an XNF file name extension. In other words, if XNFMerge finds
a non-primitive symbol that has no File parameter, it tries to resolve
the symbol by searching for a symbol.xnf file. If XNFMerge cannot
find this file, it issues a warning message unless the -q option is used
to suppress the warning message.

Searching for XNF Files
XNFMerge always searches for XNF files in the current directory
first, unless the input file is specified in another directory by the
FILE= parameter on the symbol. If it is unable to find a file, it looks in
other directories, if -d is specified. If XNFMerge fails to find an XNF
file either in the current directory or in the list of other directories, it
issues an error message and does not create the XFF file.

XNFMerge looks in one additional directory for XNF files if the
symbol includes a DEF=HM parameter to reference an old hard
Development System Reference Guide, Volume 2 1-7

Development System Reference Guide, Volume 2
macro file. In the XACT 5.0 release, the Xilinx-library of hard macro
files are replaced with equivalent XNF files. These XNF files are
installed in the /hmlib directory associated with the $XACT
environment variable. Prior to XACT 5.0, the hard macro files were
merged into the design by PPR. In XACT 5.0, the equivalent XNF files
are merged into the design by XNFMerge. Therefore, if a symbol has
a DEF=HM parameter, XNFMerge looks in the $XACT/hmlib
directory if it has not found the XNF file in the current directory or
the directories specified with the -d option.

Binding Signals Between Levels
Every symbol in an XNF file has pins to which signals can be
attached. In a hierarchical design, symbols in a top-level XNF file
reference lower-level XNF files. The symbol in the top-level file has
pins to which signals are attached. These pins also reference signals in
the lower-level file. Therefore, the pins represent the connectivity
between the signals on the top-level file and the lower-level file.
XNFMerge connects the signals attached to the symbol pins in the
top-level file to the signals in the lower-level file. This process is
called signal binding. XNFMerge uses two methods to determine
which signals to bind between hierarchy levels: binding by signal
name and binding by pin name.

Binding by Signal Name
If the pin name of the symbol in the top-level XNF file matches a
signal name in the lower-level XNF file, the pin is considered
connected to the signal.

Figure 1-1 illustrates binding by signal name. The top level of the
design top.xnf references a lower-level design file mac1.xnf. The
lower-level XNF file comes from another schematic. In this case,
XNFMerge binds the pin names on the symbol in top.xnf to the
corresponding signal names in the lower-level file mac1.xnf.

The pin name on the symbol matches the signal name in the lower-
level XNF file. Signal IN1 is attached to pin A in the top-level
schematic. A lower-level schematic contains a signal called A.
XNFMerge binds pin A from the top-level file to signal A on the
lower-level file, thus binding signal IN1 to signal A.
1-8 Xilinx Development System

The XNFMerge Program
Figure 1-1 Binding Symbols by Signal Name

Binding one signal to another signal means that the two signals no
longer have separate identities; they are the same signal. To reflect
this, XNFMerge omits, from the output file, any mention of the signal
contained in the hierarchy’s lower level. All connections to the lower-
level signal are replaced by connections to the top-level signal. The
top-level signal inherits all information from the lower-level signal,
except for the signal name. If two signals with conflicting attributes
are bound, XNFMerge issues an error message.

Note: XNFMerge removes any S flag on a signal in a lower-level file.
XNFMerge preserves all S flags that exist in the top-level file since
they might be necessary if that file is to be merged into a higher-level
file. The S flag marks a net that should not be removed in the logic
trimming function of XNFPrep.

IN1

X2565a

IN2

OUT
A

B

X

FILE = MAC1

TOP.1 MAC1.1

LCANET, 6

PROG,

PART,

SYM,

PIN,

PIN,

PIN,

END

EOF

WIR2XNF

4005PC84

OUT, MAC1, FILE=MAC1

X,

B,

A,

O,

I,

I,

OUT

IN2

IN1

TOP.XNF

LCANET, 6

MAC1.XNF

SYM, X, AND

PIN, 1, I, A

PIN, 2, I, B

PIN, O, O, X,

END

EOF

PROG,

PART,

WIR2XNF

4005PC84

X
A

B

Name of signal routed to pin

Pin "A" on symbol Signal "A" in lower-level
XNF file

Top level of Hierarchy
Development System Reference Guide, Volume 2 1-9

Development System Reference Guide, Volume 2
Renaming Signals and Symbols
Each symbol that references an XNF file represents a hidden level of
logic. The signals and symbols contained in the top-level XNF file
might have names that are the same as the names of signals or
symbols contained in the lower level.

Since the output design must have no conflicting names, XNFMerge
must modify some of the signal and symbol names in the input
design before writing the output design. Logic contained in the top-
level of the design in the XNF file is not renamed. Logic contained in
lower levels is renamed according to the following procedure.

XNFMerge places the instance of the symbol referencing the logic and
a “/” at the beginning of each signal and symbol name. For example,
if the signal named “Reset” were contained in a part of the hierarchy
named “Counter,” then the new name of the signal would be
“Counter/Reset.” Figure 1-2 shows an example of merging levels of
hierarchy.

Figure 1-2 Merging Levels of Hierarchy

When merging levels of hierarchy, XNFMerge places the instance
name of the symbol referencing the logic and a “/” at the beginning
of each signal and symbol name. The names might differ slightly
depending on the schematic editor used.

MYAND

ANDOUT

Resulting
Signal Name is
MAC1/ANDOUT

Resulting
Symbol Name is MAC1/MYAND

MAC1

TOP

X2567
1-10 Xilinx Development System

The XNFMerge Program
Propagating Location Parameters
XNFMerge propagates location constraints specified on non-
primitive symbols to primitive symbols in the lower-level files. It
examines the location constraint to determine its syntactical type.
Then it propagates the location constraint to lower-level primitives
that match the syntactical type. The syntactical types include location
constraints for flip-flops, latches, IO symbols, TBUFs, and PULLUPs.
For example, LOC constraints applicable to those symbols which are
placed in CLBs are only passed to primitive symbols that can be
contained within a CLB, such as DFF and CLBMAP. LOC
constraints applicable to symbols which are placed in IOBs are only
passed to primitive symbols that can be contained within an IOB
such as IBUFs and INFF. Table 1-1 lists the LOC constraints that are
propagated to primitives.

Table 1-1 LOC Constraints Propagated to Primitives

If another non-primitive symbol exists without a location constraint
in the lower-level file, the location information is placed on the lower-
level file’s non-primitive symbol and is propagated further down the
hierarchy. If another location constraint exists on the lower level non-
primitive symbol, only the lower-level constraint is propagated to its
sub-levels. If a primitive symbol exists with a Relationally Placed
Macro (RPM), XNFMerge propagates LOC parameters only to the
symbols in the RPM that do not have RLOC parameters.

Location Constraints Propagated To

CLBs CLB, DFF, DLAT, CLBMAP, FMAP,
HMAP, EQN, RAM, ROM,
WORAND, CY4, CY4_MODE

IOBs IOB, INFF, IBUFs, OBUF, OBUFT,
INLAT, OUTFF, OUTFFT, WAND
without DECODE parameter

TBUFs TBUF

PULLUPs PULLUP

Decoders WAND with DECODE parameter
Development System Reference Guide, Volume 2 1-11

Development System Reference Guide, Volume 2
To propagate the location constraints, XNFMerge looks at the first
LOC statement and determines the category of primitive types to
which the location constraint can be propagated. Therefore, it is not
advisable to mix the different location constraint types on a non-
primitive symbol.

Expressing Hierarchy in an XNF File
In the XNF file, a symbolic pin name is associated with a signal by a
PIN=pin_name parameter on a SIG (signal) record for that signal.

An explicit file name is associated with a symbol by having a
FILE=file_name parameter on the SYM (symbol) record for that
symbol. If a file name extension is not specified, XNFMerge appends
the XNF extension.

XNFMerge retains information about the design hierarchy in the XFF
file. This information is useful if you want to map different XNF files
before merging them. You can map different XNF files, before
merging, for XC2000 and XC3000 designs in XNFMAP using the -a or
-q option. This is a re-implementation of the former map-then-merge
design flow. If you do not want XNFMerge to generate hierarchy
information, use the -f option.

Relationally Placed Macros
Relationally Placed Macros (RPMs) are soft macros that contain logic
symbols with relative location (RLOC) parameters. RLOC parameters
define the spatial relationship between logic symbols. They do not
define the absolute placement (unless RLOC_ORIGIN is used) of the
logic in the part, but they do define the up/down/left/right
relationships between two or more symbols. PPR maintains the
spatial relationships defined by the RLOC parameters as it searches
for the best, absolute placement of the logic on the part. Xilinx
supplies an RPM macro library of XNF files to replace the prior hard
macro library. You can also design your own RPMs using RLOC and
RLOC-related parameters. See the Libraries Guide for details about
using RLOC parameters.

If a design contains symbols with RLOC parameters, XNFMerge
assigns each of these symbols to an RLOC set. The RLOC parameters
within a given RLOC set define the spatial relationship between those
1-12 Xilinx Development System

The XNFMerge Program
symbols; RLOC parameters in different RLOC sets have NO
relationship to each other.

An RLOC set is defined either implicitly by the design hierarchy, or
explicitly by user-specified U_SET and/or HU_SET parameters. All
RLOC sets, whether defined by the you or by XNFMerge, are
reported in the MRG report file that XNFMerge generates. Every
symbol with an RLOC parameter is a member of exactly one RLOC
set when XNFMerge is done.

XNFMerge also processes other RLOC-related parameters that affect
the RLOC sets. The RLOC_ORIGIN= parameter locks down the
symbols in a set to an absolute location on the part, while preserving
the spatial relationships defined by the RLOC parameters.
XNFMerge applies the RLOC_ORIGIN= parameter to the set and
generates the appropriate absolute LOC= parameter for each symbol.

The RLOC_RANGE= parameter defines a rectangular row and
column range on the part within which each symbol in the set must
remain. XNFMerge ensures that any valid RLOC_RANGE=
parameter for the set is added to each symbol in the set.

The USE_RLOC={TRUE,FALSE} parameter includes or excludes
symbols from the set. If a USE_RLOC=FALSE parameter is found on
any macro symbol in a set, XNFMerge removes the RLOC parameters
from all the symbols for that set below the macro, with the exception
of carry logic symbols. Carry logic symbols are required to always
have either a LOC= or RLOC= parameter.

XNFMerge does additional checking on the valid use of RLOC and
RLOC-related parameters and reports any errors in the MRG file.

For more information on using RPMs, refer to the Libraries Guide.

XACT-Performance Parameter Manipulation in
XNFMerge

Design performance requirements are specified using
XACT-Performance, as described in the “XACT-Performance Utility”
chapter in this reference guide. XNFMerge prepares for XACT-
Performance by pre-processing the TNM= and TSid= parameters.

If a macro symbol has a TNM=spec parameter, XNFMerge will
propagate the parameter to the symbols that comprise the macro. The
Development System Reference Guide, Volume 2 1-13

Development System Reference Guide, Volume 2
spec field of the TNM=spec parameter has an optional type
classification portion that specifies if the parameter should be
propagated to ‘FFS’ (flipflops), ‘PADS’ (external pad signals), ‘RAMS’
(4K RAM symbols), or ‘LATCHES’ (IOB latch symbols). If the TNM=
parameter has a type classification, XNFMerge propagates the
parameter only to the specified type of symbols in the macro. If the
TNM= parameter does not have a type classification, then XNFMerge
propagates the parameter to the symbols in the macro only if the
symbols are of one type (all flipflops, or all RAMS, or all IOB latches,
or all pad signals). If there are mixed symbol types/signals in the
macro and the TNM= spec field does not contain a type classification,
then XNFMerge exits with an error.

XNFMerge also pushes forward any TNM= and TSid= parameters on
signals to load pins on symbols. If the load pin is on a macro symbol,
XNFMerge propagates the parameter down through the hierarchy
until it finds a load pin on a non-macro symbol.

XNFMerge only pre-processes these XACT-Performance parameters.
XNFPREP and PPR completes the preparation and implementation of
XACT-Performance.

For a more information about using the XACT-Performance
parameters, see the “XACT-Performance Utility” chapter in the
Development System Reference Guide.

Warnings and Error Messages

Warnings and Recovery Techniques
Warning 260. Parameter FAST on non-primitive
symbol name ignored.

Parameter SLOW on non-primitive symbol name
ignored.

Parameter INTERNAL on non-primitive symbol name
ignored.

Parameter DOUBLE on non-primitive symbol name
ignored.

Location parameters on non-primitive symbol name
ignored.
1-14 Xilinx Development System

The XNFMerge Program
User parameter parameter on non-primitive symbol
symbol_name ignored.

These are issued when invalid parameters for the specified part type
are placed on a non-primitive symbol.

Warning 282. Unable to open report file filename.

Check for a disk-full condition, or verify the file permissions are set
properly.

Warning 285. Binding mismatch on pin pinname in
symbol symbol_name file filename.

The lower-level net name corresponding to the upper-level pin name
on a symbol is missing. Likewise, if there is a bus pin on the upper-
level symbol, and not all of the individual signals belonging to that
bus are used at the lower-level, the above warning is issued.
However, no action is needed if the warning accurately reflects the
drawing.

Warning 290. Location parameters on the upper-
level signal name will take precedence over the
lower-level signal name.

This warning includes a message regarding the incompatibility
between the LOC parameters on the upper and lower-level signals.
Typically, this applies when the I/O buffer is on one level of the
design hierarchy and the I/O pad is on another.

Warning 291. No HIERG = id information attached to
input sym name. Cannot determine exact place in
hierarchy.

If the input design includes hierarchy information but XNFMerge
cannot determine the previous hierarchy assignment for a symbol,
XNFMerge assigns the symbol to belong to the level of hierarchy
assigned to the XNF file in which the symbol is located.

Warning 292. Not acceptable syntax for LOC
statement on non-primitive symbol sym name. Not
propagating LOC statement to lower-level files.

XNFMerge propagates the LOC= parameter on a macro symbol to
the symbols incorporated within the macro. To do this, XNFMerge
must know the type of symbol to which the LOC= parameter refers.
Therefore, it examines the LOC= parameter value to determine
Development System Reference Guide, Volume 2 1-15

Development System Reference Guide, Volume 2
whether it should propagate the parameter to IO and edge symbols,
CLB-type symbols, TBUFs, or PULLUPs. In this case, XNFMerge
could not determine the proper type from the value (right-hand side)
of the
LOC= parameter. Check the LOC= parameter for the proper
specification. See the Libraries Guide for more information about using
LOC= parameters.

Warning 295. The LOC parameter loc value on the
macro symbol sym name is not supported for XC7000
designs. The parameter will be ignored. RLOC
parameters are not supported on macro symbols for
XC7000 designs.

Warning 300. The HU_SET, hu_set name on symbol sym
name is a single element RLOC set. It will be
deleted.

An RLOC set must have two or more non-macro symbols with an
RLOC= parameter, since RLOC= parameters define a relationship
between symbols.

Warning 301. An RLOC_ORIGIN/RLOC_RANGE is found on
the primitive symbol sym name of an h_set. It will
be removed from the symbol.

RLOC_ORIGIN= and RLOC_RANGE= parameters must be placed
on the top-level macro symbol for a set of RLOC= symbols that are
defined through the design hierarchy (‘H_SET’). These parameters
can only be placed on a non-macro symbol if the symbol is part of a
set of symbols that are tagged with a U_SET= or HU_SET=
parameters.

Warning 311. TNM= tnm name parameter on macro
symbol sym name could not be propagated to any
lower level symbols. Check symbol type specified
on TNM with lower level symbol types.

If a macro symbol has a TNM=spec parameter, XNFMerge propagates
the parameter to the symbols that comprise the macro. The spec field
of the TNM=spec parameter has an optional type ‘classification’
portion that specifies if the parameter should be propagated to ‘FFS’
(flipflops), ‘PADS’ (external pad signals), ‘RAMS’ (4K RAM symbols),
or ‘LATCHES’ (IOB latch symbols). If the TNM= parameter does not
have a type classification, XNFMerge propagates the parameter to the
1-16 Xilinx Development System

The XNFMerge Program
symbols in the macro only if the symbols are of one ‘type’ (all
flipflops, all RAMS, all IOB latches, or all pad signals). It is an error if
there are mixed symbol types/signals in the macro and the ‘spec’
does not contain a type classification.

Warning 312. TSID parameter(s) found on output
pin pin name of symbol sym name. TNM parameters are
not allowed on symbol output pins. To tag all of
the load pins on a signal, attach a TNM parameter
to the signal itself.

Warning 313. TNM parameter(s) found on signal
signal name could not be propagated.

XNFMerge attempts to push forward any TNM= parameters found
on signals to load pins on symbols. See the “XACT-Performance
Utility” chapter in the Development System Reference Guide for more
details.

Warning 314. The TNM= tnm value parameter on macro
symbol mac name will only be propagated to type
symbols. XNFMERGE cannot examine XBLOX symbols
sym name of type type to determine the symbol types
below them.

Warning 315. The TNM parameter was found on VCC
and/or GND signal.

In some design entry interfaces, the same VCC and GND signal
names are used throughout the design. If this is the case for your
interface package, the TNM parameters listed below may be applied
more broadly than was intended.

Signal Name = sig name, TNM value = tnm value

Warning 318. The inversion on the pin name pin of
the macro symbol sym name for the signal sig name
will not be propagated to the underlying macro
logic. Pins on macro symbols cannot be inverted.

Warning 322. The U_SET/HU_SET set name on macro
symbol sym name has no symbol with an RLOC
parameter below it. It will be removed.

The presence of an HU_SET= or U_SET= parameter on a macro
symbol requires that a set of symbols with RLOC= parameters exist
Development System Reference Guide, Volume 2 1-17

Development System Reference Guide, Volume 2
beneath the macro. In this case, XNFMerge could not find any
symbols with RLOC= parameters to associate with the HU_SET= or
U_SET= parameters.

Warning 323. The U_SET/HU_SET, set name on symbol
sym name has only one RLOC parameter on a
primitive symbol. The set will be removed.

The presence of an HU_SET= parameter on a non-macro symbol
requires the presence of additional non-primitive symbols with the
same HU_SET= parameter at the same level of the hierarchy. The
presence of a U_SET= parameter on a non-macro symbol requires the
presence of at least one other non-macro symbol with the same
U_SET= parameter in the design. In this case, XNFMerge could find
only one symbol with the unique RLOC= parameter to associate with
the HU_SET= or U_SET= parameters.

Warning 324. Although the ignore_rlocs option was
specified, some RLOC parameters could not be
ignored because they are attached to CY4 symbols.
Every CY4 symbol in the design must have either a
RLOC constraint or a single-location LOC
constraint.

Warning 325. Although the USE_RLOC=FALSE
parameter was specified, the RLOC parameter on
the CY4 sym name could not be removed. Every CY4
symbol in the design must have either a RLOC
constraint or a single-location LOC constraint.

Warning 342. The FMAP symbol sym name has a TNM
parameter attached. This TNM parameter will be
ignored.

TNM parameters may be used only on flip-flops, I/O pads, RAM
symbols, or on macros that contain those elements.

Warning 344. The FMAP symbol sym name has a TSid
parameter attached to its pin name pin.

Since a MAP symbol does not represent any actual logic, this TSid
parameter will be ignored, and will not be traced forward to identify
any other logic.
1-18 Xilinx Development System

The XNFMerge Program
Error Messages and Recovery Techniques
Error 1. at line number: Field too long.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 2. at line number: Unexpected LCANET record.

Issued when an LCANET record is found on any line besides the
first. This is an indication of an invalid or corrupted XNF file. Rerun
the program that created this XNF file and try again.

Error 3. at line number: ENDMOD with no matching
MODEL record.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 4. at line number: Symbol sub-record outside
of symbol group.

Issued when the XNF syntax is violated, and records that should be
within other records, such as MODEL, ENDMOD, or PIN, are found
outside the group.

This is an indication of an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 5. at line number: Illegal record inside
symbol group.

Issued when the XNF syntax is violated, and a record that is not
allowed inside other symbol groups is found within the group. For
example, a PROG (an active low signal; in the ASCII file, the tilde (~)
indicates active low) is record inside a SYM group.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 6. at line number: Premature EOF record in
symbol group.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 7. at line number: Illegal record inside
MODEL group.
Development System Reference Guide, Volume 2 1-19

Development System Reference Guide, Volume 2
This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 8. at line number: Premature EOF record in
MODEL group.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 9. at line number: Premature End-of-file. No
EOF record found.

An EOF record must conclude every XNF file. This message indicates
an invalid or corrupted XNF file. Rerun the program that created this
XNF file and try again.

Error 10. Unknown record type type.

An invalid XNF record type was encountered in the file.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 11. at line number: There are characters
characters on the end of a record line, after all
expected data has been received.

Error 12. at line number: Invalid LCA netlist file.
Invalid or missing LCANET record.

Every valid XNF file must start with the LCANET record that lists the
XNF version of the file. Regenerate the XNF file.

Error 13. at line number: Unsupported XNF netlist
version number. Supported versions are: version
number.

Only XNF versions 1, 2, 4, and 5 are supported by this program.
Regenerate XNF file with compatible software.

Error 15. at line number: Valid part type must be
specified before netlist symbols can be read.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.Error 16at line
number: Invalid part record, missing parttype.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.
1-20 Xilinx Development System

The XNFMerge Program
Error 17. at line number: Missing name on SYM
record.

At line number: Missing type on SYM record.

These messages indicate an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

At line number: Unknown symbol type.

Error 18. At line number: Invalid PIN record.
Missing name field.

At line number: Invalid PIN record. Missing or
invalid direction field.

At line number: Invalid PIN record. Invalid
direction field.

At line number: Invalid PIN record. Non-numeric
delay field.

At line number: A bidirectional field (B) must
only be a macro.

These messages indicate an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 19. At line number: Pin name name used
multiple times on symbol name.

You can only have one instance of a particular pin name for each
symbol.

Error 20. At line number: Missing command on CFG
record.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 21. At line number: At line number: CFG
records allowed only in CLB and IOB symbols.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 22. At line number: Invalid SIG record.
Missing signal name.
Development System Reference Guide, Volume 2 1-21

Development System Reference Guide, Volume 2
This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 23. At line number: Invalid EXT record.
Invalid direction dir.

EXT records must have a direction field of I, O, T, B, or U.

At line number: Invalid EXT record. Missing signal
name.

Add the signal name to the EXT record.

At line number: Invalid EXT record. Bad or missing
direction field.

This error message indicates an invalid or corrupted XNF file. Rerun
the program that created this XNF file and try again.

Error 24. At line number: Invalid BUS record.
Missing bus name.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 25. At line number: Invalid PULSE record.
Missing pin name field.

At line number: Invalid PULSE record. Missing or
invalid polarity field.

At line number: Invalid PULSE record. Invalid
polarity field.

At line number: Invalid PULSE record. Invalid or
missing minimum width field.

These messages indicate an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 26.At line number: Invalid PWR record. Bad
or missing polarity field.

PWR record must have a 1 or a 0 in the polarity field.

At line number: Invalid PWR record. Polarity is
polarity. Must be 0 or 1.

This error message indicates an invalid or corrupted XNF file. Rerun
the program that created this XNF file and try again.
1-22 Xilinx Development System

The XNFMerge Program
Error 27. At line number: Invalid SETUP record.
Missing pin name field.

At line number: Invalid SETUP record. Missing
clock pin name field.

At line number: Invalid SETUP record. Missing or
invalid clock edge field.

At line number: Invalid SETUP record. Invalid
clock edge field.

At line number: Invalid SETUP record. Missing or
invalid setup time.

At line number: Invalid SETUP record. Missing or
invalid hold time.

These messages indicate an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.

Error 28. At line number: Missing id on HIERG
record.

At line number: Missing type on HIERG record.

At line number: Missing name on HIERG record.

At line number: Missing filename on HIERG record.

At line number: Missing parent id on HIERG record.

These messages indicate an invalid or corrupt XNF file. Rerun the
program that created this XNF file and try again.

Error 30. For general use of invalid parameters

At line number: Unknown MAP symbol type for SYM
name. The valid parameters are PUC, PLC, PLO, and
PUO.

This message is issued if a CLBMAP symbol has a MAP parameter
value that is not PUC, PUO, PLC, or PLO. See the “XNFMAP”
chapter in this reference guide for more information on MAP
parameters. XNFMAP defaults to MAP=PUC if any A through E
inputs pins are used. It defaults to MAP=PUO if no input pins are
used.
Development System Reference Guide, Volume 2 1-23

Development System Reference Guide, Volume 2
At line number: Invalid MAP symbol type HMAP
symbol name. Will use default MAP type PUC.

The only MAP parameter that is valid for an HMAP symbol is PUC.

Type name has invalid parameter value parameter.

This message is issued if a floating point value of the THI and TLO
parameters have trailing characters that are not “ns” (for
nanoseconds). Only the suffix “ns” may be added to a THI or TLO
value.

At line number: Unknown SYM record parameter
parameter ignored.

This message is issued if an unknown XNF symbol parameter is
found. Check the parameter specification in the design file.

At line number: invalid parameter parameter found on SYM
name, type symbol_type.

This message is issued if a parameter is assigned to a symbol that
does not support that parameter, such as a FAST tag on a DFF
symbol. Check the parameter for that symbol.

At line number: Unknown PIN record parameter
parameter.

This message is issued if an invalid parameter is assigned to a PIN.
Check the parameter for that symbol pin.

At line number: invalid PIN record parameter
parameter found on MAP symbol.

This message is issued if an invalid parameter is assigned to a PIN
statement for a CLBMAP. Only a P (pin-lock) parameter is allowed on
CLBMAP symbol pins.

At line number: Unknown SIG record parameter
parameter.

This message is issued if an invalid parameter is assigned to a SIG
(signal) record. Check the parameter for that signal.

At line number: Unknown EXT record parameter
parameter.

This message is issued if an invalid parameter is assigned to an EXT
record. Check the parameter for that I/O pad.
1-24 Xilinx Development System

The XNFMerge Program
At line number: FILE parameter found on name SYM,
type symbol_type.(Non-flattened design).

This message is issued if a File parameter is found on a non-macro
symbol. File parameters should be added only to unflattened macro
symbols. This error message might occur if a reserved name, such as
AND or OR, is used as the name of a File macro.

At line number: Extra LOC parameter parameter found
on signal name.

This message is issued if more than one LOC parameter is found on a
record. Multiple-block LOC parameters should be separated by
semicolon (;) characters. If commas (,) are used to separate LOC
parameters, this error is issued.

At line number: Invalid MAP symbol type [PLO, PUO
or PLC] for HMAP symbol symbol. PUC is the only
valid MAP= parameter for an HMAP symbol.

The only MAP parameter that is valid for an HMAP symbol is PUC.

At line number: param is not complete on PIN pin
name.

This message is issued if there is an invalid parameter on the PIN
record.

At line number: SYM record parameter TNM not found
on timespec symbols.

At line number: SYM record parameter parameter only
allowed on timespec symbols.

Error 31.Invalid LOC parameter name on symbol-
type name.

An invalid location specification was found on the indicated symbol.
Check the legal LOC constraints for the LCA family in use.

Error 33. More than one parm is specified on
symbol name. Only one is allowed per symbol

This warning message refers to the fact that there is more than one
RLOC, RLOC_ORIGIN or RLOC_RANGE on one symbol.
XNFMerge only reads the first RLOC specified.
Development System Reference Guide, Volume 2 1-25

Development System Reference Guide, Volume 2
Error 34. Invalid RLOC parameter parm on symbol-
type name.

Error 35. Both TTL and CMOS parameters are
specified on symbol name. Only one of these
parameters is allowed per symbol.

Error 36. RLOC specified on symbol sym name of
type type. RLOCs may not be used with decoders,
clocks, combinatorial logic symbols or IO
primitives.

Error 37. FAST/SLOW/MEDFAST/MEDSLOW and FAST/
SLOW/MEDFAST/MEDSLOW parameters have been found
on symbol/ext sym name/ ext name.

These parameters should be mutually exclusive.

Error 38. TNM parameter TNM = spec on symbol sym
name has illegal type. The only legal types are
FFs, RAMS, PADS or LATCHES. The syntax should be
TNM=name_value or TNM= type: name.

Error 40. At line number: Two different IOBs use
the same external signal signalname.

Two IOBs cannot use the same pad signal. Every pad signal must
have a unique name. This error can occur if you have a pad signal
connecting an input I/O symbol and an output I/O symbol, and the
two symbols are in separate modules of the design. If the two
modules are mapped independently using the XNFMAP -a or -q
options (map-then-merge design processing), then the two symbols
are made into two separate IOBs that both use the same pad signal.
Although the intention might have been to make the pad signal a
bidirectional signal, the separation of the two symbols into different
modules causes this error. Keep all the I/O elements of a single IOB
(pad signal, input and output symbols) in the same level of hierarchy
of the design.

Error 53. Out of memory. Needed number bytes.

There is insufficient memory to complete the XNF file processing.
Check the memory requirements for the LCA part type in use. This
can be an indication of an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again.
1-26 Xilinx Development System

The XNFMerge Program
Error 220. Can’t open file file name.

Error 221. Filename file name called recursively.

Cannot accept recursive designs. A file name cannot have a macro
that refers to itself or any subfiles that refer to itself.

Error 230. Aborting due to errors in the netlist
file.

Includes specific message about error in netlist file.

Error 240. Input file cannot be overwritten.
Specify an output file different from the input
file.

Error 241. Unknown part type type specified.

Error 250. Error while writing XNF information to
disk. Some information may be found in file
filename.

Check for full disk condition.

Error 261. FAST, SLOW, MEDFAST and MEDSLOW
parameters found on symbol sym name.

These parameters should be mutually exclusive.

Error 262. LOC/RLOC parameter loc/rloc string on CARRY
MODE symbol carry mode symbol name does not correspond
with LOC/RLOC parameter loc/rloc string on CARRY
symbol carry symbol name.

A carry symbol and its associated carry-mode symbol cannot have
different LOC/RLOC parameters.

Error 270. Invalid parttype type. Please re-run
using the -P command line option.

Error 271. Conflicting parttypes type and type.

You cannot mix part families from different files that are merged into
one design.

Error 281. Unable to open temporary work file
filename.

Check disk full condition or file permissions.
Development System Reference Guide, Volume 2 1-27

Development System Reference Guide, Volume 2
Error 283. Too many file names - check usage of
program.

There are too many file names on the input line.

Error 284. Improper use of option option.

Error 296. The macro symbol sym name (type= type)
has a LOC parameter that refers to location loc
value.

Since this macro contains symbols that will be mapped into both
CLBs and IOBs, it is unclear if this location refers to a CLB location or
to a half-edge of IOBs. To remove the ambiguity, move the LOC
parameter further down the hierarchy, so that only one type of
symbol is underneath it.

Error 301. An RLOC_ORIGIN is found on the
primitive symbol sym name of an h_set. The
RLOC_ORIGIN will be removed from the symbol. An
RLOC_RANGE is found on the primitive symbol sym
name of an h_set. The RLOC_RANGE will be removed
from the symbol.

Error 302. The upper-level symbol sym name in set
set name has a different RLOC extension ext from
the extension ext on lower-level symbol sym name.

Error 304. It is illegal to have both RLOC and
RLOC_ORIGIN/RLOC_RANGE attributes on the same
member of an H_SET. You must attach the
RLOC_ORIGIN to a macro at the top level of the
hierarchy of an H_SET.

Error 305. RLOC parameter rloc parameter found on
XBLOX symbol sym name.

RLOC parameters are not supported on XBLOX symbols.

Error 306. Both RLOC parameter rloc parameter and LOC
parameter loc parameter found on symbol sym name.

Error 307. HU_SET/U_SET/H_SET on symbol sym name
has the same name as the HU_SET/U_SET/H_SET on
symbol sym name.

Change the U_SET/HU_SET name.
1-28 Xilinx Development System

The XNFMerge Program
Error 308. Primitive symbol sym name in HU_SET/
U_SET= set name has an RLOC_ORIGIN/RLOC_RANGE but
no RLOC parameter.

Error 310. Macro name with TNM= spec contains
different type symbols underneath. A TNM parameter
without a FFS, RAMS, LATCHES, or PADS type
classification cannot be used on a macro with
multiple types of symbols.

If you want TNM parameters to apply to the different types of
symbols in the macro, replace the unclassified TNM= spec parameter
with a parameter that classifies the type of symbol for each
specification. For example:
TNM=FFS:name1;RAMS:name2;LATCHES:name3;PADS:name4

Error 312. TNM= tnm name parameter found on output
pin pin name of symbol sym name. This is illegal.

See the “XACT-Performance Utility” chapter in this reference guide
for more information.

ERROR 319. XBLOX %s symbol named sym name has been
classified as a type name TNM type. This symbol
cannot have both class name and class name
classifications in the TNM attribute.

ERROR 320. The U_SET name has both a RLOC_ORGIN
on symbol sym name and a RLOC_RANGE on symbol sym
name.

ERROR 321. The H_SET on symbol sym name has both
an RLOC_ORIGIN and an RLOC_RANGE.

Error 326. The symbol symbol name type=symbol type with
DEF=HM parameter is assigned a LOC value of value.
This LOC value will require the macro to exceed
the top boundary of the device.

Note that a LOC value on a macro with the DEF=HM parameter is
interpreted as the location of the lower-left corner of that macro.

Error 327. The LOC value loc value on symbol sym name
is not permitted in 4000 designs.
Development System Reference Guide, Volume 2 1-29

Development System Reference Guide, Volume 2
This error occurs when XNFMerge tries to adjust the RLOC in the
lower-left hand corner of the RPM to the LOC value on the macro
symbol.

Error 328. The macro symbol symbol name type=symbol type
with the DEF=HM parameter is assigned a LOC value
of value.

LOCs with extensions cannot be attached properly to the symbol in
the lower-left hand corner of the RPM.

ERROR 329. The hard macro symbol name, of type
type, is assigned an LOC value of loc value.

A hard macro with a LOC constraint that references more than a
single block location (that is, multiple CLBs, range, or wildcard LOC
constraint) cannot be automatically converted to an RPM. An RPM
may be constrained to a particular area of the device with an
RLOC_RANGE or RLOC_ORIGIN parameter. The DEF=HM and
LOC parameter must be removed from the hard macro symbol in
order for it to be treated as a standard RPM.

ERROR 340. The macro symbol name,of type type,
with the 'DEF=HM' parameter is assigned an LOC
value of value.

LOC parameters that prohibit locations cannot be attached properly
to the symbol in the lower left hand corner of the macro. An RPM
may be constrained to a particular area of the device with an
RLOC_RANGE parameter. The DEF=HM and LOC parameter must
be removed from the hard macro symbol in order for it to be treated
as a standard RPM.

Error 341. H_SET parameter H_SET param found on
symbol sym name of type type Use HU_SET or U_SET
parameter instead.

Error 343. Invalid use of TSid parameter on MAP
symbol sym name of type type. TSid parameters
cannot be used on this ty1
1-30 Xilinx Development System

Chapter 2
Development System Reference Guide, Volume 2 — 0401406 01 2-1

XNFPrep

This program is compatible with the following families.

● XC2000

● XC2000L

● XC3000

● XC3000A

● XC3000L

● XC3100

● XC3100A

● XC4000

● XC4000A

● XC4000H

● XC7200

● XC7300

The XNFPrep program performs a design rule check (DRC) on a
flattened XNF file and removes unused and redundant logic so that
processing will be accurate in the rest of the design flow. It also
checks the syntax of the XACT-Performance parameters found in the
design and prepares delay information for PPR path analysis. In
performing all three of these functions, XNFPrep issues error and
warning messages concerning the problems that it finds.

Development System Reference Guide, Volume 2
Design Flow
XNFPrep is part of three design flows: one involves X-BLOX for
XC4000, XC3000A/L, and XC3100A designs; one involves these same
families without X-BLOX; and the third pertains to XC2000, XC2000L,
XC3000, and XC3100 designs. These flows are shown in the following
two figures. XMake automatically executes the flow shown in Figure
2-1.

Figure 2-1 XNFPrep Design Flow Without X-BLOX for XC4000,
XC3000A/L, and XC3100A Designs

MAP

X4310

XNF XNF XNF

XNFMerge

XFF

XNFPrep

XTF

PPR

XNFMap

XC3000A/L & XC3100A

XC4000

PRP

(flattened design)

Report file

(trimmed design)
2-2 Xilinx Development System

XNFPrep
 XMake executes the flow shown in Figure 2-2 when you select the -b
option in XMake.

Figure 2-2 XNFPrep Design Flow with X-BLOX for XC4000,
XC3000A/L, and XC3100A Designs

MAP

X4309

XNF XNF XNF

XNFMerge

XFF

XNFPrep

XTG

X-BLOX

XG

XNFPrep

XTF

PPR

XNFMap

XC3000A/L & XC3100A

XC4000

PRP

PRX
Trimmed File

Report File

Report File
Development System Reference Guide, Volume 2 2-3

Development System Reference Guide, Volume 2
Figure 2-3 Design Flow for XC2000, XC2000L, XC3000, and
XC3100 Designs

Files

Input Files
When X-BLOX is not involved in the design flow, the input to
XNFPrep is a flattened XNF file with an .xff extension. When X-BLOX
is involved in the design flow, the input file is a flattened XNF file
with an .xff extension before X-BLOX processing and an XNF file with
an .xg extension after X-BLOX processing. You must specify this .xg
extension; otherwise, XNFPrep assumes that the input has an .xff
extension.

Output Files
XNFPrep generates a report file that lists warnings, errors, logic
trimmed, and clock fan-out. It also includes an XACT-Performance
specification summary. The default name of the report file is

X4593

CRF

XNF

XFF

XNF XNF

XNFMerge

XNFPrep

XTF

XNFMap

MAP

MAP2LCA

SCP LCA

APR
2-4 Xilinx Development System

XNFPrep
input_design.prp for designs without X-BLOX symbols and
input_design.prx for designs with X-BLOX symbols. You can specify a
different report file name with the Report option. The report file is
created in the directory in which XNFPrep is run unless a different
path is specified with the Report option.

If XNFPrep finds no errors, it produces a trimmed output XNF file
with a default name of input_design.xtf for designs without X-BLOX
symbols. For designs containing X-BLOX symbols, it produces a
trimmed output XNF file with a default name of input_design.xtg the
first time that the input file is submitted to XNFPrep. It also produces
a file called input_design.xtf during the second submission. You can
specify a different name for either of the trimmed output XNF files
with the Outfile option.

The trimmed logic is shown in indented style in the report file; the
indentations reflect the causal relationship of the trimming. For
example, if ground on the input pin of an AND gate causes the gate
itself to be removed, the record would look similar to the following
example.

Due to GND signal on pin ’3’ of AND symbol ’AND2’:
 Signal ’AND2_0’ merged into signal ’GND’.
 Disabled AND symbol ’AND2’ removed.

XNFPrep also outputs a log file, xnfprep.log, which contains all
information output to the screen during XNFPrep execution. You can
specify a log file name other than xnfprep.log by using the Logfile
option described in the “XNFPrep Options” section.

How to Use XNFPrep
This section describes how to perform XNFPrep’s functions. More
information on the options that implement these functions is given in
the “XNFPrep Options” section of this chapter.

XNFPrep commands are case-insensitive, even though they are
shown with initial capital letters in the descriptive text.
Development System Reference Guide, Volume 2 2-5

Development System Reference Guide, Volume 2
Invoking XNFPrep
You can access XNFPrep through the command line or through XDM.

From the Command Line

To invoke XNFPrep on the command line, use the following syntax.

 xnfprep designname [outfile= filename] { options}

where designname is the name of the flattened XNF file. You do not
have to attach any extension to designname when the input file has an
.xff extension; by default, XNFPrep searches for an XNF file with this
extension. When the input file is an XNF file after X–BLOX
processing, you must specify its .xg extension so that XNFPrep does
not assume it has an .xff extension.

You can specify filename to be the name of the trimmed output XNF
file. If you do not specify this file name, XNFPrep uses the name of
the input design as the default.

Options can be any of the following, which are described in detail in
the “XNFPrep Options” section of this chapter.

Cstfile=filename
-Helpall
Ignore_rlocs={True|False}
Ignore_timespec=value
Ignore_xnf_locs=value
Logfile=filename
Paramfile=filename
Parttype=parttype
Report=reportname
Savesig={True|False}

From XDM

In XDM, you can invoke XNFPrep by following these steps.

1. Type xdm on the command line.

2. Select XNFPREP from the Translate menu.

3. Select the name of the input file from the list that appears, or type
in the name at the prompt in the upper left corner of the screen.
2-6 Xilinx Development System

XNFPrep
4. Select the name of the output file from the list that appears, or
type in the name at the prompt in the upper left corner of the
screen. You can also select DONE to allow XNFPrep to use the
input file as the default output name.

5. Select the options that you wish from the list of XNFPrep options.

6. Click on DONE to run XNFPrep.

Running XNFPrep in XMake
To execute any of the design flows shown in Figure 2-1, 2-2, or 2-3,
follow the instructions given in the “XMake” chapter of this reference
guide. XMake automatically detects the presence of X-BLOX symbols
and chooses the appropriate flow.

Obtaining Help
You can obtain help in two ways when using XNFPrep. You can type
xnfprep ↵ or xnfprep -helpall . The Xnfprep ↵ command
brings up a description of the –Helpall, Cstfile, Outfile, Parttype,
Report, and Savesig options. –Helpall brings up a description of all
the options available in XNFPrep and their settings. Any other
options entered at the same time as -Helpall are ignored.

Trimming Signals
You can direct XNFPrep to retain or trim signals that are either
sourceless or loadless. On the command line, type the following
syntax.

 xnfprep designname savesig= { true | false }

When it is set to True, XNFPrep retains sourceless or loadless signals
and adds the Savesig “S” parameter to them. When it is set to False, it
trims sourceless or loadless signals. The default is False. This option
is useful when you work with partial designs.

Although you can place and route a design that has loadless and
sourceless nets, when you are trying to create a design you can
download into a device, you should run XNFPrep with savesig=false.
Development System Reference Guide, Volume 2 2-7

Development System Reference Guide, Volume 2
Ignoring Parameters
XNFPrep can ignore LOC, RLOC, and/or XACT-Performance
parameters in the design.

To ignore LOC parameters in specified places, except on carry
symbols, type the following.

 xnfprep designname ignore_xnf_locs= value

where value can be All, Interior, Io, or None. These settings are
described in the “XNFPrep Options” section of this chapter under the
Ignore_xnf_locs option. Similarly, XNFPrep can ignore RLOC
parameters, except on carry symbols, but they are processed as a
whole; you cannot specify that they be removed only in certain places
in the design. Use the following syntax.

 xnfprep designname ignore_rlocs= { true | false }

True removes RLOC parameters; False leaves them in the design. The
default is False.

You can ignore XACT-Performance specifications in the design by
entering the following.

 xnfprep designname ignore_timespec= value

Value specifies where the data is to be removed; it can be All, Design,
Cst, or None. These settings are described in the “XNFPrep Options”
section of this chapter under the Ignore_timespec option.

Submitting a Constraints File
To submit a constraints file to XNFPrep, enter this option.

 xnfprep designname cstfile= filename

You must use the Cstfile option if the CST file contains TIMESPEC or
TIMEGRP statements, and if the CST file has a name other than
designname.cst. By default, NXFPrep reads the designname.cst file.

Naming Files
You can specify the names of the output report file and the trimmed
XNF file if you do not wish to use the defaults.

The default name of the output report file is input_design.prp for
2-8 Xilinx Development System

XNFPrep
designs without X-BLOX symbols or input_design.prx for designs
with X-BLOX symbols. Use the Report option to specify an alternate
name for the report file.

 xnfprep designname report= filename

To specify an alternate name for the trimmed output XNF file, enter
the Outfile option.

 xnfprep designname outfile= filename

Specifying Part Type
To specify the part type of the design, type the following syntax.

 xnfprep designname parttype= parttype

This option overrides the part type specified in the PART record of
the XFF file.

Examples
Following are three examples showing how to use XNFPrep with
certain criteria.

The first example assumes that you want to prepare the “bigchip”
design for submission to PPR for placement and routing. The
trimmed output file is to be named “top.” The report file is to have
the same name as the input file but should be placed in a different
directory: /home/test/results. Enter the following syntax on a single
command line.

xnfprep bigchip outfile=top
report=/home/test/results/bigchip

In a second example, the “final” design is also to be submitted to
PPR. The trimmed output file should be placed in a different
directory: /home/test. LOC parameters on the I/O symbols should
be ignored but all others used. Lastly, the part type is 4005PC84
instead of what is listed in the design. Enter the following syntax on a
single command line.

xnfprep final outfile=/home/test/final
parttype=4005pc84 ignore_xnf_locs=io
Development System Reference Guide, Volume 2 2-9

Development System Reference Guide, Volume 2
In the third example, suppose that you wanted to submit the “best”
design to PPR for placement and routing. You want all XACT-
Performance parameters found in the design to be ignored, and you
want to use a constraints file, “bestcst,” found in /home/test/fix. To
perform these functions, enter the following syntax on a single
command line.

xnfprep best ignore_timespec=design
cstfile=/home/test/fix/bestcst

Options
The options available with the Xnfprep command are listed here in
alphabetical order.

Cstfile
The Cstfile option specifies the name of the constraints file to use. You
must use this option if the CST file contains TIMESPEC or TIMEGRP
statements, and if the CST file has a name other than designname.cst.

Command line syntax: cstfile= filename

XDM command: Translate → XNFPREP→
cstfile= filename

Values: filename

Default value: None

Applicable family: XC3000A, XC3000L, XC3100A,
XC4000

This option specifies the name and path of the constraints file to
submit to XNFPrep.

-Helpall
The -Helpall option brings up a description of all the XNFPrep
options and their settings. Do not enter other options at the same time
that you enter the -Helpall option.
2-10 Xilinx Development System

XNFPrep
Ignore_xnf_locs
The Ignore_xnf_locs option ignores the LOC parameters in the input
design file for specific types of logic.

Command line syntax: ignore_xnf_locs= type

XDM command: Translate → XNFPREP→
ignore_xnf_locs= type

Values: all , io , interior , none

Default value: none

Applicable family: All families

Type specifies the logic on which to ignore LOC parameters.

● All ignores LOC parameters on all logic.

● Io ignores LOC parameters on I/O symbols.

● Interior ignores LOC parameters on internal logic, that is, on
everything except I/O symbols.

● None does not ignore any LOC parameters.

Note: XC4000 carry logic (CY4) symbols must have either RLOC or
LOC constraints. If a design contains CY4 symbols with LOC
constraints, the Ignore_xnf_locs option will not ignore these LOC
constraints. Any register-based LOCs or RLOCs not associated with
carry logic structures will get ignored.

Ignore_rlocs
The Ignore_rlocs option ignores all RLOC parameters in the design
file.

Command line syntax: ignore_rlocs={true|
false}

XDM command: Translate → XNFPREP→
-ignore_rlocs

Values: true , false

Default value: false

Applicable family: XC4000
Development System Reference Guide, Volume 2 2-11

Development System Reference Guide, Volume 2
When this option is set to True, XNFPrep ignores RLOC parameters;
when it is set to False, it does not.

Note: XC4000 carry logic (CY4) symbols must have either RLOC or
LOC constraints. If a design contains CY4 symbols with RLOC
constraints, the Ignore_rlocs option will not ignore these RLOC
constraints. Any register-based LOCs or RLOCs not associated with
carry logic structures will get ignored

Ignore_timespec
This option ignores timing requirements specified in the schematic.

Command line syntax: ignore_timespec= value

XDM command: Translate → XNFPREP→
ignore_timespec= value

Values: all , design , cst , none

Default value: none

Applicable family: XC3000A, XC3000L, XC3100A, XC4000

Value can be one of the following.

● All ignores XACT-Performance specifications in the input design
and in the constraints file.

● Design ignores XACT-Performance specifications in the input
design.

● Cst ignores XACT-Performance specifications in the constraints
file.

● None does not ignore any XACT-Performance specifications.

The default is None.

For more information on XACT-Performance parameter checking,
refer to the “XACT-Performance Utility” chapter in this reference
guide.
2-12 Xilinx Development System

XNFPrep
Logfile
The Logfile option specifies an alternate name for the xnfprep.log file.

Command line syntax: logfile= filename

XDM command: None

Values: filename

Default value: xnfprep.log

Applicable family: All families

Use the Logfile option to assign a different name to the xnfprep.log
file. The .log extension is appended if you do not specify an extension
with the new file name. If the Logfile option is not used, the screen
output is written to the xnfprep.log file, overwriting any previous
versions of this log file.

Outfile
This option specifies the path and name of the trimmed output XNF
file if you do not wish to use the default file name of input_design.xtf
for designs without X-BLOX symbols, or input_design.xtg for designs
containing X-BLOX symbols. You do not have to specify the .xtf or
.xtg extension.

Command line syntax: outfile= filename

XDM command: None; output file name is specified
while invoking XNFPrep.

Values: filename

Default value: XTF or XTG file name

Applicable family: All families

Paramfile
Using the Paramfile option, you can specify XNFPrep options in a
separate file, called a parameter file, instead of from the operating
system prompt. A parameter file is a text file containing a list of
desired options and their respective values, as in the following
example.

parttype=4005pg156
Development System Reference Guide, Volume 2 2-13

Development System Reference Guide, Volume 2
cstfile=juke.cst
ignore_xnf_locs=io

Command line syntax: paramfile= filename

XDM command: Translate → XNFPREP→
paramfile= file

Values: filename

Default value: None

Applicable family: XC3000A, XC3000L, XC3100A, XC4000

Use the name of the parameter file as the value for the Paramfile
option.

You can specify additional options on the command line whenever a
parameter file is used; these override similar options specified in the
parameter file.

Parttype
This option specifies a part type for the design. It overrides the part
type specified in the XFF file. A part type must be specified either in
the .xff file or with this option. Parttype must be a valid part type,
such as 4005PG156-5 or 3042APG132-6.

Command line syntax: parttype= parttype

XDM command: None; XDM invokes XNFPrep
with the correct part type.

Values: Part type name

Default value: None

Applicable family: All families

Report
This option specifies the name of the report file if you do not wish to
use the default file name of input_design.prp for designs without
X-BLOX symbols or input_design.prx for designs with X-BLOX
symbols. You do not have to specify the .prp or .prx extension.

Command line syntax: report= filename
2-14 Xilinx Development System

XNFPrep
XDM command: Translate → XNFPREP→
report= filename

Values: filename

Default value: PRP or PRX file name

Applicable family: All families

Savesig
This option directs XNFPrep to retain or trim signals that are either
sourceless or loadless. When it is set to True, XNFPrep retains
sourceless or loadless signals and adds the Savesig “S” parameter to
them. When it is set to False, it trims sourceless or loadless signals.
The default is False. This option is useful when you work with partial
designs.

Command line syntax: savesig={true|false}

XDM command: Translate → XNFPREP→ -savesig

Values: true , false

Default value: false

Applicable family: All families

Note: If your design contains carry symbols, every carry chain must
be completely defined. Sourceless or loadless connections to CY4
symbols cannot be preserved, either with the Savesig option or with
individual “S” parameters.

Split_report
This option is used by the Flow Manager to generate multiple
reports.

Command line syntax: split_report ={true|false}

XDM command: None

Values: true, false

Default value: false

Applicable family: All families
Development System Reference Guide, Volume 2 2-15

Development System Reference Guide, Volume 2
2-16 Xilinx Development System

Chapter 3
Development System Reference Guide, Volume 2 — 0401406 01 3-1

The XNFMAP Program

This program is compatible with the families indicated.

● XC2000

● XC2000L

● XC3000

● XC3000A

● XC3000L

● XC3100

● XC3100A

XNFMAP maps the logic defined by an XTF file (Xilinx netlist file
trimmed flat) into FPGA blocks — CLBs, IOBs, TBUFs — that can be
placed and routed by APR or PPR. The XNFPrep program converts
your XNF into an XTF file. XNFMAP first maps logic associated with
CLBMAP symbols in the design file or in the partitioning guide file
(PGF). The program then efficiently maps the remaining logic into
CLB and IOB blocks.

XNFMAP accepts the XTF file generated by the design rule check and
logic trimming program, XNFPrep. The input file for XNFMAP must
not contain design errors or untrimmed logic.

The output of XNFMAP is a MAP file that describes logic
partitioning into FPGA blocks. This file is formatted differently
depending upon the FPGA family type and the next program in the
design flow. MAP files for XC2000, XC2000L, XC3000, and XC3100
designs are formatted for the MAP2LCA and APR programs. MAP
files for XC3000A, XC3000L, and XC3100A designs are formatted for
the PPR program.

Development System Reference Guide, Volume 2
XNFMAP also produces a design-to-LCA cross-reference report file
(CRF) and a PGF. The CRF contains the cross-reference between
original logic elements and the resulting FPGA blocks; a report on the
successful use of CLBMAP guide symbols; a listing of symbols
ordered in registers; and a summary of the CLB and IOB blocks used
in implementation. You can use the PGF on subsequent design
iterations to guide a modified design with the logic mapping from a
previous iteration. Guided mapping is necessary for success with
guided placement and routing in APR and PPR, and is an important
component in the incremental and iterative design flows.

XNFMAP can map-then-merge the logic using the design hierarchy
information stored in the design file by the file merging program,
XNFMerge. The map-then-merge options independently map the
logic at specified levels of the design hierarchy before merging all the
levels to generate the output file. These options prevent the mapping
of logic from different levels of the design hierarchy together into
CLBs. Because XNFMAP can map-then-merge a single input file, it
does not accept as input any files it previously generated, such as
MAP files.

XNFMAP orders registers by pairing register flip-flops into CLBs
according to the alphabetic order of their output signal names.

Note: The design rules checker program, XNFPrep, must be run on
XFF files before executing XNFMAP. See the “XNFPrep” chapter in
this reference guide for more information.

Syntax
Use the syntax shown below to map logic defined by an XTF file into
the elements of a MAP file.

xnfmap [options] design.xtf output.map

Using XACT Design Manager (XDM)
You can invoke XNFMAP through XDM, a menu-driven interface for
executing all FPGA development operations. Refer to the “XDM”
chapter in the Development System Reference Guide for a complete
description.
3-2 Xilinx Development System

The XNFMAP Program
Once you access XDM, select Translate ➝XNFMAP from the main
menu. A cascading menu appears that lists all available XNFMAP
commands. Refer to the “Options” section below for a detailed
description of each menu selection.

Files
This section describes the XNFMAP input and output files.

Input Files
XNFMAP uses the following files as inputs.

● design.xtf — The XTF netlist file that describes the design.

● design.pgf — An optional partitioning guide file (PGF) that
describes a previous run of XNFMAP. The PGF file, generated
from a previous run of XNFMAP, is used when the -k or -h option
is specified. See the “Using the Partitioning Guide File” section in
this chapter for more information.

Output Files
XNFMAP creates the following output files.

● design.map — The MAP file that contains the logic partitioning
information, which is the input file for the MAP2LCA or PPR
program.

● design.crf — The logic-to-LCA cross-reference report file that
contains cross-references between the original logic elements and
the resulting FPGA design elements. The CRF also contains
information about the effects of CLBMAPs and guide files, and a
design summary.

● design.pgf — The partitioning guide file that describes how
XNFMAP partitioned the logic for the specified design. The PGF
can be used to guide the partitioning of the specified design the
next time you run XNFMAP. See the “Using the Partitioning
Guide File” section for more information.

● design.pbk — The partitioning guide file backup. This file is a copy
of the design.pgf file that exists in the current directory before
Development System Reference Guide, Volume 2 3-3

Development System Reference Guide, Volume 2
running XNFMAP. See the “Using the Partitioning Guide File”
section for more information.

Options
Command-line options enable you to change the way XNFMAP
operates. The following sections discuss each option in detail.

–a Respect Hierarchy Boundaries

The -a option maps only logic elements from the same level of
hierarchy in a single CLB. A level of hierarchy is defined as the logic
contained within a single user-specified macro symbol. Use this
option when you want to preserve all original design hierarchy
during implementation. Without this option, XNFMAP might place
logic elements from different levels of the hierarchy in the same CLB.

If the file contains no hierarchy information, this option has no effect
on the mapping process.

Note: Use of this option can lead to less efficient use of the FPGA
resources since it usually restricts XNFMAP’s mapping functions. Do
not use this option if you used the XNFMerge option that suppresses
storing the hierarchy information in the design file.

–c Ease the Requirements for Combining Logic

The -c option relaxes the requirement for a high degree of signal-
sharing between logic elements in a CLB, resulting in more densely
packed CLBs.

Note: Although this option makes a design denser, it can also affect
place and route performance, resulting in higher delays and more
unrouted nets. Use this option if you are willing to trade performance
for density.

–e Estimate LCA Resources

The -e option allows a preliminary estimate of the number of CLBs
and IOBs required to implement a design. XNFMAP accepts a file not
previously processed by XNFPrep. Since XNFPrep did not process
the output file, do not use it for further design implementation.
3-4 Xilinx Development System

The XNFMAP Program
–f Force Dense Partitioning of Logic

The -f option partitions logic more densely. Normally, XNFMAP
partitions logic to maximize signal sharing within CLBs and to
minimize routing congestion. Using the -f option is equivalent to
using the -c, -s, and -i options together.

Note: Although this option makes a design denser, it can also affect
place and route performance, resulting in higher delays and more
unrouted nets. Use this option if you are willing to trade performance
for density.

–g Limit the Number of Gates Combined into One
CLB

The -g option limits the number of gates combined into one CLB
function generator. This option requires a number as an argument, as
follows.

xnfmap -g number design.xtf output.map

If you specify the -g option without a number, XNFMAP uses the
default of 20 gates. If you do not specify the -g option, XNFMAP can
combine an unlimited number of gates into one function generator.
However, if XNFMAP builds an equation that overflows the equation
buffer, it issues a message suggesting that you use this option.

–h Read Named Guide File and Keep Same Logic
Mapping

Use the -h option as follows.

xnfmap design -h filename.pgf

When you specify this option, XNFMAP reads the specified PGF file
and uses the information in this file to guide the mapping of a new
design file. It is necessary to re-create the same logic mapping to
guide the placement and routing of your design with an LCA guide
file in APR or PPR.

This option differs from the -k option because you can specify a guide
file name that is different from your design’s file name. The guide file
specified with the -h option can exist in a different directory from
your design file.
Development System Reference Guide, Volume 2 3-5

Development System Reference Guide, Volume 2
Warning: XNFMAP always writes the output guide file to the same
directory as your design file and uses the same file name as your
design file with a .pgf extension. XNFMAP does not use the file name
specified with the -h option when writing the output guide file.

–i Permit the Use of Direct Flip-Flop Input Pins

The -i option uses the DI (direct flip-flop input) pins on CLBs for the
XC3000, XC3000A, XC3000L, XC3100, and XC3100A families. Using
the DI pin reduces the setup time required for the CLB flip-flop, but
also introduces a hold time requirement.

Note: Although this option makes a design denser, it can also affect
place and route performance, resulting in higher delays and more
unrouted nets. Use this option if you are willing to trade performance
for density.

–j Ignore IO Location Constraints

The -j option ignores and discards any location (LOC) attributes on
IO logic. This option does not affect constraints on TBUF or CLB
logic.

–k Guide the Partitioning of a Previous Design
Iteration

The -k option guides the partitioning of a previous design iteration
using the design.pgf file. See the “Using the Partitioning Guide File”
section for more information.

–m Ignore CLBMAP Symbols in the Design File

The -m option ignores any CLBMAP guide symbols in the input
design file. Because the CLBMAP symbols in the design file override
the information in the partitioning guide file (PGF), this option can be
used to give precedence to the guide file information. Use this option
if you suspect that over-constraining the design through the misuse
of CLBMAP symbols caused poor placement and routing.
3-6 Xilinx Development System

The XNFMAP Program
–n Ignore Interior-Array Location Constraints

The -n option ignores and discards any location (LOC) attributes on
TBUF or CLB logic, including D-type flip-flops, CLBMAP symbols, or
CLB primitives. Constraints on IO logic are not affected.

–o Suppress Registered Signal Ordering

The -o option suppresses registered signal ordering. It leaves the
sorting of registered data bits to the standard pin-saving algorithms.
This option also prevents XNFMAP from isolating register logic
within CLBs. See the section “Register Ordering” for an explanation
of how XNFMAP handles registered signal ordering.

Note: Although this option makes a design denser, it can also affect
place and route performance, resulting in higher delays and more
unrouted nets. Use this option if you are willing to trade performance
for density.

–p Specify the LCA Package Type

The -p option changes the part/package specification for the design.
Xilinx strongly recommends that you only change the package
specification, and not the part, at this point in the design flow. On the
command line, the new part/package specification follows the -p
option, as illustrated by this example.

xnfmap -p specification input.xtf output.map

Note: If you need to modify the part size, it should be changed in the
original design or by using the XNFMerge option to change the part.
Be sure to run XNFPrep on the design with the correct part type prior
to running XNFMAP.

–q Respect File= Macro Boundaries

The -q option maps only logic elements from the same level of
hierarchy in a single CLB, with each level of hierarchy defined by the
presence of a “FILE=” attribute on the original macro symbol. This
option differs from the -a option, which defines a single level of
hierarchy for every user-defined macro in the design.

Note: Use of this option can lead to less efficient use of the FPGA
resources since it usually restricts XNFMAP’s mapping functions. Do
Development System Reference Guide, Volume 2 3-7

Development System Reference Guide, Volume 2
not use this option if you used the XNFMerge option that suppresses
storing the hierarchy information in the design file.

–r Reduce the Number of CLBs

The -r option reduces the number of CLBs used in the design at the
expense of logic levels. XNFMAP does this by favoring 3-input
functions over 4-input functions for XC2000-family designs, or by
favoring 4-input functions over 5-input functions for XC3000-family
designs. Functions with few inputs can generally be packed more
tightly into CLBs than functions with many inputs. Also they can
often be combined with a flip-flop into one CLB.

The CLB reduction might not be optimal on some designs, causing
the number of CLBs to increase rather than decrease. This might
occur on small designs or on designs using relatively few flip-flops.

Note: This option results in a more efficient use of CLB resources, but
it may increase the number of levels of logic needed to implement
wide functions, and can increase the routing resources needed to
implement the design in an FPGA.

–s Relax the Signal Combining Requirements

The -s option attempts to fit more logic into CLBs by reducing the
minimum signal combining requirements.

Note: Although this option makes a design denser, it can also affect
place and route performance, resulting in higher delays and more
unrouted nets. Use this option if you are willing to trade performance
for density.

–u Respect Guide File Hierarchy

The -u option maps only logic elements from the same level of
hierarchy in a single CLB, with each level of hierarchy defined by the
hierarchy in the guide file. Therefore, XNFMAP ignores the hierarchy
in the design file.
3-8 Xilinx Development System

The XNFMAP Program
The XNFMAP Process
When partitioning an XTF file, the XNFMAP program performs the
following tasks.

● Reads the input design file

● Reads the design guide file, if applicable

● Uses any design file CLBMAP symbols and the guide file to map
logic

● Maps remaining logic into FPGA resources

● Creates output files

The following sections discuss each step in detail.

Input Design and Design Guide Files
XNFMAP first performs the following tasks.

● Reads the input design.xtf file.

● Checks for conflicting location control constraints (LOC= or
LOC<>) on all symbols and external pads. Any conflicting
constraints produce an error.

● Reads the design.pgf or filename.pgf guide file if you specify the -k
or -h option, respectively.

● Resolves any discrepancies between the guide file and design file
information. See the “Using the Partitioning Guide File” section
for more information.

CLB Mapping
XNFMAP maps CLBs according to user-defined CLBMAPs and
guide file information. XNFMAP processes CLBMAPs in the
following order.

1. Closed CLBMAPs in the design file

2. Closed CLBMAPs in the guide file, if applicable

3. Open CLBMAPs in the design file (guide file CLBMAPs
supercede, if applicable)
Development System Reference Guide, Volume 2 3-9

Development System Reference Guide, Volume 2
Logic Mapping into FPGA Resources
XNFMAP then performs the following tasks.

● Maps remaining logic into FPGA resources — CLBs, IOBs, and
TBUFs

● Names CLBs and IOBs

Output Files
XNFMAP creates the following output files.

● Creates a design.map output file, if no errors exist

● Creates a design.pgf output guide file and renames the previous
guide file with a .pbk extension, if no errors exist

● Creates a design.crf cross-reference file

Register Ordering
For APR or PPR to achieve an optimal placement of register logic,
XNFMAP must properly partition the flip-flops. XNFMAP achieves
these goals by performing register ordering.

For example, the program combines register bits 0 and 1 into one
CLB, bits 2 and 3 in another CLB, and so on. If XNFMAP cannot
combine a register flip-flop with another flip-flop from the same
register, the flip-flop should be isolated in a CLB to prevent unrelated
logic from distorting the placement.

XNFMAP pairs flip-flops in CLBs in sequential alphabetic name
order based on their output signal names. XNFMAP identifies flip-
flops as belonging to a specific register if at least four flip-flops share
a common clock signal and have similarly named outputs. See
“Naming Conventions” below for more information.

XNFMAP isolates a register flip-flop in a CLB if it cannot combine
that flip-flop with another flip-flop from the same register. In this
manner, the APR and PPR programs can place the register CLBs
correctly, since there is no non-register logic in those CLBs.
3-10 Xilinx Development System

The XNFMAP Program
Naming Conventions
For XNFMAP to recognize and order register bits properly, use the
following naming conventions.

● Give register names at least one alphabetic character, and do not
use the underscore (_) character. The allowances made for OrCAD
designs are described in the following section, “Register Ordering
for OrCAD/SDT Designs.”

● Name these signals in sequential alphabetic order. XNFMAP
attempts to pair the register flip-flops in CLBs according to this
order, provided the names are identical except for the final two
characters.

For example, consider the following flip-flop outputs.

rega09
rega10
rega11
rega12

XNFMAP would group rega09 with rega10, and rega11 with rega12,
since the names differ only in the final two characters.

If the final character is non-alphanumeric, such as the trailing “>” of a
bus signal, XNFMAP uses all but the last three characters in the name
for matching. For example, consider the following register outputs.

rega<34>
rega<35>
regb<76>
regc<23>

XNFMAP would group only rega<34> and rega<35>. The others all
have differences beyond the final three characters. For another
example, consider the following register outputs.

bit045
data86
des032
rega95

XNFMAP does not consider any of these similar and would not
group them together into CLBs.
Development System Reference Guide, Volume 2 3-11

Development System Reference Guide, Volume 2
Register Ordering for OrCAD/SDT Designs
Since OrCAD appends an underscore (_) followed by a sheet number
to each output signal name, XNFMAP uses the two characters before
the underscore to determine register ordering. XNFMAP groups
these signals if the sheet numbers, as well as all characters except the
two before the underscore, are identical.

For example, XNFMAP groups the following signals together.

rega34_30
rega35_30

However, XNFMAP does not group the following signals.

rega24_1
regb35_1

XNFMAP does not group the next two signals, since the sheet
numbers do not match.

rega34_23
rega35_1

If a non-alphanumeric character precedes the underscore (_),
XNFMAP uses all but the three characters before the underscore for
matching. For example, XNFMAP groups the following signals.

rega<24>_1
rega<35>_1

However, XNFMAP does not group the next two signals.

rega<24>_1
regb<35>_1

Using a Partitioning Guide File
XNFMAP enables you to guide your design by using either of the
following methods.

● Guide by XNF — Using the design.pgf files created by a previous
XNFMAP run.

● Guide by LCA — Using a placed-and-routed LCA file previously
created by the LCA2XNF program.
3-12 Xilinx Development System

The XNFMAP Program
The XNFMAP guide file is created from either a placed and routed
LCA file, or from a previous design iteration. To use a guide file, you
must specify the -k or -h option. XNFMAP reads the partitioning
guide file and uses the indicated mapping for the new design
iteration wherever possible.

APR and PPR attempt to match CLBs and IOBs in the guide design
with those in the new design. For best results, the design file and the
guide file should be similarly partitioned, only differing where logic
has been changed or added.

Guide by PGF
XNFMAP automatically creates a partitioning guide file, design.pgf,
each time the program is run without any errors. XNFMAP writes
CLBMAP symbols in the PGF file that record the partitioning of the
logic; therefore, the CLBMAP symbols can be used to guide the
mapping process of a future iteration.

XNFMAP performs the following steps when using a PGF file to
guide your design.

● Reads the file design.pgf and uses the CLBMAP symbols to guide
the partitioning process.

● Compares the CLBMAPs in the guide file to any CLBMAPs in the
design file.

If any CLBMAPs in the guide file have output signals (CLB X or Y
pins) that no longer exist in the design file, XNFMAP disregards that
CLBMAP. If any guide file CLBMAPs have input signals that no
longer exist XNFMAP issues a warning but keeps the CLBMAP.
Development System Reference Guide, Volume 2 3-13

Development System Reference Guide, Volume 2
XNFMAP disregards a CLBMAP in the guide file if either of its
output signals are also indicated as outputs on a closed CLBMAP in
the design file. If an open CLBMAP in the design file has the same
output signals as a guide file CLBMAP, XNFMAP disregards the
design file CLBMAP, since the open CLBMAP does not define
complete boundaries for a CLB. Refer to the following section,
“Partitioning Logic on a Schematic,” for more information about
opened and closed CLBMAPs.

Note: To force XNFMAP to disregard all CLBMAPs in the design file,
specify both the -m and -k options.

● Rewrites the PGF to record the modified mapping and incorporate
any logic changes once partitioning is complete. Therefore, the
PGF always represents the most recent partitioning of the design.

● Backs up the previous PGF as design.pbk.

● Issues a summary of the guided partitioning, written to both the
screen and the CRF.

The following figure shows the steps performed when a PGF file is
used to guide a design.
3-14 Xilinx Development System

The XNFMAP Program
Figure 3-1 Guide by PGF

Previous
Design
Iteration

XNFMap

New
Design
Iteration

XNFMap -k

To Map2LCA
and APR

PPR
X2568

Guide File
Created

Guide File
Used

Guide File
Rewritten

.xtfdesign

.crfdesign .mapdesign .pgfdesign

.xtfdesign

.crfdesign .mapdesign .pgfdesign

To Map2LCA
and APR

PPR
Development System Reference Guide, Volume 2 3-15

Development System Reference Guide, Volume 2
Guide by LCA File
If a design has already been placed and routed, the LCA file can be
used to create a PGF for XNFMAP. This file can be the same LCA file
that is used to guide placement and routing in APR and PPR.

To use an LCA file as a guide file, you must perform the following
procedures.

● Create a PGF guide file from an LCA file

● Use the guide file to partition your design

● Preserve original partitioning

The following sections describe each procedure in detail.

Creating a Guide File from an LCA File

To create a guide file from a placed and routed LCA file, perform the
following steps.

1. Run the LCA2XNF program without specifying any options on
the placed and routed LCA file. Access LCA2XNF via XDM or
enter the following syntax on the command line.

lca2xnf design.lca

This process generates an equivalent XNF including a record of
each CLB in the design. You can use this XNF as the PGF;
therefore, rename it with the PGF extension and the new design
name, for example, design.pgf.

2. Rename the AKA file to match the new design name, if applicable.
MAP2LCA with the -a option generates the AKA file, which
contains the mapping of short alias names to long hierarchical
names. The recommended design flow does not include creating
an AKA file.

If the placed and routed LCA file contains names shortened by the
MAP2LCA program, the AKA file must be present in the current
directory. If necessary, rename this file to match the new design name,
for example, design.aka. XNFMAP reads this file to restore the
original names. XNFMAP only restores prefixes of the form
$<number>; therefore, do not edit AKA file prefixes if performing
guided partitioning.
3-16 Xilinx Development System

The XNFMAP Program
Using the Guide File to Partition Your Design

After creating the guide file, run XNFMAP with the -k option on the
XNF for the new design iteration. XNFMAP performs the following
steps to use the guide file to partition your design.

● Reads the file design.pgf and extracts all CLBs from the design,
creating an equivalent CLBMAP for each.

● Adds P (pin-lock) attributes to each CLBMAP it creates, ensuring
that the guide file is able to match CLBs.

● Uses these CLBMAPs to guide the partitioning process.

If any CLBMAPs in the guide file have output signals (CLB X or Y
pins) that no longer exist in the design file, XNFMAP disregards
those CLBMAPs. If any guide file CLBMAPs have input signals that
no longer exist, XNFMAP issues a warning but keeps the CLBMAPs.

XNFMAP disregards a CLBMAP in the guide file if either of its
output signals are also indicated as outputs on a closed CLBMAP in
the design file. If an open CLBMAP in the design file has the same
output signals as a guide file CLBMAP, XNFMAP disregards the
design file CLBMAP, since the open CLBMAP does not define
complete boundaries for a CLB. Refer to the following section,
“Partitioning Logic on a Schematic,” for more information about
opened and closed CLBMAPs.

Preserving Original Partitioning

The objective of guiding with an LCA file is to preserve as much of
the original partitioning as possible; therefore, Xilinx recommends
that you disregard all CLBMAPs in the design file. To force XNFMAP
to ignore all such CLBMAPs, combine the -m and -k options.

After completing partitioning, XNFMAP performs the following
steps to create the output files.

● Rewrites the PGF to record the modified mapping and
incorporate any logic changes. This PGF uses CLBMAPs to
represent the partitioning and replaces the file created by
LCA2XNF. Consequently, the PGF always represents the most
recent partitioning of the design.

● Issues a summary of the guided partitioning and sends output to
both the screen and the CRF.
Development System Reference Guide, Volume 2 3-17

Development System Reference Guide, Volume 2
Note: If you used an AKA file in the original design iteration, it must
not contain any user-created prefixes. XNFMAP only restores aliases
of the form $-number in the LCA guide process.

The following figure illustrates the steps performed when an LCA file
is used to guide a design.

Figure 3-2 Guide by LCA File

XNFMap -k

X2569

LCA2XNF

Previous
Design
Iteration

New
Design
Iteration

Map2LCA
and

APR -g
PPR guide =

.xtf

Guide File Used
and Rewritten

design

.akadesign .pgfdesign

.lcadesign

.crfdesign .mapdesign .pgfdesign

.lca
.lca

routed
routed

.lcarouted

Rename
3-18 Xilinx Development System

The XNFMAP Program
Partitioning Logic on a Schematic
You can specify logic partitioning at the schematic level by using the
CLBMAP symbol. A CLBMAP is used in conjunction with standard
logic elements, such as gates and flip-flops. A CLBMAP implicitly
specifies the configuration of a CLB by defining the signals on its
pins. Use the CLBMAP symbol to control partitioning when the
default partitioning is not acceptable.

You can enter the CLBMAP symbol directly on the schematic and
assign signals to its pins. XNFMAP processes this symbol and the
appropriate logic, as defined by the input and output signals, and
maps them into one CLB. The easiest way to define a CLBMAP is to
connect a labeled wire segment to each pin, which connects that pin
to the net carrying the same label.

If a CLBMAP specifies an illegal CLB configuration, XNFMAP issues
an error and explanation about why the CLBMAP is illegal.

The following table displays the MAP parameters you can attach to
CLBMAP symbols.

Table 3-1 MAP Parameters for CLBMAP Symbols

Opened and Closed CLBMAPs
A CLBMAP can be either closed or open. You can specify a CLBMAP
as either open or closed by attaching the appropriate MAP parameter
to the symbol. See the preceding table for the exact conventions.

A closed CLBMAP must specify both the input and output signals for
that CLB. XNFMAP partitions a closed CLBMAP exactly as specified,
unless the indicated configuration is illegal. XNFMAP does not add
any additional logic to a CLB specified with a closed CLBMAP.

An open CLBMAP specifies only the output signals for the CLB.
XNFMAP assigns those signals to the CLB output pins and partitions
the source logic into the CLB as appropriate. Use an open CLBMAP
to specify the function of a CLB without specifying the exact

Closed CLB Open CLB

Pins Locked MAP=PLC MAP=PLO
Pins Unlocked MAP=PUC MAP=PUO
Development System Reference Guide, Volume 2 3-19

Development System Reference Guide, Volume 2
configuration. If a CLBMAP symbol does not include any function
generator input pins (A, B, C, D, E), then XNFMAP automatically
assigns a MAP=PUO attribute to the symbol so that is regarded as an
open CLBMAP.

Locked or Unlocked CLBMAP Pins
The pins on a CLBMAP can be either locked or unlocked. You can
either lock or unlock pins by attaching the appropriate MAP
parameter to the symbol. See the preceding table for the exact
conventions.

If the CLBMAP pins are locked, the place and route programs do not
swap these CLB pins. In most cases, the pins on a CLBMAP remain
unlocked, so the pins can be swapped to achieve better routing
results. Only the output pins of an open CLBMAP are locked.

If a CLBMAP has unlocked pins, individual CLBMAP pins can be
locked by attaching a P (pin-lock) attribute to the corresponding pin.
On an open CLBMAP, you can assign P attributes only to output pins.

If a CLBMAP symbol specifies a CLB in the base FGM configuration,
this must be indicated to XNFMAP by locking the select pin for the 2-
to-1 multiplexer in the CLB. This is done by attaching a P (pin-lock)
attribute to the signal on the E-pin (XC3000) or B-pin (XC2000) of the
CLBMAP. If XNFMAP cannot configure the CLB using base FGM, it
attempts to use a base F or base FG configuration instead.

Note: You do not need to specify the special purpose pins on XC3000
family CLBs (K, RD and EC) on the CLBMAP symbol. XNFMAP
assigns the correct signals to these pins. XNFMAP generates a
warning, however, stating that no clock, reset, or clock enable signal
was specified and gives the XNFMAP-assigned signal name.

Using a CLBMAP in a XC3000 Design
The following figure illustrates an example of a possible mapping of
logic into CLBs. In this example, the two flip-flops that generate
signals BIT0 and BIT1 are mapped into the same CLB, while the flip-
flop that generates signal BIT2 is mapped into a second CLB. If this is
not the desired result, a CLBMAP can be used to change the
mapping.
3-20 Xilinx Development System

The XNFMAP Program
Figure 3-3 Possible Logic Partitioning

The following figure illustrates the same circuit with the addition of a
CLBMAP symbol to control the partitioning. Because the CLBMAP
specifies signals BIT0 and BIT1 on the X and Y pins, XNFMAP puts
the flip-flops that generate BIT0 and BIT1 into the same CLB.

Since the CLBMAP also has input signals specified for the A, B, and K
pins, XNFMAP traces the circuit to find the gates that use the
specified input signals. In this case, it also puts the XNOR and AND
gates that source the two flip-flops into the same CLB with the flip-
flops.

After the CLBMAP is processed, XNFMAP partitions the remaining
logic. In this example, one more CLB is created for the flip-flop that
generates signal BIT2 and its associated OR gate.

X4435

CLB

CLK

B0

A0 BIT0

BIT1

CLB

CLK

B0

A0 BIT2

Partitioned Into

XNFMAP Output

AND

FD Q

O

Pxx

FD Q

FD Q

Pxx

Pxx

Pxx

Pxx

Pxx

O

O

O

D1 D

C

D

C

D

C

IBUF

IBUF

GCLK

O

O

O CLK

XNOR

OR

INV

CLKNI

IPAD

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1

2

1

2

1

2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2

D3

D2
Development System Reference Guide, Volume 2 3-21

Development System Reference Guide, Volume 2
Figure 3-4 Logic Partitioning Controlled by CLBMAP Symbol

Using Explicit (X) Attributes
An explicit (X) attribute on a signal makes that signal an explicit net
in the FPGA. An explicit net is external to a CLB. Signals connected to
non-combinational logic, such as clock buffers and I/O buffers or
registers, are always explicit. However, if you use no explicit
attribute, some signals can be absorbed inside a CLB. Such signals are
as follows.

AND

FD Q

O

Pxx

X4434

FD Q

FD Q

Pxx

Pxx

Pxx

Pxx

Pxx

O

O

O

D1 D

C

D

C

D

C

IBUF

IBUF

GCLK

O

O

O CLK

XNOR

OR

INV

CLKNI

IPAD

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1

2

1

2

1

2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2

CLB

CLK

B0

A0 BIT1

BIT2

CLB

CLK

B0

A0 BIT0
Partitioned

Into

D3

D2

CLBMAP

A

B

C
D

E

DI

EC
K

RD

A0

B0

CLK

PUC
BIT1

BIT2

X

Y

XNFMAP Output
3-22 Xilinx Development System

The XNFMAP Program
● A signal that connects only to combinational logic, which is
partitioned into a single CLB function generator

● A function generator output signal that drives only a flip-flop in
the same CLB

● The output of a flip-flop that is fed back within the CLB

Use an explicit attribute on your schematic to control the partitioning
in the following cases.

● The default partitioning is not acceptable because a particular net
must not be absorbed inside a CLB.

Using the BLKNM, HBLKNM, and LOC Parameters
to Partition and Place Logic

The BLKNM, HBLKNM, and LOC parameters can influence both
partitioning and placement of logic. When attached to flip-flops,
BLKNM, HBLKNM, or LOC parameters can influence the
partitioning of CLBs. See your specific interface user guide for more
information about attaching BLKNM, HBLKNM, and LOC
parameters to logic.

LOC parameters are ignored on symbols that already have a fixed
location, such as GCLK, ACLK, and OSC.

The following sections describe each parameter in detail.

BLKNM Assignments
The BLKNM parameter assigns FPGA block names to CLB and IOB
primitives; I/O primitives; TBUFs; pull-ups; D-type flip-flops; and
CLBMAP symbols. The block name must not be a name that is
reserved in the XACTstep Development System. The reserved names
include all physical names for the FPGA resources, such as AA, P12,
GCLK, and TBUF. The name is applied to the block in the LCA file; to
see where any of the blocks are finally placed, give them BLKNMs on
the schematic and then search for that BLKNM inside the XACT
Design Editor (XDE).

A BLKNM can also specify the pairing of flip-flops within an XC3000
CLB. If you assign two flip-flop primitives to the same BLKNM
parameter, XNFMAP pairs them together inside one CLB, if possible.
Development System Reference Guide, Volume 2 3-23

Development System Reference Guide, Volume 2
If you assign different BLKNM parameters to two flip-flops,
XNFMAP does not pair them together, unless they are forced
together by a single-block LOC constraint or a CLBMAP.

HBLKNM Assignments
The HBLKNM parameter is similar to the BLKNM parameter, except
that the file merge program, XNFMerge, hierarchically qualifies and
prefixes the name value with the design hierarchy level. For example,
XNFMerge changes the HBLKNM value “bit0” on a D-type flip-flop
located in the “top/sub1/sub2” design level to an HBLKNM value of
“top/sub1/sub2/bit0.” This HBLKNM parameter value allows
designers to place HBLKNM parameters in macros that are
instantiated more than once in the design, relying upon the
modification of the HBLKNM to create unique name values.

If two HBLKNM parameters with the same value are used more than
once at the same level of design hierarchy, then XNFMAP generates
the same HBLKNM value. Identical HBLKNM values cause
XNFMAP to group the tagged symbols in the same block, as it does
with identical BLKNM values.

LOC= and LOC< > Constraints
You can use the LOC parameter to place flip-flops, TBUFs, I/O pins,
or CLBMAPs in one specific location, or to specify multiple allowable
locations for these elements. You can also place a LOC= parameter on
an RPM and let the XNFMerge program pass the location information
down to the logic on the lower level.

Note: You cannot use LOC parameters to place logic gates (ANDs,
ORs, and so on). To control logic gate placement, use a CLBMAP and
place the LOC parameter on the CLBMAP.

Use the following statements to specify or prohibit locations for the
associated logic.

● LOC=blocks — Place the associated logic within the area defined
by blocks.

● LOC<>blocks — Do not place the associated logic within the area
defined by blocks.
3-24 Xilinx Development System

The XNFMAP Program
The examples below demonstrate how the blocks parameter is used to
specify locations.

Single-Block CLB Placement

You can assign CLB primitives, CLBMAP symbols, and individual
D-type flip-flops to a single CLB location, a list of CLB locations, a
row or column of CLB locations, or a rectangular block of CLB
locations. The standard two-letter block name used in XDE identifies
CLB locations. The upper-left CLB is identified as AA.

You can use a single-block LOC constraint, that is, an LOC=
statement specifying a single CLB location, to influence the pairing of
flip-flops within an XC3000 CLB. If you assign two flip-flops to the
same single-block location, XNFMAP pairs them together inside that
CLB, if possible.

Any single-block LOC constraint specified on a flip-flop is
transferred to the resulting CLB, unless superseded by a CLBMAP
location parameter. XNFMAP passes LOC constraints on CLB
primitives and CLBMAPs directly to the resulting CLB.

LOC=BC Place logic in CLB BC.

LOC<>DE Do not place logic in CLB DE.

LOC=*B Place logic within the second (B) column
of CLBs. The asterisk (*) is a wildcard
character that indicates you can place
logic in any row of specified column.

LOC=C* Place logic within the third (C) row of
CLBs. The asterisk (*) is a wildcard char-
acter that indicates you can place logic in
any column in the third row.

LOC=AB;LOC=BC;LOC
=DE

Place logic in CLB AB, BC or DE. There
is no significance to the order of the
LOC= statements. Separate each state-
ment with a semicolon (;).

LOC=BC:DF Place logic within the rectangular block
defined by the CLB BC in the upper-left
corner and CLB DF in the lower-right
corner.
Development System Reference Guide, Volume 2 3-25

Development System Reference Guide, Volume 2
Multiple-Block LOC Placement

XNFMAP uses a multiple-block LOC constraint on a flip-flop
specifying a range of CLB locations as a tie-breaker for possible
pairings of flip-flops in CLBs. If XNFMAP finds two flip-flops that it
would normally combine in one CLB, it combines them if one or both
flip-flops carry no LOC constraints, or the LOC constraints on the two
flip-flops intersect. If there is an intersection, XNFMAP combines the
two flip-flops and passes the intersection of the LOC constraints to
the resulting CLB. If a flip-flop has several optimal pairs, XNFMAP
chooses the pair for the largest possible LOC intersection.

XNFMAP directly passes a multiple-block LOC constraint on a CLB
primitive or CLBMAP symbol to the resulting CLB. The examples in
the table above illustrate the format of CLB constraints. If the
indicated logic does not fit into the specified blocks, XNFMAP
generates an error.

If XNFMAP generates an error, change the LOC constraints on your
schematic.

IOB Placement Examples

You can assign I/O pads, buffers, registers and pull-ups to individual
IOB locations on an edge or half-edge of the part. The corresponding
package pin designation for a specific location identifies IOB
locations. To specify an edge or half-edge of the part, use the
following designations.

T — top edge
R — right edge
B — bottom edge
L — left edge
TL — top-left
TR — top-right
RT — right-top
RB — right-bottom
BR — bottom-right
BL — bottom-left
LB — left-bottom
LT — left-top
3-26 Xilinx Development System

The XNFMAP Program
For the XC3000 family, XNFMAP automatically assigns I/O pads for
the direct clock inputs (TCLKIN and BCLKIN) to the appropriate
IOBs. You do not need to specify an LOC for these inputs.

The following examples illustrate the format of IOB constraints.

TBUF and Pull-up Placement

You can assign internal 3-state buffers (TBUFs) to an individual TBUF
location; a list of TBUF locations; or a row or column of TBUF
locations. TBUF locations are identified by the adjacent CLB.
Therefore, the two TBUFs above and to the left of CLB BB are
TBUF.BB.1 and TBUF.BB.2.

You can also assign horizontal longline pull-ups resistors (pull-ups)
to various pull-up locations. If you assign the TBUFs associated with
a pull-up to specific locations, the pull-up resistors follow as
appropriate. Pull-up locations are identified by the adjacent TBUF.
Therefore, the pull-up adjacent to TBUF.HA.1 is labeled PU.HA.1.

The following examples illustrate the format of TBUF constraints.
Pull-up constraints are similar, with PU replacing TBUF. The asterisk
(*) is a wildcard character that indicates any string of characters.

LOC=P13 Place I/O element in location P13. For
PGA packages, the letter-number desig-
nation is used, for example B3.

LOC<>A5;LOC<>B3 Do not place I/O element in PGA loca-
tions A5 or B3.

LOC=TL Place I/O element on the top-left half of
the part.

LOC=TBUF.BC.1 Place TBUF in the location BC.1.

LOC=TBUF.B* Place TBUF in any location in the second
row of TBUFs.

LOC<>TBUF.*D Do not place TBUF in any location in the
fourth column of TBUFs.
Development System Reference Guide, Volume 2 3-27

Development System Reference Guide, Volume 2
Files
The following sections illustrate the output files produced by
XNFMAP. The following figure illustrates sample output for this
example, sample.xtf.

In this example, XNFMAP has been run previously on the XTF file,
creating a partitioning guide file for the design, sample.pgf.
XNFMAP is invoked with the following command line entry first to
change the part type.

xnfmap -p 3020pc68-125 sample

Then XNFMAP is run with the -k option, which indicates that the
sample.pgf file guides partitioning.

xnfmap -k sample

XNFMAP reports its progress on the screen and stores the same
information in the sample.crf file. XNFMAP stores any error or
warning messages in the CRF (cross-reference file) described later in
this section.

Output File
The output file includes the messages sent to the screen during
processing. The following figure illustrates an example of an output
file. Each section of the output file corresponds to a letter on the
figure, as follows.

Header

The header, as indicated by A in the following figure, gives the
program version number; the date and time of the translation; and
indicates which options you selected, for example, Guide.

Status Messages

The status messages, as indicated by B in the following figure, show
the progress of XNFMAP during processing of the design.
3-28 Xilinx Development System

The XNFMAP Program
Design Summary

The design summary, as indicated by C in the following figure, gives
various statistics about the partitioned design, including CLB and
IOB counts.

A XNFMAP Ver. 5.00
(c) Copyright 1987-1994 Xilinx Inc. All rights reserved
Options selected: Guide

B Reading file SAMPLE.xtf...

Checking network for logical errors...

Checking Guide file for errors...

Preparing design...

Processing guide symbols...

Guide SYMBOL SUMMARY:
2 of 2 Guide file guide symbols successfully used

Assigning logic to LCA elements...

Preparing Guide file...

Checking mapped logic blocks...

C Design SUMMARY:
Part type=3020PC68-100
2 of 64 CLBs used
6 of 58 I/O pins used
0 of 6 internal IOBs used
0 of 16 internal 3-state signals used (0 TBUFS used)

2 CLB flipflops used

Writing design file SAMPLE.map...

Writing guide file SAMPLE.pgf...

Figure 3-5 The Screen Output of XNFMAP

Cross-Reference File
XNFMAP writes most output information to the sample.crf file. The
CRF also contains other information about the partitioned design,
and gives a cross-reference report of all CLBs and IOBs XNFMAP
creates. The following figure illustrates a portion of the sample.crf
file. The CRF includes the following sections, each designated by a
letter.
Development System Reference Guide, Volume 2 3-29

Development System Reference Guide, Volume 2
File Header

The file header, as indicated by A in the following figure, lists the
program version number, input design name, and which options
were selected, in this example, Guide.

Guide Symbol Summary

The guide symbol section, as indicated by B in the following figure,
shows how the design file CLBMAP symbols and sample.pgf files
were used. The listing includes the number of guide symbols from
the guide file that were successfully used.

Check of Mapped Logic Blocks

This section, as indicated by C in the following figure, lists any
problems corrected in the final mapping of CLB and IOB logic blocks.

Design Summary

The design-summary section, as indicated by D in the following
figure, shows the part utilization of the partitioned design.

CLB Cross-reference

The CLB cross-reference section, as indicated by E in the following
figure, shows each CLB that XNFMAP generates and lists the logic
elements of that CLB.

IOB Cross-reference

The IOB cross-reference section, as indicated by F in the following
figure, shows each IOB that XNFMAP generates and lists the I/O
elements of that IOB.
3-30 Xilinx Development System

The XNFMAP Program
A Design: SAMPLE, XNFMAP Ver 5.00 run at Thu Dec 16 09:12:00
1993

Options selected: Guide
CHECKING NETWORK FOR LOGICAL ERRORS:
CHECKING Guide FILE FOR ERRORS:
PREPARING DESIGN:

B Guide SYMBOL MAPPING CONTROL:

Guide SYMBOL SUMMARY:
2 of 2 Guide file guide symbols successfully used

ASSIGNMENT OF LOGIC TO LCA ELEMENTS:

C CHECKING MAPPED LOGIC BLOCKS:

D Design SUMMARY:
Part type=3020PC68-100
2 of 64 CLBs used
6 of 58 I/O pins used
0 of 6 internal IOBs used
0 of 16 internal 3-state signals used (0 TBUFS used)

2 CLB flipflops used

E CLB CROSS-REFERENCE REPORT:

CLB #1 Name = Q1’

QX = signal Q1’,
latch = symbol Q1’

QY = signal Q0’,
latch = symbol Q0’

F = signal Q0’
function contains:
<no symbols - direct connection>

G = signal CMP’
function contains:
symbol CMP (type=AND),

output signal = CMP’
symbol CMP1 (type=XNOR),

output signal = CMP1’

CLB #2 Name = CMP0’

F = signal CMP0’
function contains:
symbol CMP0 (type=XNOR),

output signal = CMP0’

F IOB CROSS-REFERENCE REPORT:

IOB #1: Name = QOUT’

IOB #1 locked on block P17’
Development System Reference Guide, Volume 2 3-31

Development System Reference Guide, Volume 2
Defined by signal QOUT’
O = signal Q1’

IOB #2: Name = CLKIN’

IOB #2 locked on block P16’
Defined by signal CLKIN’
I = signal CLK’
.
.
.

Figure 3-6 Sample.crf File

MAP File for MAP2LCA and APR
The partitioned design is written to the sample.map file. The sample
design is targeted for a 3020 non-A part, which uses MAP2LCA and
APR for implementation.

This file defines each CLB, IOB, and TBUF used in the design. The
following figure illustrates a portion of the MAP file. Each section of
the MAP file corresponds to a letter designation on the figure, as
follows.

File Header

The file header, as indicated by A in the following figure, records the
LCA netlist version number, the LCA part type, and information
about programs used to create this design file.

IOB Symbol and Model Records

A symbol (SYM) record of type IOB, as indicated by B in the
following figure, defines the configuration of an I/O block. The
corresponding MODEL record describes the I/O elements
partitioned into that IOB.

CLB Symbol and Model Records

A symbol (SYM) record of type CLB, as indicated by C in the
following figure, defines the configuration of a logic block. The
corresponding MODEL record describes the logic elements
partitioned into that CLB.
3-32 Xilinx Development System

The XNFMAP Program
A LCANet, 5
PROG, XNFMAP, Ver. 5.00, Created from sample3.xtf: Tue Dec

21 09:12:00 1993: Options:
PROG, WIR2XNF, 5.00, Tue Dec 21 09:11:02 1993,
PART, 3020pc68-125

B SYM, CMP0EXT, IOB
CFG, Base IO
CFG, Config IN:I OUT: TRI:
PIN, I, O, CMP0,
MODEL
SYM, CMP0IN, IBUF
PIN, O, O, CMP0,
PIN, I, I, CMP0EXT,
END
ENDMOD
END
EXT, CMP0EXT, I,
.
.
.

C SYM, Q1, CLB
CFG, Base FG
CFG, Config X:QX Y: RSTDIR: ENCLK: DX:F DY:G CLK:K:NOT

F:QY G:A:B:C
CFG, Equate F=QY
CFG, Equate G=(~(B@C)*A)
PIN, A, I, CMP0,
PIN, B, I, B1,
PIN, C, I, A1,
PIN, K, I, CLK,
PIN, X, O, Q1,
MODEL
SYM, CMP1, XNOR
PIN, O, O, CMP1,
PIN, 2, I, B1,
PIN, 1, I, A1,
END
SYM, CMP, AND
PIN, O, O, CMP,
PIN, 2, I, CMP1,
PIN, 1, I, CMP0,
END
SYM, Q0, DFF
PIN, Q, O, Q0,
PIN, D, I, CMP,
PIN, C, I, CLK, , INV
END
SYM, Q1, DFF
Development System Reference Guide, Volume 2 3-33

Development System Reference Guide, Volume 2
PIN, Q, O, Q1,
PIN, D, I, Q0,
PIN, C, I, CLK, , INV
END
ENDMOD
END
EOF
.
.

Figure 3-7 Sample.map

MAP File for PPR
You can target the same design for a 3020A part for implementation
through PPR by changing the part type to a 3020APC68, as illustrated
in the introductory section, “Output Files.” The MAP file generated
for PPR does not contain MODEL records. Instead, this MAP file uses
ASSIGN parameters to define the mapping of symbols into CLB
function generators, and CLBNM parameters to define the mapping
of function generators into CLBs. The PPR MAP file contains the
following sections, each designated by a letter on the figure.

File Header

The file header, as indicated by the letter A in the following figure,
records the LCA netlist version number, the LCA part type, and
information about programs used to create this design file.

IO Symbols

The IO symbols, as indicated by the letter B in the following figure,
are left unchanged. PPR maps them into IOBs.

Combinatorial Symbols

XNFMAP annotates the original combinatorial symbols, as indicated
by the letter C in the following figure, with an ASSIGN parameter to
link them to the function generator that implements the logic.

DFF Symbols

XNFMAP annotates the original DFF symbols, as indicated by the
letter D in the following figure, with a CLBNM parameter to link
3-34 Xilinx Development System

The XNFMAP Program
them to the CLBs to which they are mapped, and a BEL parameter to
define the initial placement of the DFF in the CLB block.

Function Generator Symbols

The FG symbols XNFMAP creates, as indicated by the letter E in the
following figure, are annotated with the equation they implement,
the name of the associated CLB, and the initial placement of the
function generator in the CLB block.

A LCANet, 5
PROG, XNFMAP, Ver. 5.00, Created from sample3.xtf: Tue Dec
21 09:12:00 1993: Options:
PROG, WIR2XNF, 5.00, Tue Dec 21 09:11:02 1993,
PART, 3020apc68-125

B SYM, CMP0IN, IBUF
PIN, O, O, CMP0,
PIN, I, I, CMP0EXT,
END
EXT, CMP0EXT, I,
.
.
.

C SYM, CMP1, XNOR, ASSIGN=FG_CMP
PIN, O, O, CMP1,
PIN, 2, I, B1,
PIN, 1, I, A1,
END
SYM, CMP, AND, ASSIGN=FG_CMP
PIN, O, O, CMP,
PIN, 2, I, CMP1,
PIN, 1, I, CMP0,
END

D SYM, Q0, DFF, CLBNM=Q1, BEL=FFY
PIN, Q, O, Q0,
PIN, D, I, CMP,
PIN, C, I, CLK, , INV
END
SYM, Q1, DFF, CLBNM=Q1, BEL=FFX
PIN, Q, O, Q1, , CLBPIN=X
PIN, D, I, Q0,
PIN, C, I, CLK, , INV
END

E SYM, FG_CMP, FG, EQN=(~(I1@I2)*I0), CLBNM=Q1, BEL=G
PIN, I0, I, CMP0, , CLBPIN=A
PIN, I1, I, B1, , CLBPIN=B
Development System Reference Guide, Volume 2 3-35

Development System Reference Guide, Volume 2
PIN, I2, I, A1, , CLBPIN=C
PIN, O, O, CMP,
END
EOF

Figure 3-8 Example MAP File for PPR

Warning Messages and Recovery Techniques
XNFMAP might display the following warnings messages during
processing.

Warning 222. number too many CLBs used.

The design requires more than the available number of CLBs in the
target part type. Change to a larger part type or eliminate some of the
logic.

Warning 223. number too many IOBs used.

The design requires more than the available number of IOBs in the
target part type. Change to a part type with more pins or eliminate
some of the I/Os.

Warning 224. number I/O pins used but only number
available.

The design requires more I/O pins than are available in the package
type. Either change to a package with more pins or reduce the
number of I/O pins. The number of I/O pins and the number of IOBs
does not always match because some packages contain unbonded
IOBs.

Warning 241. TS attributes on pinname pin of
symboltype symbolname will be lost within the function
generator that sources signal signalname.

Move the timing specification parameter to another input pin in the
design.

Warning 246. TBUF does not have a T pin signal and
will not be treated as a 3-state buffer.

The indicated TBUF does not have a signal attached to the T pin;
therefore, XNFMAP removes it. Check if the source logic has been
removed, and check the schematic for misconnected wires.
3-36 Xilinx Development System

The XNFMAP Program
Warning 254. No CLBs used.

No CLBs were created when the design was partitioned. This
typically happens when XNFPrep disables or removes all logic. If
there are signals without sources or loads in the design that cannot be
removed, use an S (save) attribute to preserve them or specify the
XNFPrep option “savesig=true.”

Warning 255. No IOBs used.

No IOBs were created when the design was partitioned. If only a
partial design is being processed and no I/O pins are used, you can
ignore this message. You can preserve logic not sourced or loaded by
IOBs by using S (save) attributes, using the savesig=TRUE option in
XNFPrep, or specifying the -e option to inhibit logic removal.

Warning 256. No I/O pins used (only internal IOBs
used).

Only internal (unbonded) IOBs were used when the design was
partitioned. If you indicated any bonded I/Os in the input design,
check if any IOBs without sources or loads have been removed.

Warning 259. No connection to pin on symbol.

No signal is attached to the indicated pin on the specified symbol.
This condition can result in logic removal.

Check your design for sourceless/loadless signals. Check the logic
removal section in the report file from XNFPrep.

Warning 260. No connection to clock, set or reset
pins on symbol.

No signals are attached to the indicated pins on the specified symbol.
This condition can result in the symbol being removed.

Check your design for sourceless/loadless signals. Check the logic
removal section in the report file from XNFPrep.

Warning 261. Connection made to [clock pin | data pin]
but none made to [clock pin | data pin] on symbol.

A flip-flop or latch is illegally configured. Connect both the data (D)
and clock (C or L) signals.
Development System Reference Guide, Volume 2 3-37

Development System Reference Guide, Volume 2
Warning 263. Signal has no effect and is ignored.

Signals in a combinational logic loop do not source a latch, a flip-flop,
or an IOB. Check your design for errors.

Warning 277. No source for signal signalname.
Cannot include signal signalname in mapped CLB.

The indicated signal has no source or load pins. This condition can
occur if logic that sources or loads the signal has been removed. If a
signal is intentionally left dangling, you can preserve it by attaching
an S (save) attribute, using the savesig=TRUE option in XNFPrep, or
using the -e option to inhibit logic removal. Signals without loads and
sources are removed even if you specified the -e option; attach an S
(save) attribute to preserve such signals.

Warning 279. No signals connected to symbol
symbolname type symboltype.

The indicated symbol has no signals connected to it. XNFMAP
removes it unless you specify the -e option.

Check your design for sourceless/loadless signals. Check the logic
removal section in the report file from XNFPrep.

Warning 280. No input pins | output pins found on symbol

The indicated symbol has no signals connected to it. XNFMAP
removes it unless you specify the -e option.

Check your design for sourceless/loadless signals. Check the logic
removal section in the report file from XNFPrep.

Warning 281. Invalid signal name signalname.

The indicated signal name is not a valid FPGA name and is ignored.
FPGA names can contain only letters, digits, underscores (_), dashes
(-), dollar signs ($), and angle brackets (< and >). Names must contain
at least one non-digit character and no spaces.

Warning 286. External signal has no I/O symbols
connected to it.

An external signal — one that connects to an I/O pad — must be
connected to an I/O symbol, such as IBUF or OBUF. The external
signal has no source or load.

Check the design for errors in connecting the PAD and I/O symbols.
3-38 Xilinx Development System

The XNFMAP Program
Warning 292. Too many typename symbols connected to
signal signalname.

This message typically results from using more than the available
number of TBUFs or pull-ups. The number of TBUFs available on a
horizontal longline depends on the FPGA part type. Reduce the
number of TBUFs or use a part with more resources. There are two
pull-ups available for each horizontal longline. Specify no more than
two pull-ups per signal.

Warning 294. number too many internal three-state
signals used.

This message typically results from using more than the available
number of horizontal longlines. The number of horizontal longlines
available depends on the FPGA part type. Reduce the number of 3-
state signals or use a part with more horizontal longlines.

Warning 323. Signal on guide symbol is not used.

The design logic does not use a signal specified on a CLBMAP. Check
that you added the correct signals to the CLBMAP pins.

Warning 324. [clock | clock enable | reset] signal on guide
symbol doesn’t match actual latch [clock | clock enable
| reset] signal.

A guide symbol {clock | clock enable | reset} signal is ignored. Check
that the indicated signal on the CLBMAP matches the corresponding
signal on the design logic.

Warning 327. CLBMAP symbol symbolname includes
symbols from different levels of the design
hierarchy. Hierarchy information will be
disregarded.

Use the -a or -q options to prevent mixing logic from different levels
of the hierarchy in a single CLB. However, these options are not
recommended for the most efficient use of FPGA resources.

Warning 335. Output signal is specified for guide
symbol but output not needed. Output signal will
not be generated.

The indicated signal is specified as a CLBMAP output, but the signal
had no load and was removed. Check the output signal for improper
connection to loads. If the signal was intentionally left without a load,
Development System Reference Guide, Volume 2 3-39

Development System Reference Guide, Volume 2
attach an S (save) attribute to it to prevent XNFMAP from removing
it.

Warning 346. [clock | clock enable | reset] signal not
specified for guide symbol.

XNFMAP uses the signal name for the CLB { clock | clock enable |
reset} . Since the CLBMAP does not assign a signal to the indicated
pin, XNFMAP chooses the appropriate signal and issues this
warning.

Warning 348. symbol has a [GND | VCC] signal for the
[clock | clock enable | reset] signal.

Since this condition significantly changes the logic, XNFMAP ignores
the guide symbol instructions. A CLBMAP can only accommodate
power signals if they do not significantly change the logic to be
mapped into a CLB. XNFMAP only accepts the following power
connections.

RESET pin tied to GND (RESET disabled)

SET pin tied to GND (SET disabled)

EC pin tied to VCC (clock enabled)

In these three cases, the pin connected to a power signal is removed.
However, if power signal connections cause logic to change, such as
an EC pin tied to GND, reset pin tied to VCC, or VCC tied to the input
of a logic gate, XNFMAP issues this warning and ignores the
CLBMAP instructions.

Warning 352. CLB has invalid configuration
information. More information about the invalid
CLB will follow.

This warning might indicate that the configuration information on a
CLB primitive is incorrect. The warning might also occur if unused
signals have been removed from the CLB.

Check the configuration information specified for the CLB primitive.

Warning 358. DFF symbolname and DFF symbolname have
the same location attribute but different
blockname attributes.

Single-block location specification takes precedence, so the two DFFs
are put into the same CLB. Although the two indicated flip-flops were
3-40 Xilinx Development System

The XNFMAP Program
given different BLKNM parameters, their location specifications
match. XNFMAP follows the location specification and pairs the two
flip-flops even though they carry different BLKNM parameters.
Correct either the BLKNM or LOC parameters.

Warning 359. DFF symbolname and DFF symbolname have
same blockname attribute but incompatible
location attributes.

XNFMAP does not pair the two DFFs. Although matching BLKNM
parameters indicate that the two flip-flops should be paired, the
location specifications require that they are separate. Correct either
the BLKNM or LOC parameters.

Warning 363. MUX for CLB removed due to disabled
[E | B] signal.

XNFMAP might have removed the G function and invalidated the
CLB. The select signal for the 2-to-1 multiplexer in a base FGM CLB
must be on the B (XC2000) or E (XC3000) pin. If this signal is missing
or disabled, XNFMAP removes the G function. Check the MUX-select
signal.

Warning 365. Exceeded resources of part type. Do
not use the MAP file for translation to an LCA
file. Use the MAP file for analysis only. To
continue, alter the design to fit the part or
choose a larger part, and execute XNFMAP again.
Note that less than optimal partitioning may have
occurred as the program tried to force the design
into this part. Once it is correctly sized, it
may use more CLBs.

To continue, alter the design to fit the part or choose a larger part, and
execute XNFMAP again.

Warning 366. DFF symbolname eventually sources only
itself.

If XNFMAP finds a flip-flop output that leads only to its own input, it
removes that flip-flop. The flip-flop is only preserved if it sources
logic that eventually leads to an output block.

Check the design for proper connections of signals to pins.
Development System Reference Guide, Volume 2 3-41

Development System Reference Guide, Volume 2
Warning 367. Since CLB MUXes the F and G
functions, removal of one function forces removal
of the other function.

If a CLB uses the base FGM configuration, both inputs to the 2-to-1
multiplexer must be preserved to create a valid function. If XNFMAP
removes one of these functions, it always removes the other with it.
Check both functions that source the MUX.

Warning 368. Cannot map guide symbol using the
MUX.

Since the MUX select signal (pin B or E) is locked, XNFMAP tried to
program the MUX, but failed. Instead XNFMAP tries to follow the
guide-symbol directions for a non-FGM mode CLB.

If the E (XC3000) or B (XC2000) pin on a CLBMAP is locked,
XNFMAP tries to fit the indicated logic into a base FGM CLB, using
the B or E pin as the 2-to-1 multiplexer select signal. If the function
cannot be implemented as base FGM, XNFMAP issues this message
and attempts to use base F and base FG before disregarding the
CLBMAP. If the CLB is not supposed to be base FGM, remove the pin
lock from the B or E pin.

Warning 369. Cannot use signal signalname for [reset |
clock | set | FF-Data-pin] signal in CLB specified by
GUIDE symbol symbolname if it is configured as an
FGM CLB.

A CLBMAP indicates that an XC2000 CLB should use base FGM, but
the specified flip-flop input is not specified on the appropriate input
pin of the CLBMAP.

If the CLB uses the MUX, the flip-flop signal must be either the MUX
signal name or one of the direct input signals to the CLB. If a CLB is
base FGM, the appropriate CLB input pin must source the flip-flop
inputs. Do not use the F function generator since it goes to the MUX.
Correct the CLBMAP to specify the flip-flop input.

Warning 371. Changing TBUF symbol to type OBUFZ
symbol.

If an XNF interface does not support the 3-state output buffer
(OBUFZ), XNFMAP recognizes an OBUF followed by a TBUF as
being equivalent to an OBUFZ. XNFMAP makes this substitution.
3-42 Xilinx Development System

The XNFMAP Program
Warning 400. [CLB | IOB] name. This message
indicates an error in the configuration for a CLB
or IOB primitive.

An explanation of the error follows this message.

Warning 401. [CLB | IOB] symbolname msg.

An error in the configuration for a CLB or IOB primitive. An
explanation of the error follows this message.

Warning 424. Unable to open Guide file for
reading.

Check that the guide file exists in the current directory and that it
carries the design name and the extension PGF. If XNFMAP cannot
open the guide file, it cannot guide the mapping.

Warning 426. There are n guide symbols in the
Guide file that will be deleted because their
output signals do not exist in the network of the
Design file.

The following Guide file symbols are ignored. A list follows showing
which guide file CLBMAPs are disregarded. See the “Using a
Partitioning Guide File” section for more information about guide file
rules.

Warning 427. There are n guide symbols in the
Guide file that have input signals that do not
exist in the design file.

XNFMAP cannot implement these guide symbols. A list follows
showing which guide file CLBMAPs might not be obeyed. See the
“Using a Partitioning Guide File” section for more information about
guide file rules.

Warning 428. There are n open CLBMAP symbols in
the Design file that will be deleted because the
Guide file has closed guide symbols that specific
the same logic.

The following guide file symbols take precedence over the design file
symbols. A list follows showing which design file CLBMAPs are
being superseded. See the “Using a Partitioning Guide File” section
for more information about guide file rules.
Development System Reference Guide, Volume 2 3-43

Development System Reference Guide, Volume 2
Warning 429. There are n guide symbols in the
Guide file that will be deleted because the
Design file has guide symbols that specify the
same logic.

The following design file guide symbols take precedence over the
guide file symbols. A list follows showing which design files
CLBMAPs take precedence. All design file CLBMAPs can be ignored
by specifying the -m option. See the “Using a Partitioning Guide File”
section for more information about guide file rules.

Warning 430. No Guide symbols found in Guide file.

Run LCA2XNF with no options to create the design.lca file and then
rename it with a PGF extension.

Warning 431. No new CLBs were mapped (All
previously mapped?) or (All logic removed?).

XNFMAP does not generate a guide file because it did not partition
any CLBs. This might occur if XNFPrep removed all logic in the
design. Check the CRF and the XNFPrep output.

Warning 432. There are guide symbols in the Guide
file that will be deleted because the Design file
has mapped CLB symbols that specify the same
logic.

The following guide file symbols are deleted. A list follows showing
the guide file CLBMAPs that are superseded. See the “Using a
Partitioning Guide File” section for more information about guide file
rules.

Warning 440. Underlying DFF location
specification will be used instead of location
specified in Guide file.

If a flip-flop carries a location specification that conflicts with the
guide-file location, XNFMAP uses the flip-flop location. All design
file CLB location constraints can be ignored by specifying the -n
option. See the section “Using the BLKNM, HBLKNM, and LOC
Parameters” for more information about location control.

Warning 450. Will not use filename with Guide file.

If you specified the -k option and XNFMAP finds alias names
($-number) in the guide file, it searches for an AKA file with the input
3-44 Xilinx Development System

The XNFMAP Program
design name. Check that the AKA file created by the previous design
iteration exists in the current directory and carries the name of the
input design file. If XNFMAP finds no AKA file, it might not be able
to guide partitioning effectively.

Warning 451. Signal name signalname on guide symbol
will not be restored to original name.

XNFMAP finds a name in the guide file that it identifies as an alias
name, a name that begins with $-number, but cannot find that prefix
in the AKA file. Check that XNFMAP read the correct AKA file.

If any user net names contain dollar sign ($) characters, the
unrestored names might be original user names; in this case the
message can be ignored.

Warning 455. EQN symbol symbolname has missing or
invalid equation.

XNFMAP removes the symbol and continues processing.

Warning 456. Cannot match equation variable variable
with any pin on the EQN symbol symbolname.
Variable variable will be trimmed from the equation.

XNFMAP finds an inconsistency between the EQN symbol’s
equation string, and the pins and related signal names of the symbol.
XNFMAP removes an unmatched equation variable from the
equation.

Check the logic removal section of the report file from XNFPrep.
Check the specifications of the EQN symbol in the design.

Warning 457. pinname pin on EQN symbol symbolname is
not used in the equation, and will be removed.

XNFMAP removed the unused EQN symbol pin from the symbol.

Check the logic removal section of the report file from XNFPrep.
Check the specifications of the EQN symbol in the design.

Warning 458. Cannot match equation variable variable
for EQN symbol symbolname with any CLB pin signal.
Variable variable will be trimmed from the symbol.

Check the logic removal section of the report file from XNFPrep.
Check the specifications of the EQN symbol in the design.
Development System Reference Guide, Volume 2 3-45

Development System Reference Guide, Volume 2
Warning 459. Equation for EQN symbol symbolname
reduces to a null equation. Symbol will be
removed.

Check the logic removal section of the report file from XNFPrep.
Check the specifications of the EQN symbol in the design.

Warning 460. Equation for EQN symbol name reduces
to a [GND | VCC] value. Symbol will be removed,
and signal names signal will be set to [GND | VCC].

Check the logic removal section of the report file from XNFPrep.
Check the specifications of the EQN symbol in the design.

Warning 461. Removal of pinname pin from EQN symbol
symbolname results in a null equation. Symbol will
be removed.

Check the logic removal section of the report file from XNFPrep.
Check the specifications of the EQN symbol in the design.

Error Messages and Recovery Techniques
XNFMAP issues the following error messages during processing.
Some error messages below refer to guide symbols. A guide symbol
is either a user-created CLBMAP symbol or a CLBMAP from the PGF,
if you specified the -k option. The PGF uses CLBMAPs to direct
mapping.

Error 1. Field too long.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 2. Unexpected LCANET record.

An LCANET record is found on any line except the first.

Re-generate the XNF and reprocess the design.

Error 3. ENDMOD with no matching MODEL record.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 4. Symbol sub-record outside of symbol
group. Record ignored.
3-46 Xilinx Development System

The XNFMAP Program
XTF syntax is violated. Records that should be within other records,
such as MODEL, ENDMOD, or PIN, are found outside the group.
Consequently, the XTF file might be invalid or corrupted. Rerun the
program that created this XTF file and try again.

Error 5. Illegal record inside symbol group.
Record ignored.

XTF syntax is violated. A record that is not allowed inside other
symbol groups is found within the group, for example, a PROG
record inside a SYM group. Consequently, the XTF file might be
invalid or corrupted. Rerun the program that created this XTF file
and try again.

Error 6. Premature EOF record in symbol group.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 7. Illegal record inside MODEL group.
Record ignored.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 8. Premature EOF record in MODEL group.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 9. Premature End-of-file. No EOF record
found.

An EOF record must conclude every XTF file. The XTF file might be
invalid or corrupted. Rerun the program that created this XTF file
and try again.

Error 10. Unknown record type type.

XNFMAP encountered an invalid XNF record type in an input file.
Check for the corrupted input file.

Error 11. There are characters char at the end of a
record line, after all expected data received.

Check for the corrupted input file.

Error 12. Invalid LCA netlist file. Invalid or
missing LCANET record.
Development System Reference Guide, Volume 2 3-47

Development System Reference Guide, Volume 2
The XTF file might be invalid or corrupted. Every valid XTF file must
start with the LCANET record that lists the XNF version of the file.

Re-generate the XTF file.

Error 13. Unsupported XNF netlist version number.

XNFMAP does not support the version number listed in the
LCANET record. This program only supports XNF versions 1, 2, 4,
and 5.

Re-generate the XTF file.

Error 15. Valid part type must be specified before
netlist symbols can be read.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Re-generate the XTF file.

Error 16. Invalid part record, missing part type.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 17. Missing name on SYM record. SYM record
ignored.

At line number: Missing type on SYM record. SYM
record ignored.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

At line number: Unknown symbol symboltype. SYM
record ignored.

Error 18. Invalid PIN record. Missing name field.

At line number: Invalid PIN record. Missing or
invalid direction field.

At line number: Invalid PIN record. Invalid
direction field.

At line number: Invalid PIN record. Non-numeric
delay field.

The XTF file might be invalid or corrupted. Rerun the program that
3-48 Xilinx Development System

The XNFMAP Program
created this XTF file and try again.

Error 19. Pin name pinname used multiple times on
symbol symbolname.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 20. Missing command on CFG record.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 21. CFG records allowed only in CLB and IOB
symbols.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 22. Invalid SIG record. Missing signal
name.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 23. Invalid EXT record. Invalid direction
dir.

EXT records must have a direction field of I, O, T, B, or U.

At line number: Invalid EXT record. Missing signal
name. EXT record ignored.

At line number: Invalid EXT record. Bad or missing
direction field. EXT record ignored.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 24. Invalid BUS record. Missing bus name.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.
Development System Reference Guide, Volume 2 3-49

Development System Reference Guide, Volume 2
Error 25. Invalid PULSE record. Missing pin name
field.

At line number: Invalid PULSE record. Missing or
invalid polarity field.

Invalid PULSE record. Invalid polarity field.

At line number: Invalid PULSE record. Invalid or
missing minimum width field.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 26. Invalid PWR record. Bad or missing
polarity field.

PWR record must have a 1 or 0 in the polarity field. Re-generate the
design from the schematic. Check for the corrupted XTF file.

Invalid PWR record. Polarity is polarity. Must be
0 or 1.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.

Error 27. Invalid SETUP record. Missing pin name
field.

At line number: Invalid SETUP record. Missing
clock pin name field.

At line number: Invalid SETUP record. Missing or
invalid clock edge field.

At line number: Invalid SETUP record. Invalid
clock edge field.

At line number: Invalid SETUP record. Missing or
invalid setup time.

At line number: Invalid SETUP record. Missing or
invalid hold time.

The XTF file might be invalid or corrupted. Rerun the program that
created this XTF file and try again.
3-50 Xilinx Development System

The XNFMAP Program
Error 28. At line number: Missing id on HIERG
record.

At line number: Missing type on HIERG record.
HIERG record ignored.

At line number: Missing name on HIERG record.
HIERG record ignored.

At line number: Missing filename on HIERG record.
HIERG record ignored.

At line number: Missing parent id on HIERG record.
HIERG record ignored.

The XTF file might be invalid or corrupted. Return to the program
that created this XTF file and try again.

Error 30. For general use of invalid parameters

At line number: Unknown MAP symbol symboltype for SYM
symbolname. Will use default MAP type maptype.

A CLBMAP symbol has a MAP parameter value that is not PUC,
PUO, PLC, or PLO. See the section “Partitioning Logic on a
Schematic” for more information about MAP parameters. XNFMAP
defaults to MAP=PUC.

typename has invalid parameter value parameter.

A floating point value of the THI and TLO parameters have trailing
characters that are not “ns” (for nanoseconds). Only add the suffix
“ns” to a THI or TLO value.

At line number: Unknown SYM record parameter
parameter.

An unknown XNF symbol parameter is found. Check the parameter
specification in the design file.

On line number: Invalid parameter found on SYM
symbolname, type symboltlype.

A parameter is assigned to a symbol that does not support that
parameter, such as a fast tag on a DFF symbol. Check the parameter
for that symbol.

On line number: Unknown PIN record parameter
parameter.
Development System Reference Guide, Volume 2 3-51

Development System Reference Guide, Volume 2
An invalid parameter is assigned to a PIN. Check the parameter for
that symbol pin.

On line number: PIN record parameter parameter found
on MAP symbol.

An invalid parameter is assigned to a PIN statement for a CLBMAP.
Only a P (pin-lock) parameter is allowed on CLBMAP symbol pins.

Correct or remove the parameter from the pin on the symbol.

On line number: Unknown SIG record parameter
parameter.

An invalid parameter is assigned to a SIG record. Check the
parameter for that signal.

At line number: Unknown EXT record parameter
parameter.

An invalid parameter is assigned to a EXT record. Check the
parameter for that I/O pad.

At line number: FILE parameter found on symbolname
SYM, type symboltype. (Non-flattened design?)

A FILE= parameter is found on a non-macro symbol. FILE=
parameters should be added only to unflattened macro symbols. This
warning might occur if a reserved name, such as AND or OR, is used
as the name of a FILE= macro. Change the macro name and re-run
XNFMAP.

At line number: Extra LOC parameter parameter found
on signal signalname.

More than one LOC parameter is found on a record. If commas (,) are
used to separate LOC parameters, XNFMAP issues this warning.
Separate multiple-block LOC parameters by semicolon (;) characters.

At line number: Invalid MAP symbol type [PLO, PUO
or PLC] for HMAP symbol symbolname. PUC is the
only valid MAP= parameter for an HMAP symbol.

At line number: parameter is not complete on PIN
pinname.

An invalid parameter exists on the PIN record. Correct the attribute
on the symbol pin.
3-52 Xilinx Development System

The XNFMAP Program
At line number: SYM record parameter TNM not
allowed on timespec symbols.

Use the TNM= parameter on a flip-flop, RAM, I/O latch, and pad
symbol.

At line number: SYM record parameter parameter only
allowed on timespec symbols.

You can only place TSid parameters for timing specifications on
TIMESPEC symbols.

Error 31. Invalid LOC parameter parameter on
symbol-type name.

Correct the use of the parameter in the design.

Error 33. More than one parameter is specified on
symbol symbolname. Only one is allowed per symbol.

There is only one each of the following parameters allowed on a
single symbol: RLOC, RLOC_ORIGIN or RLOC_RANGE.

Correct the use of the parameter in the design.

Error 34. Invalid RLOC parameter parameter on
symbol-type name.

Correct the use of the parameter in the design.

Error 35. Both TTL and CMOS parameters are
specified on symbol symbolname. Only one of these
parameters is allowed per symbol.

Remove one of the parameters from the symbol.

Error 36. RLOC specified on symbol symbolname of
type symboltlype. RLOCs may not be used with
decoders, clocks, logic symbols or IO primitives.

Remove the RLOC parameter from the symbol.

Error 37. FAST/SLOW/MEDFAST/MEDSLOW and FAST/
SLOW/MEDFAST/MEDSLOW parameters have been found
on symbol/ext sym name/ ext name. These parameters
should be mutually exclusive.

Remove all but one of these parameters from the symbol.
Development System Reference Guide, Volume 2 3-53

Development System Reference Guide, Volume 2
Error 38. TNM parameter TNM = tnm value on symbol
symbolname has illegal type. The only legal types
are FFS, RAMS, PADS, or LATCHES. The syntax
should be TNM= name_value or TNM= type: name.

Change the specification of the TNM parameter.

Error 40. At line number: Two different IOBs use
the same signal signalname.

Two IOBs cannot use the same pad signal. Every pad signal must
have a unique name. This error might occur if you have a pad signal
connecting an input I/O symbol and an output I/O symbol, and the
two symbols are in separate modules of the design. If the two
modules are mapped separately (map-then-merge design
processing), then the two symbols are made into two separate IOBs
that both use the same pad signal.

Although you might have intended to make the pad signal a
bidirectional signal, the separation of the two symbols into different
modules causes this error. It is advisable to keep all the I/O elements
of a single IOB (pad signal, input and output symbols) in the same
module/hierarchy of the design.

Error 53. Out of memory. Needed number bytes.

There is insufficient memory to complete the XTF file processing.
Check the memory requirements for the FPGA part type in use.

Error 220. CLB primitive symbols must be
translated into common logic symbols by XNFPREP
before XNFMAP is run.

XNFMAP does not accept CLB primitive symbols directly. XNFPrep
is responsible for translating these primitives into EQN symbols and
flip flops that can be trimmed of unused logic if necessary. XNFPrep
also generates a CLBMAP symbol to direct XNFMAP to re-create the
original CLB for the newly generated logic.

Run XNFPrep before using XNFMAP.

Error 221. IOB primitive symbols must be
translated into common logic symbols by XNFPREP
before XNFMAP is run.

XNFMAP does not accept IOB primitive symbols directly. XNFPrep is
responsible for translating these primitives into common IO gates
3-54 Xilinx Development System

The XNFMAP Program
that can be trimmed of unused logic if necessary. The connectivity of
the newly generated IO gates leads to the restoration of the IOB in
XNFMAP.

Run XNFPrep before using XNFMAP.

Error 225. Symbol defines an oscillator, but none
is available.

More than one oscillator was specified. Only one crystal oscillator
circuit is available on XC2000 or XC3000 devices.

Error 226. Symbol defines an unavailable clock
buffer.

Only the GCLK and ACLK buffers are available on XC2000 and
XC3000 devices.

Correct the design to use only clock buffers available in the part.

Error 227. Symbol defines a [GCLK | ACLK] clock
buffer which is already assigned to symbol name It
is an error to have multiple [GCLK | ACLK]
symbols.

One of the global clock buffers was used twice. Only one GCLK
buffer and one ACLK buffer are available on XC2000 or XC3000
devices. Remove one of the extra clock buffers.

Error 228. The presence of MODEL records in the
input design file indicates that the design has
been previously mapped. This version of XNFMAP
requires unmapped input design files. Regenerate
the input design files from your schematics or
other methods of design entry.

Re-run XNFMAP with the -a and -q options if you are interested in
“map-then-merge” techniques to control the mapping of designs on
hierarchy levels.

Error 229. IOB needed for Oscillator but already
used.

The crystal oscillator requires two dedicated pins, XTAL1 and
XTAL2. If the oscillator is used, the IOBs associated with these pins
cannot be used as a normal I/O. Edit the design so it does not use
Development System Reference Guide, Volume 2 3-55

Development System Reference Guide, Volume 2
these pins. Check the pin descriptions in The Programmable Gate Array
Data Book to find the locations of XTAL1 and XTAL2.

Error 230. Unable to find data file filename.

XNFMAP could not find the specified data file. Make sure that the
indicated file exists in the \XACT or \XACT\DATA directory. If it
does not exist, re-install the implementation software.

If the file does exist, use the DOS SET command to verify that the
XACT environment variable points to the \XACT directory. Any
spaces in the SET XACT= statement can prevent the data files from
being found.

On workstations, set the XACT environment variable to point to the
directory that has a “data” subdirectory with the necessary data files.

Error 231. Data file filename is invalid. Unknown
family familyname.

Check that you specified a valid part type. If the part type is valid, the
indicated data file might be corrupted. Re-install the implementation
software.

Error 232. Insufficient information in partlist
file.

The file partlist.xct is out-of-date and does not contain all of the
information necessary for XNFMAP to process the design.

Install a new or corrected partlist file.

Error 234. Part type parttype not found in data
file filename.

Check that you specified a valid part type. A table of valid part types
is listed after this message. If the part type is valid, the indicated data
file might be corrupted. Re-install the implementation software.

Error 237. Unable to open temporary work file.

Check for a disk-full condition or incorrect file permissions. On a PC-
based system, the DOS files variable may be too low; use at least
FILES=20 in the config.sys file.

Error 239. Unable to rename temp file.

XNFMAP failed when attempting to rename its work file to the actual
output name. This might occur if the target file already exists and is
3-56 Xilinx Development System

The XNFMAP Program
flagged read-only, or a disk-full condition exists. Check for these two
conditions and run XNFMAP again.

Error 240. Re-setting classification for CLBMAP
name to MAP=PUO due to lack of function
generator input pins on the symbol.

If a CLBMAP symbol does not have any signals connected to the A-E
function generator input pins, then XNFMAP resets the MAP
parameter to be “open” to more logic.

Specify signal names on the CLBMAP A-E pins if you want to use a
“closed” CLBMAP.

Error 242. Unable to open LCA netlist file for
reading.

XNFMAP did not find the specified input file in the current directory.
Check the directory and file name and run XNFMAP again.

Error 243. Unable to open report file for writing.

Check for a disk-full condition or incorrect file permissions. On a PC-
based system, the DOS files variable may be too low; use at least
FILES=20 in the config.sys file.

Error 244. Error writing report file to disk.

Check for a disk-full condition.

Error 245. Error while writing information to
disk. Some information can be found in file
filename. Check for a disk-full condition.

Clear some disk space and run XNFMAP again.

Error 247. Multiple source pins on signal. (TBUFs
disabled or removed?).

Check the schematic for inadvertently connected signals. Check
signal naming, since signals with the same name are considered
connected. If error occurs on a line sourced by TBUFs, check if
XNFMAP or XNFPrep disabled or removed any of those TBUFs.

Error 248. Power/ground signal has a source.

A signal flagged as VCC or GND is sourced by logic. If the signal was
intended to be a power or ground connection, remove the source
Development System Reference Guide, Volume 2 3-57

Development System Reference Guide, Volume 2
connection. If the signal was intended to be a normal signal, it cannot
be flagged as VCC or GND.

Error 249. Invalid pin name var on symbol symbolname
type symboltype.

XNFMAP finds a symbol it recognizes but does not recognize the pin
name. If the indicated symbol is an unflattened macro, it must not use
a reserved symbol name, such as AND or OR. If the indicated symbol
is a primitive, check with the company that supplied the XNF
interface.

Error 251. Pin on symbol symboltlype is not
invertible.

XNFMAP finds an inverted signal on a symbol pin that cannot be
inverted. Inverted pins are legal only on certain primitive elements. If
the indicated pin has been changed to inverted sense, restore it to
normal sense and use a discrete inverter.

Error 252. Logic symbol has n inputs (max=<m>).

For a Boolean logic gate, the maximum number of input pins is four
for the XC2000 family and five for the XC3000 family. This limit
represents the widest function that can be implemented in a CLB.
Break the gate into the properly-sized functions.

Error 257. Invalid CLB location loc specified on
symbol symbolname.

XNFMAP ignores an invalid CLB location. See the section “Using the
BLKNM, HBLKNM, and LOC Parameters” for more information
about specifying locations.

Error 258. Symbol symbolname has CLB location location,
which is already used.

The CLB location specified is used by another block. See the section
“Using the BLKNM, HBLKNM, and LOC Parameters” for more
information about specifying locations.

Error 264. External signal signalname defines IO
block blockname which is already used.

The IOB location specified is used by another pin. See the section
“Using the BLKNM, HBLKNM, and LOC Parameters” for more
information about specifying locations.
3-58 Xilinx Development System

The XNFMAP Program
Error 265. Unknown IO block name name on external
signal signalname.

The IOB location specified for the indicated pin is not valid. IOB
locations are expressed with pin numbers (such as P13 or P23) or
with PGA package pin designations (such as A5 or D4). Consult the
pin descriptions in The Programmable Gate Array Data Book for the
valid pin designations.

Error 269. Missing part type for -p option.

The -p option flag must be followed by a valid FPGA part type.
Consult The Programmable Gate Array Data Book for valid part types.

Error 270. Unknown flag ignored.

Check use of command-line options. See the “Options” section of this
chapter for the legal option flags.

Error 271. Extra command-line argument.

Check use of command-line options. See the “Options” section in this
chapter for the legal option flags.

Error 272. Option -name cannot be used with
another hierarchy mapping option. Choose only one
mapping option between -a, -q, and -u.

The -a option separately maps the logic in each user-defined macro.
Use of this option prevents logic from different levels of hierarchy
being combined in one CLB.

The -q option separately maps the logic in each macro that was
flagged with a “FILE=” parameter.

The -u option ignores the hierarchy defined in the input file and to
use the hierarchy defined in the guide file.

Re-run XNFMAP again with one of the options.

Error 282. External signal flagged as power/gnd

A signal that connects to an I/O pad has been flagged as power or
ground. An I/O pad cannot be connected directly to a power signal.
If an output pin is to drive VCC or GND, flag the input of the OBUF
appropriately.
Development System Reference Guide, Volume 2 3-59

Development System Reference Guide, Volume 2
Error 283. Non-I/O symbol connected to external
signal.

An external signal, one that connects to an I/O pad, is connected to a
non-I/O symbol (an I/O buffer or register). Only I/O symbols, such
as IBUF, OBUF or INFF, can be connected to I/O pads. Correct the
connection of symbols/signals in the design.

Error 284. Non-external pin of I/O symbol
connected to external signal.

An external signal, one that connects to an I/O pad, is connected
improperly to an I/O symbol (an I/O buffer or register). Each I/O
symbol has one external pin that may be connected to an I/O pad.
Examples are the O pin of an OBUF, the I pin of an IBUF, the Q pin of
an OUTFF, or the D pin of an INFF. If a non-external pin is connected
to an I/O pad, XNFMAP issues this warning.

Correct the connection of symbols/signals in the design.

Error 285. Multiple load or source pins on
external signal.

An external signal, one that connects to an I/O pad, might be
connected to at most one input element and one output element. A
single I/O pad cannot be sourced by both an OBUF and an OUTFF.

Correct the connection of symbols/signals in the design.

Error 287. Signal flagged as both VCC and GND.

The indicated signal has been flagged as both VCC and GND. Delete
one of the power attributes.

Error 291. Unknown location specified on
symbolname.

The location specified for the indicated symbol is not valid. See the
section “Using the BLKNM, HBLKNM, and LOC Parameters” for
more information about specifying locations.

Error 293. typename symbol symbolname specifies
location loc, which is already used by symbol
symbolname.

Two symbols specify the same location. See the section “Using the
BLKNM, HBLKNM, and LOC Parameters” for more information
about specifying locations.
3-60 Xilinx Development System

The XNFMAP Program
Error 295. typename symbol symbolname and typename
symbol symbolname drive signal signalname, but their
locations are on different longlines.

Correct the LOC constraints on your schematic.

Error 296. typename symbol symbolname on signal
signalname specifies location loc which is already
used for another three-state signal.

A single horizontal longline can carry only one 3-state signal. You
cannot specify symbols, normally TBUFs and pull-ups, driving two
different 3-state signals on the same longline. Change the location
specifications to use different longlines.

Error 297. Illegal connection to global reset
signal signalname. Illegal symbol names listed.

The dedicated global reset signal is controlled by the Reset pin on the
FPGA device. This fixed net connects to the asynchronous reset of
every CLB flip-flop and IOB flip-flop or latch. A signal that is
connected to the global reset pin of a flip-flop or latch is defined to be
the global reset signal, and cannot be connected to a non-global reset
pin. Remove the global reset signal from the indicated symbol pins.

Error 298. Multiple global reset signals signalname
and signalname.

The reset pin on the FPGA device controls the dedicated global reset
signal. This fixed net connects to the asynchronous reset of every CLB
flip-flop and IOB flip-flop or latch. A signal connected to the global
reset pin of a flip-flop or latch is considered the global reset signal.
Because there is only one global reset net on the device, only one net
can be connected to global reset pins. Remove one of the indicated
signals.

Error 299. Illegal location loc specified on
direct clock input signal signalname. Using correct
location loc for the direct clock input.

Correct the LOC constraints on your schematic.
Development System Reference Guide, Volume 2 3-61

Development System Reference Guide, Volume 2
Error 300. Pull-ups and [OBUF |OBUFZ |OUTFF] both
used on external signal.

The pull-up resistors in XC3000 IOBs can only be activated if the IOB
is used as input only. If an output buffer is used, the pull-ups in that
IOB cannot be used. Remove the pull-ups from the I/O pin.

Error 305. Cannot put DFF symbolname and DFF
symbolname into same CLB.

XNFMAP finds that two flip-flops cannot be combined into the same
CLB, but location specifications or a CLBMAP (or guide file) is
attempting to force them. Correct the LOC parameters or CLBMAP.

Error 306. Both latches/DFFs in block must use Q
pins.

Check that incompatible symbols are not assigned to the same CLB
by a CLBMAP or location specifications.

Error 307. DFF symbolname and DFF symbolname that are
assigned to the same block, must use identical
clock, reset, and enable signals.

The specified symbols are not paired in the same CLB. Change the
CLBMAP, LOC, BLKNM, or HBLKNM parameters that are trying to
force the flip-flops together.

Error 308. Too many output pins required by logic
related to DFF symbolname and DFF symbolname than
can fit in one block.

The logic specified for one CLB by a location or CLBMAP symbol
requires more outputs than are available on one CLB. Check the
indicated logic.

Error 309. Mapped output signal signalname has no
source symbol.

A CLB with missing input signals cannot be mapped properly. Check
any CLBMAPs relating to the indicated signal.

Error 310. Location loc for mapped CLB symbolname
already used.

The specified location is ignored. Check the LOC parameters for that
CLB.
3-62 Xilinx Development System

The XNFMAP Program
Error 311. Location loc for mapped CLB symbolname
not found.

A location specification is attempting to place a CLB in an invalid
location. Check the LOC parameters for that CLB against the legal
locations for the part type in use.

Error 312. Cannot map guide symbol as directed.

Refer to error messages listed above. XNFMAP issues one or more
error messages before this one to indicate a problem with a CLBMAP
or guide file symbol. Check the preceding messages to determine the
source of the error. XNFMAP ignores the CLBMAP or guide file
symbol and partitions the related logic using the normal algorithms.

Error 313. DFF has no D pin.

You cannot include the symbol in the mapped CLB. Check that the
CLBMAP for the indicated flip-flop has been defined properly.

Error 314. Specified two latches/DFFs for guide
symbol symbolname. Cannot map these two symbols
into one CLB. Check specification of guide
symbol.

A CLBMAP places more than two latches in an XC3000 CLB or more
than one latch in an XC2000 CLB. XNFMAP cannot map these
symbols into one CLB. Check that the data pin for these latches does
not require another latch to be included in the CLB. This error
message is preceded by another error specifying the symbols that
cannot be mapped.

Error 315. While searching logic path that
sources symbol, encountered a symbol that cannot
be mapped into a CLB.

Check specification of CLBMAP for logic that cannot be mapped into
a CLB. All logic symbols to be partitioned into a CLB must be
combinatorial logic, latches, or flip-flops.

Error 316. Too many logic levels to complete
mapping control process for CLB with [signal |
symbol].

Check that closed CLBMAP inputs are completely defined. Attempts
to partition too many combinatorial gates into one CLB can also
Development System Reference Guide, Volume 2 3-63

Development System Reference Guide, Volume 2
generate this error. Check that the indicated logic can be legally
partitioned into a CLB.

Error 317. DIN signal not being used correctly as
a direct input to a latch/DFF.

XNFMAP finds that the DI signal sources other than data pins. A
signal on the DI pin of a CLBMAP must go directly to the D input of a
CLB flip-flop or XC2000 latch.

Error 318. Tried to map logic associated with
signal into a CLB that already has 2 functions
associated with signalname and signalname.

A CLBMAP symbol attempts to partition more logic into a CLB than
fits. Check the CLBMAP specification.

Error 319. Too many inputs required for CLB
function that includes signal signalname.

A CLBMAP symbol attempts to use too many inputs to a function
generator, or an illegal combination of inputs. Check the legal input
configurations for the CLB function generator and correct the
CLBMAP accordingly.

Error 320. Number of inputs require more
functions than available.

The logic defined by a CLBMAP symbol cannot be implemented in
two function generators (that is, in one CLB). Correct the CLBMAP to
define a legal CLB.

Error 321. Input signal not specified on mapped
CLB.

A signal internal to an F or G function has been flagged with an X
(explicit) attribute. Check that you correctly specified all inputs to the
CLBMAP.

Error 322. Location specified for symbol already
assigned to a block.

Another symbol already uses a location specified on a flip-flop,
CLBMAP, or guide file. Check for conflicts between CLBMAP, guide
file, and flip-flop locations.
3-64 Xilinx Development System

The XNFMAP Program
Error 325. Tried to map [F | G] function with
signal into a CLB that needs the [F | G] function
for symbol.

The F or G function generator is needed to generate more than one
internal signal. Check the CLBMAP specification and remove one of
these functions.

Error 326. Cannot map [GUIDE file | guide] symbol
symname as directed. Conflicting hierarchy
information in guide and design files.

Do not use the -a or -q options, or use a the -u option to allow the
guide file hierarchy to override the design file hierarchy.

Error 329. Can’t use Q and D pin signals in same
function.

An XC2000 function generator can have either D or Q as an input but
not both. Correct the CLBMAP to use one or the other.

Error 331. Cannot use [C pin | G function | K pin] for
clock signal in guide symbol symname. Ignoring
directive to use [C pin | G function | K pin]..

Check the specification of the guide symbol.

Error 340. symbol uses GCLK buffer output signal
improperly.

On an XC2000 device, the GCLK output can only connect to the B or
K pins on the CLB. On an XC3000 device, the GCLK output can only
connect to CLB and IOB clock pins (K, IK, and OK).

Correct the use of the clock output signal.

Error 341. Cannot fit function group(s) in CLB.

Check that the CLBMAP does not attempt to use an invalid CLB
configuration. Check the legal CLB function generator options and
correct the CLBMAP.

Error 342. Clock signal signalname has been
directed to use the G function on the CLB.
However, the G function is reserved for the reset
signal. The clock signal should be assigned to
the K or C pin instead.
Development System Reference Guide, Volume 2 3-65

Development System Reference Guide, Volume 2
A CLBMAP attempts to use the G function for both. In an XC2000
CLB, if the G function generator is used as the reset signal; it cannot
be used as the clock signal.

Flag the clock signal to use the K or C pins instead with the K or C
signal parameters.

Error 343. Clock signal signalname has been directed
to use the C pin on the CLB. But the signal is
from the GCLK buffer, which can only be routed to
the K or B pins. The signal should be assigned to
the K pin instead of the C pin.

An XC2000 CLBMAP indicates that the C pin should be used for the
clock signal. The output of the GCLK buffer can only be routed to the
CLB K or B pins. Correct the CLBMAP accordingly.

Error 344. Equation building buffer for CLB names
overflowed. Cannot complete process.

Use the -g option to limit the number of gates that can be included in
an equation. See “Options” for more information.

Error 345. Clock signal on guide symbol cannot be
combined with clock signal on DFF.

The signal specified on the CLBMAP K pin does not match the clock
signal on the corresponding flip-flop or latch. If no signal is indicated
on the CLBMAP K pin, XNFMAP chooses the clock signal.

Remove the incorrect signal from the CLBMAP clock pin.

Error 347. symbol has been mapped into a CLB and
its output signal is needed by another CLB or
IOB.

However, the guide symbol that guided the mapping of this CLB did
not specify this signal as an output. The indicated signal must be
assigned to an output pin of the CLBMAP or it is not available
outside the CLB. Change the CLBMAP so that the signal is attached
to the X or Y pins.

Error 349. Too many input pins required by logic
that sources DFF symbolname and DFF symbolname.

Two flip-flops or latches were assigned the same BLKNM parameter
but cannot be combined into one CLB because the logic gates that
3-66 Xilinx Development System

The XNFMAP Program
source them require too many inputs. If flip-flops must be combined
in one CLB, use a CLBMAP to carefully group the logic.

Error 350. Too many variables per function or too
many functions specified for guide symbol.

The logic defined by the CLBMAP does not fit into one CLB. Change
the CLBMAP definition so that the logic defined by the input and
output signals can be placed into one CLB.

Error 351. Guide symbol tried to map name into a
new CLB, but it has already been assigned.

Two CLBMAPs attempt to map the same symbol. Change one of the
CLBMAPs to exclude that function.

Error 353. Reserved system name - can’t use name
name.

The indicated name is reserved by XNFMAP and cannot be used as a
user name. Change the name to a non-reserved one.

Error 354. Name name specified more than once,
but will be used only once.

Symbol names in a design must be unique. Correct naming errors in
design.

Error 355. Illegal characters in name name. Will
not use name name.

The indicated name is not a valid FPGA name, and is ignored. FPGA
names can contain only letters, digits, underscores (_), dashes (-),
dollar signs ($), and angle brackets (< and >). Names must contain at
least one non-digit character and no spaces.

Error 360. Invalid equation for Block: symbolname:
equation string.

Correct the indicated CLB primitive symbol.

Error 361. Unmatched parenthesis in equation for
block blockname.

The number of “(” characters does not match the number of “)”
characters. Correct the equation for the indicated CLB primitive
symbol.
Development System Reference Guide, Volume 2 3-67

Development System Reference Guide, Volume 2
Error 362. Illegal pin name in equation for CLB.

An equation for the CLB primitive must be expressed in terms of CLB
pins only. Correct the equation for the specified CLB primitive
symbol.

Error 364. Guide symbol output signal is sourced
by symbol that cannot be mapped into a CLB.

The source of a CLBMAP output signal does not fit into the CLB.
Correct the CLBMAP assignments.

Error 370. Multiple [GCLK | ACLK | OSC] symbols in
design.

Each XC2000 or XC3000 device has only one GCLK buffer, one ACLK
buffer, and one on-chip oscillator. Remove any duplicate symbols
from the design.

Error 372. Could not fit in a CLB the logic
indicated by guide symbol.

Use the X signal flag or a fully specified (closed) guide symbol to
better define the logic. An illegal feedback path is indicated by
assigning a function-generator output to a CLBMAP input pin for the
same CLB. Only the output of the flip-flops can be fed back to the
function generator internally. If you want to feed back the function-
generator output, it must be done external to the CLB; therefore,
assign the function to a CLBMAP output pin as well.

Error 373. Cannot lock signals on input pins to a
CLBMAP symbol; with a ‘PLO’ or ‘PUO’ type.
Ignoring input pin locking for CLBMAP name.

If a CLBMAP is indicated as open (MAP=PLO or MAP=PUO), you
can only place P (pin-lock) attributes on the output pins. Remove P
attributes from the CLBMAP inputs.

Error 374. Symbol symboltype symbolname has both HBLKNM
and BLKNM parameters. Only one of the two
parameters can be specified per symbol.

Remove one of the parameters from the symbol.
3-68 Xilinx Development System

The XNFMAP Program
Error 375. Two symbols, symboltype symbolname and
symboltype symbolname are assigned to the same IOB
and cannot have conflicting BLKNM values. Remove
BLKNM parameter from one of the symbols.

See the section “Using the BLKNM, HBLKNM, and LOC
Parameters” for more information about location control.

Error 376. Two symbols, symboltype symbolname and
symboltype symbolname are assigned to the same IOB and
cannot have both BLKNM and HBLKNM values. Remove
the parameter from one of the symbols.

See the section “Using the BLKNM, HBLKNM, and LOC
Parameters” for more information about location control.

Error 378. Illegal pin name pinname in equation
for function generator name.

Run XNFMAP again.

Error 420. Unable to open temporary work file.

Check for a disk-full condition or incorrect file permissions. On a PC-
based system, the DOS-files variable might be too low; use at least
FILES=20 in the config.sys file.

Error 421. Unable to move existing PGF file
filename1 to backup file filename2.

XNFMAP uses the existing guide file filename1 and writes the new
guide information to the file filename2.

Check for file write permissions on the named files.

Error 422. Unable to rename temp file filename to
filename.

XNFMAP failed when attempting to rename its work file to the actual
output file name. This might occur if the target file already exists and
is flagged read-only, or a disk-full condition exists. Check for these
two conditions and run XNFMAP again.

Error 423. Error while writing Guide information
to disk.

Some information can be found in file filename. Check for a disk-full
condition or incorrect file permissions.
Development System Reference Guide, Volume 2 3-69

Development System Reference Guide, Volume 2
Error 433. Missing source logic for output
signals of guide symbol.

The output signal indicated on a CLBMAP or guide file symbol has
no source. Check that the outputs have been correctly specified on the
CLBMAP.

Error 434. Invalid LOC parameter loc on symboltype
symbolname.

An explanatory message might follow. The indicated symbol carries a
location specification that is not valid. See the section “Using the
BLKNM, HBLKNM, and LOC Parameters” for more information
about location control.

Error 435. Location parameters on the EXT signal
signalname will take precedence over parameters of
symboltype symbolname.

If a location specification is attached to both an I/O pad and its
corresponding I/O buffers, the location on the pad takes precedence.
See the section “Using the BLKNM, HBLKNM, and LOC Parameters”
for more information about location control.

Error 436. LOC parameter on (signal or symbol) will be
ignored - unsupported location-naming syntax.

An invalid location was specified. See the section “Using the
BLKNM, HBLKNM, and LOC Parameters” for more information
about location control.

Error 437. Merging signals signalname and signalname
leads to conflict on LOC parameters.

XNFMAP finds a conflict in location specifications when it merges
two signals. Remove one of the location specifications. See the section
“Using the BLKNM, HBLKNM, and LOC Parameters” for more
information about location control.

Error 438. The part device is not supported by
this product The design cannot be mapped into the
specified LCA part type because the part is not
supported by this version of software.

Contact a Xilinx sales representative for different development
system options.
3-70 Xilinx Development System

The XNFMAP Program
Error 439. Guide symbol in design file symbolname
location specification will override any location
specified on underlying logic.

If a location is specified on a CLBMAP symbol, the mapped logic
cannot use individual location constraints. XNFMAP uses the
CLBMAP location.

Error 441. Conflicting location specifications
for DFF symbolname and DFF symbolname.

A CLBMAP indicates that two flip-flops should be paired, but those
flip-flops have conflicting location specifications. XNFMAP ignores
both location specifications. The CLBMAP takes precedence and the
flip-flops are paired.

Error 442. Invalid package file filename.

The specified package file might be invalid or corrupted. Re-install
the implementation software.

Error 443. Unable to open file partlist.xct.

The partlist.xct file could not be found. Make sure that this file exists
in the \XACT or \XACT\DATA directory. If it does not exist, re-
install the implementation software.

If the file does exist, use the DOS SET command to verify that the
XACT environment variable points to the \XACT directory. Any
spaces in the SET XACT= statement can prevent the data files from
being found.

Error 444. Missing or invalid token tokenname in
file filename.

An invalid or corrupted partlist.xct or speeds.xct file exists. Re-install
the implementation software.

Error 445. Can’t change name to .dev suffix. This
is an indication of corrupted or invalid data
files.

Re-install the implementation software.

Error 446. Unknown alias-to-part parttype.

Corrupted or invalid data files exist. Re-install the implementation
software.
Development System Reference Guide, Volume 2 3-71

Development System Reference Guide, Volume 2
Error 447. Failed to find parttype in part list.

Corrupted or invalid data files exist. Re-install the implementation
software.

Error 455. EQN symbol symbolname has missing or
invalid equation.

A non-recoverable error (invalid equation syntax) occurred;
therefore, XNFMAP stops the program.

Regenerate the input file.

Error 470. The input signal signalname on EQN symbol
symbolname must either be a latch feedback signal
or specified on an input pin to the GUIDE symbol.

The EQN symbol, when used in conjunction with a “closed”
CLBMAP symbol, must fully specify a CLB equation. This means that
all of the input signals to the EQN symbol must also be on the
CLBMAP input pins or be a feedback signal from a latch in the
proposed CLB.

Correct the CLBMAP symbol or EQN value.

Error 2001. Unable to open AKA file for reading.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.

Error 2002. Illegal prefix in line number.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.

Error 2003. Unable to add symbol to table.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.

Error 2007. No symbol for index number.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.
3-72 Xilinx Development System

The XNFMAP Program
Error 2008. PREFIX table overflow on symbol.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.

Error 2010. Unable to retrieve error message for
UI error code number.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.
Development System Reference Guide, Volume 2 3-73

Development System Reference Guide, Volume 2
3-74 Xilinx Development System

Chapter 4
Development System Reference Guide, Volume 2 — 0401406 01 4-1

The MAP2LCA Program

This program is compatible with the following families.

● XC2000

● XC2000L

● XC3000

● XC3100

MAP2LCA translates a MAP file into a Logic Cell Array (LCA) file
for use with the XACTstep Development System software. MAP2LCA
is the last step in the XNF-to-LCA translation process.

MAP2LCA outputs an LCA file that describes how the design is
partitioned into a particular FPGA device. This file format is used by
the XACT Design Editor (XDE) and the Automatic Place and Route
program (APR). MAP2LCA produces a constraints file (SCP) that
contains the placement and routing constraints specified in the
schematic.

Syntax
The following syntax creates an LCA file from your MAP file.

map2lca [options] design[.map] [output[.lca]]

Files
This section describes the input file that MAP2LCA requires to
generate an LCA file and the subsequent output files.

Development System Reference Guide, Volume 2
Input Files

design.map

This file contains logic-partitioning information and is the output of
the XNFMAP program.

Output Files

design.lca

This file contains the design partitioned into the FPGA architecture
and is used with the XACTstep Development System Software (for
example, XDE and APR).

design.scp

This file contains the placement and routing constraints specified in
the schematic, which APR automatically reads.

Specifically, the SCP file includes all the constraints for APR
contained in the schematic drawing. It does not include those
additional constraints in the separate APR constraints file, the
design.cst file. See The “APR” chapter in this reference guide for more
information.

design.aka

This file contains the hierarchical path names for symbols and signals
and their associated abbreviations.

Note: The -s option is not recommended. See the “Options” section
for more information.

Options
MAP2LCA has the following options that you can use when creating
the design.lca file.

–i Ignore Placement Constraints

This option directs MAP2LCA to ignore user placement constraints
found in the MAP file.
4-2 Xilinx Development System

The MAP2LCA Program
–p Specifies the LCA Package and Part Type

This option allows you to override the part and package specification
for the design. However, Xilinx does not recommend the use of this
option at this stage in the design flow.

Note: If you want to modify the part type, change it in the schematic
or synthesized input design, or use the -p option in XNFMerge. It is
important that XNFPrep is run on the design with the correct part
type prior to running MAP2LCA.

This option is only available from the command line.

–s Use AKA file to Shorten Names

Note: The current design flow does not include this option. Xilinx
does not recommend the -s option for the reasons provided at the end
of this section.

The -s option directs MAP2LCA to shorten the path names of signals
and symbols and create an AKA file that lists each path name and its
abbreviation. For example, a symbol named top/sub1/AND might
be changed to ‘$1’ to substitute for the path name top/sub1/. By
default MAP2LCA creates abbreviations using the dollar sign ‘$’
followed by one or more digits.

MAP2LCA reads and uses an existing AKA file before it generates a
new file with default names. Therefore, it is possible for you to
provide meaningful abbreviations for the path names. If an existing
AKA file does not exist, run MAP2LCA with the -s option to create
the file. You must edit the abbreviations in the right-most column in
the file to be short, meaningful names for the identified paths in the
left-most column. Be careful not to use the same abbreviations for
different paths in the design. Then, run MAP2LCA again with the -s
option to use the new abbreviations for the output LCA file.
MAP2LCA retains your abbreviations when it creates the new AKA
file.

The -s option is not recommended for the following two reasons.

● The back-annotation process that prepares a design for timing
simulation depends upon maintaining original signal names
throughout the design implementation process. If you change the
signal names, the back annotation program (XNFBA) cannot
successfully restore timing information to the original design.
Development System Reference Guide, Volume 2 4-3

Development System Reference Guide, Volume 2
● If you intend to derive a guide file from an LCA file for use with
the XNFMAP -k option (guided design), then you must not edit
the AKA file. You must keep the AKA file and make it available to
XNFMAP so that it can restore the original signal names. Note,
that XNFMAP does not recognize abbreviations that do not begin
with a ‘$number’. Therefore, if you edited an AKA file to
substitute the default abbreviations, XNFMAP cannot use that
AKA file to help restore the original names in the guide file. See
the “Guide by LCA File” section in the “XNFMAP” chapter.

MAP2LCA Example
Figure 4-1 shows a sample circuit and the partitioned result that is
generated by MAP2LCA.

Figure 4-1 Sample Circuit

AND

FD Q

O

Pxx

X4436

FD Q

FD Q

Pxx

Pxx

Pxx

Pxx

Pxx

O

O

O

D1 D

C

D

C

D

C

IBUF

IBUF

GCLK

O

O

O CLK

L

XNOR

OR

INV

CLKNI

IPAD

LOC=P12

LOC=P13

LOC=P17

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1

2

1

2

1

2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2

CLB

CLK

B0

A0 BIT0

BIT1

CLB

CLK

B0

A0 BIT2
Partitioned

Into

D3

D2
4-4 Xilinx Development System

The MAP2LCA Program
MAP2LCA translated the ADI1.MAP file into SAMPLE.LCA.
Figure 4-2 shows the screen output of MAP2LCA using the following
command line:

map2lca adi1 sample

Figure 4-2 The Screen Output of MAP2LCA

The screen output lists any status messages and errors. A list of error
messages, warnings, and recovery procedures is provided at the end
of this chapter. If any error occurs, a message appears on the screen
only.

If the translation aborts, perform the following steps.

1. Determine the nature of the error.

2. Correct your schematic design appropriately.

3. Translate the design into the MAP format.

4. Run MAP2LCA again.

The following letters correspond to the sections of the screen output
shown in Figure 4-2.

A — Headers

This identifies the software version number, the date and time of the
translation, and the copyright statement.

B — Status messages

Status messages about the translation display in this area.

MAP2LCA Ver. 5.0
(c) Copyright 1988 - 1994 Xilinx Inc. All rights reserved

Checking network for logical errors...
Assigning logic to LCA elements

SUMMARY: Part type=3020pc68-100
 2 of 64 CLBs used
 6 of 58 I/O pins used
 0 of 6 internal IOBs used
 0 of 16 internal 3-state signals used
Design written to file sample.lca (APR constraints in sample.scp)

A —

B —

C —
Development System Reference Guide, Volume 2 4-5

Development System Reference Guide, Volume 2
C — Summary

Summary regarding the CLB-base implementation and the output
files written.

The SCP constraints file generated for the adi1.map file is shown in
Figure 4-3. The SCP file name is derived from the output file name,
sample.lca.

Note: The letters on the left-hand side of Figure 4-3 correspond to the
sections of the screen output listed below.

A — File header

Includes the version number and the date and time the file was
produced.

B — Longline and critical net information

C — Block placement information

Figure 4-3 Sample SCP File

design.aka
The AKA file gives the full hierarchical path names of all symbols and
signals in the design and lists the abbreviations used in the LCA file.
The circuit shown in Figure 4-1 has no hierarchy; therefore, the AKA
file contains the usual header information, but no net names. An
example circuit with hierarchical elements is shown in Figure 4-4. The
associated AKA file is shown in Figure 4-5.

; Design: sample.lca, Created by MAP2LCA Ver 5.0 at Wed Jan 05 18:02:03 199 4
;(NOTE: Don’t edit this file. It is rewritten each time MAP2LCA is run)
flag net longline CLK ;
place block BIT00 P17 ;
place block CLKIN P16
place block BIN0 P13 ;
place block AIN0 P12 ;

A —
B —

C —
4-6 Xilinx Development System

The MAP2LCA Program
Figure 4-4 Sample Circuit with Hierarchy, top.dwg

Figure 4-5 Sample top.aka File

Note: The AKA file is not read or produced unless you use the –s
option. The letters on the left-hand side of Figure 4-5 correspond to
the sections of the screen output listed below.

A — File header

Includes the file name, date, and time the file was generated.

B — Hierarchical path names and associated abbreviations

The AKA file for the top.dwg schematic is shown in Figure 4-5. The
symbol and signals for level_2.dwg have hierarchical path names
that begin with /CLKMUX/LEVEL_2. In the LCA file, this prefix is

O
IPAD
Pxx

I
IBUF

I

AND O
1
2

OR
O

O
IPAD
Pxx

I
IBUF

I

O
OPAD

Pxx

OBUF
I

IN2

IN1

I1

I2
LEVEL_1 OUTPAD

AND
O

1
2

1
2

O2

O1 OUT

IN2PAD

IN1PAD

X4583

O

L1
L2

X

1

SIG1

X

1

SIG2

I1

I2
LEVEL_2

O2 O1
L1

L2

TOP.DWG

LEVEL_1.DWG

LEVEL_2.DWG

top.aka alias file created by MAP2LCA on wed Jan 06 12:55:02 1

$1 /CLKMUX/LEVEL_2

A —
B —
Development System Reference Guide, Volume 2 4-7

Development System Reference Guide, Volume 2
shortened to $1. Therefore, the signal named SIG1 in the
LEVEL_2.dwg file will be named $1/SIG1 in the LCA file.

Warning Messages and Recovery Techniques
This section describes the warning messages that MAP2LCA2 can
generate. An explanation and workaround solution follows each
warning message.

Warning 254. No CLBs used.

This message is issued if no CLBs were used when XNFMAP
partitioned the design. This warning typically happens when all logic
has been disabled or removed. If there are sourceless or loadless
signals in the design that should not be removed, use an “S” (save)
attribute to preserve them, or specify the estimate options in
XNFPrep and XNFMAP.

Warning 255. No IOBs used.

This message is issued if zero I/O pins were used when the design
was partitioned. If only a partial design is being processed and no I/
O pins are used, you can ignore this message. Logic not sourced or
loaded by IOBs can be preserved by using “S” (save) attributes, or by
specifying the estimate options in XNFPrep and XNFMAP.

Warning 256. No I/O pins used (only internal IOBs
used).

This message is issued if only internal (unbonded) IOBs were used
when the design was partitioned. If any bonded I/Os are indicated in
the input design, check if any sourceless or loadless IOBs have been
removed.

The INTERNAL parameter is used to specify that an I/O symbol
does not need to be on a bonded pad. Check the design to ensure that
all the I/O symbols do not have the INTERNAL attribute, or else
none of the I/O symbols are placed on bonded pads and the FPGA
will have no external inputs or outputs.

Warning 265. Configuration tag BASE, CONFIG on
IOB symbol symbolname ignored. Configuration tags
must begin with BASE or CONFIG.

Invalid IOB specification in MAP file. Regenerate the input MAP file
using XNFMAP. Check for a disk-full condition that might have
4-8 Xilinx Development System

The MAP2LCA Program
caused an incomplete MAP file. The MAP file should always have an
EOF on the last line.

Warning 265. Configuration tag BASE, CONFIG, or
EQUATE on CLB symbol symbolname ignored.
Configuration tags must begin with BASE, CONFIG,
or EQUATE.

There is an invalid CLB specification in the MAP file. Regenerate the
input MAP file using XNFMAP. Check for a disk-full condition that
might have caused an incomplete MAP file. The MAP file should
always have an EOF on the last line.

Warning 266. No BASE, CONFIG, or EQUATE
configuration command on CLB symbol symbolname.

There is an invalid CLB specification in the MAP file. Regenerate the
input MAP file using XNFMAP. Check for a disk-full condition that
might have caused an incomplete MAP file. The MAP file should
always have an EOF on the last line.

Warning 267. Too many BASE, CONFIG, or EQUATE
configuration commands on CLB symbol symbolname.

There is an invalid CLB specification in the MAP file. Regenerate the
input MAP file using XNFMAP. Check for a disk-full condition that
might have caused an incomplete MAP file. The MAP file should
always have an EOF on the last line.

Warning 299. Illegal location location specified on
direct clock input signal signalname.

If the GCLK or ACLK buffer is connected directly to an IPAD symbol,
the corresponding direct clock input is used. This message is issued if
a location other than the direct clock input pin is specified for that
IPAD. Consult the pin descriptions in The Programmable Logic Data
Book to determine which pins are the dedicated clock inputs
(TCLKIN and BCLKIN) for a particular part type. If no location is
specified, the appropriate pin is chosen.

Warning 448. Reserved name name will be ignored.

Some names are reserved by the XACTstep Development System and
cannot be used as a user-specified block name.
Development System Reference Guide, Volume 2 4-9

Development System Reference Guide, Volume 2
Warning 449. Illegal name name found. Name will
be ignored.

User-specified block name contains illegal characters or does not
contain at least one non-numeric character. Change the name in the
input design so that it is composed of alpha-numeric characters, and
includes at least one alphabetic character.

Warning 451. name is a reserved symbol name for an
unbonded IOB in this package. Changing name to
new_name.

The names of unbonded package pins are reserved in the system.
Typically, these names have the syntax of the letter ‘U’ followed by
the unbonded pad number. MAP2LCA generates a new name to
replace the reserved name.

Warning 452. AKA_file found but will not be used.
Specify the -s option if you want to use the
AKA_file file to shorten signal and symbol names.
However, this option is not recommended if you
intend to run post-layout simulation because it
changes the original signal names.

In previous releases, MAP2LCA would read and use the AKA file if it
existed in the design directory, even if it was not directed to do so.
This is changed in release 5.0. In this version, the AKA file is used
only if you specify the -s option.

Warning 453. Due to the specification of the –s
option, the design signal and symbol names will
be shortened. However, this option is not
recommended if you intend to run post-layout
simulation because it changes the original signal
names.

Specifying the -s option forces MAP2LCA to produce an AKA file.

Error Messages and Recovery Techniques
This section describes the error messages that MAP2LCA2 can
generate. An explanation and workaround solution follows each
error message.
4-10 Xilinx Development System

The MAP2LCA Program
Error 1. At line number: Field too long.

This message indicates an invalid or corrupted MAP file. Rerun the
program that created this file and try again. If the error persists, check
with the company that supplied the program that created the XNF
file.

Error 2. At line number: Unexpected LCANET record.

This error is issued when an LCANET record is found on a different
line than the first.

Error 3. At line number: ENDMOD with no matching
MODEL record.

This message indicates an invalid or corrupted netlist file. Rerun the
program that created this file and try again. If the error persists, check
with the company that supplied the program that created the XNF
file.

Error 4. At line number: Symbol sub-record outside
of symbol group. Record ignored.

This error is issued when the XNF syntax is violated, and records that
should be within other records, such as MODEL, ENDMOD, or PIN,
are found outside the group.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 5. At line number: Illegal record inside
symbol group. Record ignored.

This error is issued when the XNF syntax is violated, and a record
that is not allowed inside other symbol groups is found within the
group, for example a PROG record inside a SYM group.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 6. At line number: Premature EOF record in
symbol group.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.
Development System Reference Guide, Volume 2 4-11

Development System Reference Guide, Volume 2
Error 7. At line number: Illegal record inside
MODEL group.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 8. At line number: Premature EOF record in
MODEL group.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 9. At line number: Premature End-of-file. No
EOF record found.

An EOF record must conclude every XNF file. This message indicates
an invalid or corrupted XNF file. Rerun the program that created this
XNF file and try again. If the error persists, check with the company
that supplied the program.

Error 10. At line number: Unknown record type type.

An illegal XNF record type was found in the file. This message
indicates an invalid or corrupted XNF file. Rerun the program that
created this XNF file and try again. If the error persists, check with the
company that supplied the program.

Error 11. At line number: There are characters
‘chars’ on the end of a record line, after all
expected data has been received.

This message indicates an invalid input file. Re-generate the file

Error 12. At line number: Invalid LCA netlist
file. Invalid or missing LCANET record.

This message indicates an invalid or corrupted XNF file. Every valid
XNF file must start with the LCANET record, which lists the XNF
version of the file.

Error 13. At line number: Unsupported XNF netlist
version version number.

The version number listed in the LCANET record is not supported by
this program. Only XNF versions 1, 2, 4, and 5 are supported.
4-12 Xilinx Development System

The MAP2LCA Program
Error 15. At line number: Valid part type must be
specified before netlist symbols can be read.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 16. At line number: Invalid part record,
missing part type.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 17. At line number: Missing name on SYM
record.
At line number: Missing type on SYM record.
At line number: Unknown symbol type.

These messages indicate an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 18. At line number: Invalid PIN record.
Missing name field.
At line number: Invalid PIN record. Missing or
invalid direction field.
At line number: Invalid PIN record. Invalid
direction field.
At line number: Invalid PIN record. Non-numeric
delay field.
At line number: A bidirectional field (B) must
only be used on a macro.

These messages indicate an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 19. At line number: Pin name name used
multiple times on symbol symbolname.

Error 20. At line number: Missing command on CFG
record.
Development System Reference Guide, Volume 2 4-13

Development System Reference Guide, Volume 2
This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 21. At line number: CFG records allowed only
in CLB and IOB symbols.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 22. At line number: Invalid SIG record.
Missing signal name.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 23. At line number: Invalid EXT record.
Invalid direction dir.
At line number: Invalid EXT record. Missing signal
name.
At line number: Invalid EXT record. Bad or missing
direction field.

EXT records must have a direction field of I, O, T, B, or U.

These messages indicate an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 24. At line number: Invalid BUS record.
Missing bus name.

This message indicates an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 25. At line number: Invalid PULSE record.
Missing pin name field.
At line number: Invalid PULSE record. Missing or
invalid polarity field.
At line number: Invalid PULSE record. Invalid
polarity field.
At line number: Invalid PULSE record. Invalid or
missing minimum width field.
4-14 Xilinx Development System

The MAP2LCA Program
These messages indicate an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 26. At line number: Invalid PWR record. Bad
or missing polarity field.
At line number: Invalid PWR record. Polarity is
‘polarity’. Must be 0 or 1.

PWR record must have a 1 or a 0 in the polarity field.

These messages indicate an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 27. At line number: Invalid SETUP record.
Missing pin name field.
At line number: Invalid SETUP record. Missing
clock pin name field.
At line number: Invalid SETUP record. Missing or
invalid clock edge field.
At line number: Invalid SETUP record. Invalid
clock edge field.
At line number: Invalid SETUP record. Missing or
invalid setup time.
At line number: Invalid SETUP record. Missing or
invalid hold time.

These messages indicate an invalid or corrupted XNF file. Rerun the
program that created this XNF file and try again. If the error persists,
check with the company that supplied the program.

Error 28. At line number: Missing id on Hierg
record.
At line number: Missing type on HIERG record.
At line number: Missing name on HIERG record.
At line number: Missing filename on HIERG record.
At line number: Missing parent id on HIERG record.

These message indicate an invalid or corrupted MAP file. Rerun the
design implementation process from the input XNF files. If the error
persists, check with the company that supplied the program.
Development System Reference Guide, Volume 2 4-15

Development System Reference Guide, Volume 2
Error 30. For general use of invalid parameters.

At line number: Unknown MAP symbol symboltype for SYM
symbolname.

This message is issued if a CLBMAP symbol has a MAP= parameter
value that is not PUC, PUO, PLC, or PLO. See “Using CLBMAPs” in
the “XNFMAP” chapter for more information about MAP=
parameters. If there is no MAP= parameter on the CLBMAP symbol,
then XNFMAP will default to MAP=PUC or MAP=PUO (if CLBMAP
symbol has no A – E pins).

At line number: type name has invalid parameter
value parameter.

This message is issued if a floating point value of the THI and TLO
parameters have trailing characters that are not “ns” (for
nanoseconds). Only the suffix “ns” can be added to a THI or TLO
value.

At line number: Unknown SYM record parameter
parameter

This message is issued if an unknown XNF symbol parameter is
found. Check the parameter specification in the design file.

At line number: parm parameter found on SYM
symbolname, type symboltype.

This message is issued if a parameter is assigned to a symbol that
does not support that parameter, such as a FAST tag on a DFF
symbol. Check the parameter for that symbol.

At line number: Unknown PIN record parameter
parameter

This message is issued if an invalid parameter is assigned to a PIN.
Check the parameter for that symbol pin.

At line number: PIN record parameter parameter found
on MAP symbol.

This message is issued if an invalid parameter is assigned to a PIN
statement for a CLBMAP. Only a P (pin-lock) parameter is allowed on
CLBMAP symbol pins.

At line number: Unknown SIG record parameter
parameter
4-16 Xilinx Development System

The MAP2LCA Program
This message is issued if an invalid parameter is assigned to a SIG
record. Check the parameter for that signal.

At line number: Unknown EXT record parameter
parameter ignored.

This message is issued if an invalid parameter is assigned to a EXT
record. Check the parameter for that I/O pad.

At line number: FILE parameter found on name SYM,
type symboltlype. (Non-flattened design?)

This message is issued if a FILE= parameter is found on a non-macro
symbol. FILE= parameters should be added only to unflattened
macro symbols. This warning can occur if a reserved name — such as
AND or OR — is used as the name of a macro with a FILE=.

At line number: Extra LOC parameter parm found on
signal signalname

This message is issued if more than one LOC parameter is found on a
record. Multiple-block LOC parameters should be separated by
semicolon (;) characters. If commas (,) are used to separate LOC
parameters, this error is issued.

At line number: Invalid MAP symbol type [PLO, PUO,
or PLC] for HMAP symbol symbolname. PUC is the only
valid MAP= parameter for an HMAP symbol.

At line number: parameter is not complete on PIN
pinname.

This message is issued if there is an invalid parameter on the PIN
record.

At line number: SYM record parameter TNM not
allowed on timespec symbols.

Only TSid parameters are allowed on TIMESPEC symbols.

At line number: SYM record parameter parameter only
allowed on symbols with TIMESPEC type.

The only symbols that can have this parameter are TIMESPEC
symbols.

Error 31. At line number: Invalid LOC parameter
name on symbol-type name.
Development System Reference Guide, Volume 2 4-17

Development System Reference Guide, Volume 2
An invalid location specification was found on the indicated symbol.
Check the legal LOC constraints for the FPGA family in use.

Error 33. At line number: More than one parameter is
specified on symbol symbolname. Only one is allowed
per symbol.

Only one RLOC, RLOC_ORIGIN, or RLOC_RANGE parameter is
allowed per symbol in the input design.

Error 34. At line number: Invalid RLOC parameter
parameter on symbol symbolname.

Refer to the Libraries Guide for the correct use of RLOC parameters.

Error 35. At line number: Both TTL and CMOS
parameters are specified on symbol symbolname.
Only one of these parameters is allowed per
symbol.

Error 36. At line number: parameter specified on
symbol symbolname of type type RLOC-type parameters
may not be used with decoders, clocks, logic
symbols or IO primitives.

Error 37. At line number: FAST/SLOW/MEDFAST/
MEDSLOW and FAST/SLOW/MEDFAST/MEDSLOW parameters
have been found on symbol symbolname. These
parameters should be mutually exclusive.

Error 37. At line number: FAST/SLOW/MEDFAST/
MEDSLOW and FAST/SLOW/MEDFAST/MEDSLOW parameters
have been found on signal signalname. These
parameters should be mutually exclusive.

Error 38. At line number: TNM parameter TNM=value
on symbol symbolname has illegal class type. The
only legal class types are FFS, RAMS, PADS or
LATCHES. The syntax should be TNM=name_value or
TNM= class-type:name.

Error 40. At line number: Two different IOBs use
the same external signal signalname.

Two IOBs cannot use the same pad signal. Every pad signal must
have a unique name. This error can occur if you have a pad signal
connecting an input I/O symbol and an output I/O symbol, and the
4-18 Xilinx Development System

The MAP2LCA Program
two symbols are in separate modules of the design. If the two
modules are mapped separately (map-then-merge design
processing), then the two symbols will be made into two separate
IOBs that both use the same pad signal. Although the intention might
have been to make the pad signal a bidirectional signal, the
separation of the two symbols into different modules caused this
error. It is advisable to keep all the I/O elements of a single IOB (pad
signal, input and output symbols) in the same module/hierarchy of
the design.

Error 53. Out of memory. Needed number bytes.

There is insufficient memory to complete the XNF file processing.
Check the memory requirements for the FPGA part type in use.

Error 208. Un-mapped symbol found name.

Run XNFMAP and MAP2LCA again.

Error 222. Too many CLBs used.

The design requires more than the available number of CLBs in the
target part type. Either change to a larger part type or eliminate some
of the logic.

Error 223. Too many IOBs used.

The design requires more than the available number of IOBs in the
target part type. Either change to a part type with more pins or
eliminate some of the I/Os.

Error 224. number I/O pins used but only number
available.

The design requires more I/O pins than are available in the package
type. Either change to a package with more pins or reduce the
number of I/O pins. The number of I/O pins and the number of IOBs
do not always match, as there are some packages with unbonded
IOBs.

Error 225. Symbol symbolname defines an oscillator,
but none are available.

More than one oscillator was specified. Only one crystal oscillator
circuit is available on XC2000 or XC3000 devices.

Error 226. Symbol symbolname defines an unavailable
clock buffer.
Development System Reference Guide, Volume 2 4-19

Development System Reference Guide, Volume 2
Only the GCLK and ACLK buffers are available on XC2000 and
XC3000 devices.

Error 227. Symbol symbolname defines a [GCLK/ACLK]
clock buffer which is already assigned to symbol
symbolname. It is an error to have multiple [GCLK/
ACLK] symbols.

One of the global clock buffers was used twice. Only one GCLK
buffer and one ACLK buffer are available on XC2000 or XC3000
devices. Remove one of the extra clock buffers.

Error 228. Invalid part type parttype.

Error 229. IOB name needed for oscillator but
already used.

The crystal oscillator requires two dedicated pins, XTAL1 and XTAL2.
If the oscillator is used, the IOBs associated with these pins cannot be
used as a normal I/O. This message is issued if one of these pins is
specified as a normal IOB. Edit the design so it does not use these
pins. Check the pin descriptions in The Programmable Logic Data Book
to find the locations of XTAL1 and XTAL2.

Error 230. Unable to find data file filename.

The specified data file could not be found. Make sure that the
indicated file exists in the \XACT or \XACT\DATA directory. If it
does not exist, the implementation software should be re-installed. If
the file does exist, use the DOS Set command to verify that the XACT
environment variable points to the \XACT directory. Any spaces in
the SET XACT= statement can prevent the data files from being
found.

Error 232. Insufficient information in partlist
file.

The partlist.xct file is out-of-date and does not contain all of the
information necessary for MAP2LCA to process the design. Check
that a valid part type is specified. If the part type is valid, the
indicated data file might be corrupted. Re-install the implementation
software.

Error 234. Unable to open package file filename.

Check that a valid package type was specified for the desired part. If
the part and package type is valid, the indicated data file might be
4-20 Xilinx Development System

The MAP2LCA Program
corrupted. Re-install the implementation software.

Error 237. Unable to open temporary work file.

Check for a disk-full condition or incorrect file permissions. On a PC-
based system, the DOS FILES variable may be set too low; use at least
FILES=20 in the config.sys file.

Error 239. Unable to rename temp file.

MAP2LCA failed when attempting to rename its work file to the
actual output name. This might occur if the target file already exists
and is flagged read-only, or because of a disk-full condition. Check
for these two conditions and run MAP2LCA again.

Error 241. File name filename is too long.

Error 241. Illegal extension on name filename.

Error 242Unable to open LCA netlist file filename
for reading.

This typically means that the specified input file was not found in the
current directory. Check the directory and file name and run
MAP2LCA again.

Error 257. Invalid CLB location loc specified on
symbol symbolname.

An invalid CLB location was specified. See the “XNFMAP” chapter
for more information about specifying locations.

Error 258. Symbol symbolname has CLB name location
which is already used.

The CLB location specified is used by another block. See the
“XNFMAP” chapter for more information about specifying locations.

Error 264. IOB symbol symbolname requires I/O block
name. The GCLK and ACLK direct input signals
(TCLKIN and BCLKIN) are only available from
specific IOBs.

Check the part’s data sheet for the correct IOB pin name. However,
you do not need to specify the direct clock input IOBs; MAP2LCA
automatically assigns the correct IOBs.
Development System Reference Guide, Volume 2 4-21

Development System Reference Guide, Volume 2
Error 270. Unknown command-line option option.

An unknown option flag was specified on the MAP2LCA command
line. See the “Options” section in this chapter for the legal option
flags.

Error 271. Extra command-line argument argument.

An extra argument was found on the command line after the output
file name. See the “Syntax” section in this chapter for the syntax of the
command line.

Error 273. Missing part type -p option.

The -p option was specified at command line without the part type
following.

Error 274. Option -N and -M are no longer
supported by MAP2LCA.

The mincut pre-placement step has been removed from MAP2LCA.

Error 282. External signal flagged as power/gnd.

A signal that connects to an I/O pad has been flagged as power or
ground. An I/O pad cannot be connected directly to a power signal.
If an output pin is to drive VCC or GND, the input of the OBUF
should be flagged appropriately.

Error 291. Unknown location locstion specified on
symbolname.

Correct LOC parameter or use –i option to ignore all LOC
parameters. The location specified for the indicated symbol is not
valid. See the “XNFMAP” chapter for more information about
specifying locations.

Error 292. Too many type symbols connected to
signal signalname.

This message typically results from using more than the available
number of TBUFs or pull-ups. The number of TBUFs available on a
horizontal longline depends on the FPGA part type. Reduce the
number of TBUFs or use a part with more resources. There are two
pull-ups available for each horizontal longline. No more than two
pull-ups should ever be specified per signal.
4-22 Xilinx Development System

The MAP2LCA Program
Error 293. Location location cannot be used by TBUF
name, which is already used by symbol symbolname.

Two symbols specify the same location. See the “XNFMAP” chapter
for more information about specifying locations.

Error 294. Too many internal three-state signals
used.

This message typically results from using more than the available
number of horizontal longlines. The number of horizontal longlines
available depends on the FPGA part type. Reduce the number of 3-
state signals or use a part with more horizontal longlines.

Error 295. Symbol symbolname and symbol symbolname
drive signal signalname, but their locations are on
different longlines.

All TBUFs and pull-ups that drive the same net must be placed on the
same horizontal longline.

Error 296. TBUF symbol symbolname on signal
signalname specifies location which is already used
for another three-state signal.

A single horizontal longline can carry only one 3-state signal. This
message is issued if symbols (normally TBUFs and pull-ups) driving
two different 3-state signals are specified to be on the same longline.
Change the location specifications to use different longlines.

Error 300. Pullup and [OBUF/ OBUFT/ OUTFF] both
used on external signal signalname.

The pull-up resistors in XC3000 IOBs can only be activated if the IOB
is used as input only. If an output buffer is used, the pull-up in that
IOB might not be used. Remove the pull-up from the I/O pin.

Error 310. Invalid LOC parameter location on symbol
symbolname.

Correct the LOC parameter for the symbol, or use the -i option to
ignore all LOC parameters.

Error 311. Conflicting LOC parameters on the EXT
signal signalname and the IOB name.

Correct the LOC parameter for the symbol, or use the -i option to
ignore all LOC parameters.
Development System Reference Guide, Volume 2 4-23

Development System Reference Guide, Volume 2
Error 325. Error while writing LCA information to
disk. Some information may be found in file
filename.

Check for a disk-full condition or incorrect file permissions. On a PC-
based system, the DOS files variable may be set too low; use at least
FILES=20 in the config.sys file.

Error 438. The part device is not supported by
this product. The design cannot be mapped into
the specified LCA part-type because the part is
not supported by this version of software.

Error 442. Invalid package file filename.

The package file has been corrupted. Re-install the implementation
software.

Error 443. Unable to open file partlist.xct.

The specified data file could not be found. Make sure that the
indicated file exists in the \XACT or \XACT\DATA directory. If it
does not exist, re-install the implementation software. If the file does
exist, use the DOS Set command to verify that the XACT environment
variable points to the \XACT directory. Any spaces in the Set XACT=
statement can prevent the data files from being found.

Error 444. Missing or invalid data number data
number in file filename.

There is invalid data in the partlist.xct or speeds.spd files. Re-install
the implementation software.

Error 445. Can’t change devicename to .dev suffix.
This is an indication of corrupted or invalid
data files.

Re-install the implementation software.

Error 446. Unknown alias-to part parttype.

This is an indication of corrupted or invalid data files. Re-install the
implementation software.

Error 447. Failed to find parttype in part list.

This is an indication of out-of-date, corrupted, or invalid data files.
Re-install the implementation software.
4-24 Xilinx Development System

The MAP2LCA Program
Error 460. No ”bonded/unbonded” IO blocks are
available for IOB symbol symbolname.

PAD signals connected to OPAD, IPAD, and IOPAD symbols are
placed only on IOBs that are bonded to package pins. Signals
connected to UPAD symbols are placed only on IOBs that are not
bonded to package pins. Neither the number of required bonded
IOBs or unbonded IOBs can exceed the number that are available for
the part/package. Change the package for the part to include more of
the limited resource (bonded or unbonded IOBs) or change the
symbols used for the pad signals in the input design.

Error 2001. Unable to open AKA file for reading.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.

Error 2002. Illegal prefix in line number.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.

Error 2003. Unable to add symbol to table.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.

Error 2007. No symbol for index number.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.

Error 2008. PREFIX table overflow on symbol.

Check that the AKA file created by the previous design iteration
exists in the current directory and carries the name of the input
design file.

Error 2010. Unable to retrieve error message for
UI error code number.

Check that the AKA file that was created by the previous design
iteration exists in the current directory and carries the name of the
input design file.
Development System Reference Guide, Volume 2 4-25

Development System Reference Guide, Volume 2
4-26 Xilinx Development System

Chapter 5
Development System Reference Guide, Volume 2 — 0401406 01 5-1

APR

This program is compatible with the following families

● XC2000

● XC2000L

● XC3000

● XC3100

The Xilinx Automatic Place and Route (APR) program performs
placement and routing of an FPGA design.

Before you can use APR, you must translate your XNF file into an
LCA file by using the XNFMAP and MAP2LCAprograms.

The APR program reads an LCA design file, with or without routing
information, generates block placement, routes a design’s nets, and
then writes the results to another LCA design file. APR writes a
description of the final placement to a report file.

For information on the placement and routing of XC3000A, XC3000L,
XC4000, or XC5200 designs, refer to the “PPR” chapter in the
Development System Reference Guide.

Using XACT Design Manager
You can invoke APR through the XACT Design Manager (XDM), a
menu-driven interface for executing all FPGA development
operations. Refer to the “The XACT Design Manager” chapter in the
Development System Reference Guide for a complete description.

Once you access XDM, select PlaceRoute ➝ APR from the main
menu. A cascading menu appears with the most commonly used
APR commands. To display all available APR commands, select the

Development System Reference Guide, Volume 2
-x option. Refer to the “Options” section in this chapter for a detailed
description of each menu selection.

Syntax
Use the syntax shown here to create a placed and routed design file
from your LCA design file.

apr [options] input.lca output.lca

To use any command-line options, specify them before the input
design name. You can also invoke any option through XDM. The
input design file must be an LCA file.

To view a list of APR’s commonly used options onscreen, enter apr
and press ↵.

Options
Command-line options allow you to change the way the APR
program operates. Some of the options tell APR which files to use.
Others specify the course that the placement and routing algorithms
take, which in turn may improve APR results or run time. In general,
use command-line options to control global aspects of APR operation;
you can achieve more detailed control using constraints files. Refer to
the “APR Constraints” section in this chapter for more information.

APR ignores the difference between upper- and lower-case
command-line options. For example, APR recognizes both -l and -L
as the same option. File names can be case-sensitive depending on
your operating system.

Positioning Options on the Command Line

To enter a command-line option, position that option on the
command line before entering the input design name, as illustrated
by the following example. A hyphen precedes the option letter.

apr -y input output

For more than one command-line option, enter options in any order.
Command-line options that do not require arguments can be
combined with other options that do not require arguments. For
5-2 Xilinx Development System

APR
example, you can specify j, p, and l options by entering either of the
following command sequences.

apr -j -p -l input output

apr -jpl input output

Some command-line options require arguments, such as the -s and -c
options. You can enter them as shown in the following example.

apr -s 5794 -c myfile.cst input output

The syntax and meaning of each command-line option are discussed
in the following sections.

–a Specify the Number of Routing Attempts

The -a option enables you to specify the number of routing attempts.
If you do not specify a count, the default is three attempts.

apr -a count input output

–c Use a Constraints File

The -c option reads constraints from the named user constraints file.
APR attaches a .cst extension to the constraints file name and
searches for the constraints file in two places: the current directory
and the directory that contains the input design file. If the file name
has a leading path, APR also searches the directory specified in that
leading path.

APR reads constraints files that have file names with a .cst extension
or without an extension. In the first two examples below, APR will
read the file named filename.cst or filename. APR automatically
supplies a .cst file name extension. In the third example, APR issues
an error message and aborts because the constraints file name has an
extension other than .cst.

apr -c filename.cst input output

apr -c filename input output

apr -c filename.xxx input output

See the “APR Constraints” section in this chapter for more
information on constraints files.
Development System Reference Guide, Volume 2 5-3

Development System Reference Guide, Volume 2
–g Use an LCA File as a Guide

The -g option uses the specified LCA file as a guide for the input
design. The term guided design refers to the process in which a
previously implemented design — also known as a guide file — is
used to guide placement and routing. This process allows you to
modify or add logic to a design while preserving the layout and
performance previously achieved.

APR appends a .lca extension on guide file names and searches for
the guide file in two places: the current directory and the directory
that contains the input design file. If the file name has a leading path,
APR also searches the directory specified in that leading path.

You should specify the guide file name with a .lca extension or
without an extension. Do not use an extension other than .lca. The
first two examples below are correct. In the second example, APR
automatically supplies the .lca file name extension. The third example
is incorrect because the guide file name must have a .lca extension. In
this case, APR issues an error message and aborts.

apr -g filename.lca input output

apr -g filename input output

apr -g filename.xxx input output

APR looks at the physical layout of the guide design, using it to
implement any logic the two designs share. After using all available
block, pin, and net information from the guide design, APR starts
placing and routing the additional logic.

Incremental Design

If you wish to make changes to a design that was difficult to place
and route, use the placement and routing from your old design to
guide the placement and routing of the changed unrouted input
design. The -g option is useful for designs that nearly fill the FPGA
(80 percent utilization or above), designs having tight timing
specifications, or designs containing any portion that was manually
placed and routed.If the changes are minor, the run time for APR
decreases considerably.
5-4 Xilinx Development System

APR
The extent to which the old design is preserved depends on several
factors.

● The extent of the design changes

● The design creation method: XACT Design Editor (XDE),
schematic capture, Boolean logic files, and so on

● The implementation method: hierarchical XNF files, flattened
XNF files, nonstandard partitioning control, submodule mapping,
and so on

Note: For the best results when using the guide-file option, use the
map-then-merge flow in the XMake program, and then the guide-file
option (-k) in XNFMAP.

Block, Pin, and Net Matching

The -g option causes APR to read the following information from the
guide design.

● Block names and locations

● Net names and their pin locations on the blocks

● Net routing information

APR compares the two files and performs the following steps.

● It matches blocks based on finding blocks in the new design that
are connected to the same nets as blocks in the guide design.

● It swaps the pins on matched blocks so the nets are connected to
the same pins in the new design and the guide design.

● It preserves the routing of nets that are connected to the same pins
on the same blocks in both the new design and the guide design.

Note: Two pins are considered equivalent for the purpose of
matching nets if they can be swapped with each other.

–j Place the Design without Routing

The -j option places the design only; it does not route it. This option is
useful when an initial placement is desired for a design that will be
routed manually in XDE. It can be used with other options to
produce special output files. See the “Useful Option Combinations”
section in this chapter for more details.
Development System Reference Guide, Volume 2 5-5

Development System Reference Guide, Volume 2
–l Lock All Blocks in Place

The -l option locks all blocks in place, effectively skipping the
placement process altogether. This option is useful when you want to
preserve the placement information of the input design file and
change the routing only. It is also useful when routing a design after
making minor placement changes with XDE.

–o Redirect Message Output to a File

The -o option redirects all message output into the named file. This
option prevents APR message output from being displayed on the
screen. If you name the message file the same as the output design
file, APR automatically appends a .out extension to the file name to
differentiate it from other files. Suppose you entered any of the
following examples.

apr -o filename.out input output

apr -o filename input output

apr -o filename.xxx input output

In the first two examples, APR redirects all messages to the file
named filename.out. In the second example, APR automatically
supplies the .out extension. In the third example, APR aborts because
the message file requires a .out extension.

The APRLoop program intercepts the -o option and creates a single
output file containing the messages for all APR runs. See the “Placing
and Routing Larger Designs” section for more information on how
APRLoop handles the -o option.

–p Preserve All Initial Routing Information

The -p option directs APR to preserve all initial routing information.
By implication, all pins that connect to preserved interconnect are
locked, as are the blocks they belong to.

–q Skip the Annealing Algorithm

The -q option skips the first phase of the placement algorithm. This
option is most useful for sparse designs and designs with excellent
initial placements. Because this option causes APR to skip its most
5-6 Xilinx Development System

APR
time-consuming task, the run time might decrease. However, this
option might result in non-optimal placement.

–r Set the Router Type

The -r option sets the router type, such as 1, 2, 3, or 4. The default is -
r4, the latest and most effective option. Router types 1-3 are previous
versions of the router.

–s Set a Seed for Multiple APR Runs

The -s option specifies a seed for the APR pseudo-random number
generator. A seed is a random number that determines the final
placement of the design. By default, APR uses the operating system
time to set the seed. Alternatively, you can specify any seed from 1 to
32767. In the following example, the seed is set to 5794.

apr -s 5794 input output

If you run APR successively without -s, results differ since invoking
it at different times produces different seeds. Successive runs of APR
using the same initial seed produces identical results, unless the
input design is different or you used different constraints. The -s
option only affects the results of the placement algorithm and not the
routing algorithm.

–t Improve the Timing on Existing Routing

The -t option skips normal placement and routing phases and
improves the existing nets by decreasing net delays. APR unroutes
and reroutes existing routing in order to achieve this goal. During
this process, APR might route previously unrouted pins. This option
is recommended for designs with less than 10 unrouted pins. APR
continues the timing improvement process until it detects no further
improvement.

Note: You can preserve routing for individual nets by using a
constraints file. See the “APR Constraints” section in this chapter for
more information.

This option might take some time to complete. You can save the
current state of the improved design by using Ctrl-Break on a PC or
Ctrl-C on a workstation. From the displayed menu, choose “W” to
write the design and its report file. You can then quit or choose to
Development System Reference Guide, Volume 2 5-7

Development System Reference Guide, Volume 2
continue the routing improvement process. Refer to the “Routing
Phase” section at the beginning of this chapter for more information.

–w Suppress the Overwrite Warning

The -w option suppresses the output design file overwrite warning. If
you use this option, APR does not issue a warning when the output
design name on the command line corresponds to an existing file.

Note: Use this option cautiously.

–x Display All APR Functions

The -x option displays onscreen all current APR options. If you enter
apr and press ↵ without specifying -x, APR only displays the most
commonly used options.

apr -x

–y Use a Faster Placement

This option specifies the use of an alternate placement algorithm for
the simulated annealing placer. This alternate algorithm can decrease
program run time for designs larger than a 3042. However, this
option might result in less optimal placement.

Command-Line Options Summary
Table 5-1 summarizes APR’s command-line options. The table
includes the command syntax, the system default (if applicable), the
minimum value for the argument (if applicable), the maximum value
for the argument (if applicable), and a one-line summary of the
option.
5-8 Xilinx Development System

APR
Table 5-1 Summary of Command-Line Options

Useful Option Combinations
You can combine certain command-line options to perform the
following tasks.

● Complete the routing of your design

● Create a report file

● Add logic to existing FPGA designs

The following sections discuss each task in detail.

Syntax Summary Default Min Max Description

-a count 3 1 99 Sets number of routing attempts

-c file_name Reads constraints file

-g file_name Specifies guide design

-j Skips routing, places only

-l Skips placement, routes only

-o file_name Redirects message output

-p Preserves routing information

-q Skips annealing, quenches only

-r router 4 Sets router

-s seed Random 1 32767 Sets seed

-t Improves timing on routing only

-w Suppresses the output design file
overwrite warning

-x Displays all APR options

-y Uses a faster placement schedule
Development System Reference Guide, Volume 2 5-9

Development System Reference Guide, Volume 2
–pl Complete the Routing of Your Design

After manual routing, you can evaluate your routing’s effectiveness
by combining the -p and -l option. APR does not change the
placement (-l) and attempts to complete manual routing (-p) for the
remaining nets. Running APR with -l and -p is fast, depending on the
number of prerouted nets.

If the number of unrouted pins and nets decreases and/or the
performance goals are met, the manual routing is probably
successful. If the design still has a high number of unconnected pins
and unrouted nets, use the -p option only and allow the other logic to
move, while preserving manual routing.

–jpl Create a Report File

Combining -j, -p, and -l quickly creates an output LCA file identical to
the input file and produces a report file, usually in five minutes or
less.

apr -jpl input output

These options are useful for creating report files on designs of
unknown origin or designs created in XDE, or for obtaining the
delays of a different speed grade. APR creates the report file and
appends a .rpt extension to the end of the file name.

–ljg Add Logic to Existing LCA Design

Combining the -l, -j, and -g options produces an output LCA file that
is affected by both the SCP constraints file and the guide LCA file.

APR performs the following steps.

1. Guides the design according to the -g option conditions specified
in the “Incremental Design” section in this chapter.

2. Reads and executes the SCP file constraints.

3. Performs no new placement or routing.

4. Terminates the program and writes error messages to the report
file if there are conflicts in the guide LCA or SCP files.

APR typically runs in less than five minutes when you use this option
combination. This combination lets you create a snapshot of a new
design based on an old design. You can examine the output file, either
5-10 Xilinx Development System

APR
in XDE or via the report file, to determine how much of the old
design was preserved. If the results are unsatisfactory, you can
change the input file, the guide file, the constraints file, or any
combination of these to produce the desired result.

Using a Batch File for Multiple Runs
If you are using a Sun workstation or PC and want to perform several
runs with different options or constraint files, you can create an
executable batch or UNIX shell file to execute several statements
serially.

Using a text editor, you can create a file that includes a series of APR
command lines. Suppose you create a batch file that contains the
following command lines.

apr -c file1 -o run1 input output1
apr -c file2 -o run2 input output2
apr -y -c file3 -g routed -o run3 input output3

In this example, the batch file enables you to use different constraint
files, a guide file, and placement algorithms in a single executable file.

Running APR as a Background Process
On a Sun, execution on large designs can take a few hours. If your
system administrator logs out users for terminal inactivity, you
should make APR run as a background process by specifying the &
(ampersand).

apr -o run1 input output &

Once the job is a background process, it cannot be terminated due to
terminal inactivity. If you have questions regarding terminal
inactivity logouts, consult your system administrator.

Interrupting APR During Processing
APR has three phases: annealing, quenching, and routing. The
annealing and quenching phases are part of the simulated annealing
placement algorithm. This algorithm evaluates the value of the
current placement after moving blocks in a semi-random manner.
Development System Reference Guide, Volume 2 5-11

Development System Reference Guide, Volume 2
During the annealing phase, APR allows the blocks to be temporarily
placed in a way that degrades the current quality of the placement. It
does this to “shake up” the design in the effort to find the best
solution.

During the quenching phase, blocks are only moved if the movement
improves the quality of the design. Once APR completes the
annealing and quenching placement phases, APR routes the design.

Annealing and Quenching Phases
To interrupt APR during the first two phases of processing, press
Ctrl-Break on a PC or Ctrl-C on a workstation. A menu with the
following options appears.

E — Switch to next phase
S — Suspend APR to check current results
C — Continue current phase of placement
Q — Quit this APR run entirely

Select one of these options.

Choosing E ends the current phase and begins the next phase. If APR
has been annealing, it immediately starts quenching. If it has been
quenching, it immediately starts routing.

Choosing S suspends APR and opens up a DOS or UNIX shell. Enter
Exit when you are ready to return to this menu.

Choosing C continues where APR left off when it was interrupted.

Choosing Q completely ends the current APR run.

Routing Phase
If you press Ctrl-Break on a PC or Ctrl-C on a workstation during the
routing phase, a menu with the following options appears.

S — Suspend APR to check current results
W — Write current design and report
C — Continue routing
Q — Quit this APR run entirely

Choosing S suspends APR and opens up a DOS or UNIX shell. When
you are ready to return to this menu, enter Exit and press ↵.
5-12 Xilinx Development System

APR
Choosing W writes an output LCA file and adds information about
the current state of the design to the report file. Once this information
is written, the menu reappears so that you can choose to suspend
APR and check the results, continue routing, or quit entirely. Every
time you choose this option, the LCA file is rewritten, and the report
file has new information added to it.

Choosing C continues where APR left off when it was interrupted.

Choosing Q ends the current APR run.

Note: Do not use Ctrl-C to break between phases of the APR
program when running APRLoop because this action might cause
APRLoop iterations to end. For more information about APRLoop,
refer to the “Placing and Routing Larger Designs” section in this
chapter.

Design File Names
The following sections discuss file naming conventions, file name
extensions, and leading path specifiers on design names.

You must specify the name of the output design that APR creates. If
the output design name corresponds to the name of an existing
design file, APR issues a warning message before overwriting the
existing design file. You are prompted to supply a different output
design name. If you decline, APR overwrites the existing design file.

File Name Extensions
APR can only read LCA design files. If you specify a file name
extension other than .lca, APR prints an error message and
terminates. If you specify an input or output design name without
the LCA file name extension, APR adds the correct extension before
searching for or creating any files.

Leading Path Specifiers
Your specific platform determines how you indicate leading path
specifiers on design names, as follows.
Development System Reference Guide, Volume 2 5-13

Development System Reference Guide, Volume 2
PC

On a PC, if you specify a design name with a complete path name
(\xact\designs\input.lca), APR uses the named file. If you specify a
design name with a partial path name (designs\input.lca) or no path
name (output.lca), APR appends the specified name to the path name
of the current directory, as follows.

Command line: apr designs\input output
Current directory: \xact
Resulting input file: \xact\ designs\input.lca
Resulting output file: \xact\ output.lca

Sun Workstation, HP700, and RS6000

On a Sun workstation, HP700, or RS6000, if you specify a design
name with a complete path name (/user/xilinx/input.lca), APR uses
the named file. If you specify a design name with a partial path name
(xilinx/input.lca) or no path name (output.lca), APR appends the
specified name to the path name of the current directory, as follows.

Command line: apr xilinx/ input output
Current directory: / user
Resulting input file: / user/ xilinx / input. lca
Resulting output file: / user/ output. lca

Apollo

On an Apollo workstation, if you specify a design name with a
complete path name (/local_user/xilinx/input.lca), APR uses the
named file. If you specify a design name with a partial path name
(xilinx/input.lca) or no path name (output.lca), APR appends the
specified name to the path name of the current directory, as follows.

Command line: apr designs/input output
Current directory: /local _user
Resulting input file: /local_ user/xilinx/ input.lca
Resulting output file: /local_ user/ output.lca

Input Files
APR uses a series of files in order to place and route your design. APR
can then generate an output design, message, or report file that
include the results of the placement and routing process. Table 5-2
5-14 Xilinx Development System

APR
presents a summary of the files APR uses to place and route your
design. The following sections discuss each in detail.

Table 5-2 Input File Summary

Input Design File
APR receives most of the information it needs about a design from
the input design file. The MAP2LCA program appends the .lca
extension to your design file name. APR reads the LCA design
information from this file. You specify the name of the input design
file on the APR command line.

Schematic Constraints File
LCA design files automatically created from the netlist output of a
schematic capture program are often accompanied by a schematic
constraints file, filename.scp, that provides information so APR can
route the design more effectively. The MAP2LCA program creates
the filename.scp file for APR from the constraints information in the
input design file.

Xilinx recommends against modifying the schematic constraints file,
since those modifications are lost if you change your schematic and
regenerate the LCA design file. APR automatically reads the
schematic constraints file if it exists. See the “APR Constraints”
section for more information.

User Constraints File
The user constraints file, filename.cst, is usually created using a text
editor.

It contains additional information about the design or about the
desired placement and routing of the design. You can use the -c

Input Files Extension Notes

Input design file .lca Required to exist

Schematic constraints file .scp Used only if it exists

User constraints file .cst With -c option

Guide design file .lca With -g option
Development System Reference Guide, Volume 2 5-15

Development System Reference Guide, Volume 2
command-line option to submit a user constraints file to APR. See the
“APR Constraints” section for more information.

Guide Design File
The guide design file, filename.lca, is an LCA file whose placement
and routing acts as a guide to the input file.

Use the -g option to submit a guide design file to APR. See the
“Incremental Design” section for more information.

Device, Package, and Speed Information Files
The various device, package, and speed information files contain
essential information about each FPGA die and package type. Their
file names end with one of the following extensions — .dev, .pkg, or
.spd.

The speed information file contains information about FPGA speed
grades needed by the net delay calculator in APR. These files are
provided with the APR program and should not be modified or
renamed.

APR Constraints
APR receives most of the information it needs about a design from
the input design file.

When MAP2LCA creates an LCA design file, they also automatically
create a companion constraints file. This file has the same name as the
LCA design file, but with a .scp extension. This file contains the
constraints found in your input design. APR always looks for this file
and, if it exists, reads the constraints information from it. If you do
not want APR to use the automatically generated constraints file, you
should delete it or rename it. If you change your design and remake
your LCA design file, MAP2LCA overwrites any existing SCP
constraints file. For this reason, do not edit the SCP constraints file
because your changes are lost when MAP2LCA regenerates the file.

When APR needs more information than the design file can provide,
you can create an additional constraint files, which contains
constraints in addition to those specified in the system-created SCP
constraints file. This constraints file name must have a .cst extension.
5-16 Xilinx Development System

APR
Entering the following command causes APR to automatically search
for the constraints file input.scp and use the constraints information
in that file.

apr input output

APR automatically searches for the constraints file input.scp, then
uses the constraints information in that file.

In the next example, APR searches for and uses the constraints
information contained in the user-created constraints file juke.cst.

apr -c juke input output

Remember that APR attaches the .cst extension to all user-created
constraints file names.

SCP Files
The MAP2LCA program automatically creates the SCP file. An
example of an SCP constraints file is shown below. The first four lines
are comments as indicated by the semicolon in the first column. It has
the same name as the LCA design file, as specified on the first line,
but the file name contains an SCP extension.

; Design: dramctrl.lca,
; Created by MAP2LCA Ver 5.00 at 15:47:02 Dec 1, 1993
; (NOTE: Don’t edit this file.
; It is rewritten each time MAP2LCA is run)
flag net longline ADDRSTRB ;
flag net normal CNTRSET ;
flag IOB external ALE ;
place block BANKSEL P27 ;
weight net critical RAS ;
weight net 12 MUX ;

CST Files
If you create a constraints file using a text editor, you must give the
file name a CST extension. This type of constraints file can help APR
produce better results or run faster. APR reads your constraints file if
you enter it on the command line with the -c option. APR always uses
the constraints in the SCP file first, if it exists, and then uses the CST
file.

Suppose you want to create some constraints in addition to the
constraints contained in the dramctrl.scp file. You could create a file
Development System Reference Guide, Volume 2 5-17

Development System Reference Guide, Volume 2
called newcon.cst with a text editor and specify it on the APR
command line as follows.

apr -c newcon dramctrl dramout

The following illustrates the contents of the constraints file newcon.

lock net RESET ;
lock pin BIT0.A BIT1.X BIT2.C ;
lock iobs ;
include newcon2.cst ;
lock block ADRBIT0 ADRBIT1 ;

The lock pin and lock block lines show how you can lock several pins
or blocks using only one line. With the Include statement you can call
other constraints files from within a constraints file.

Note: If a constraint in the SCP file conflicts with a constraint in the
CST file, APR issues an error message if it cannot resolve the conflict.
For example, if your design places a CLB at location AB, but the CST
file prohibits the use of AB, APR issues an error message.

Case Sensitivity in Constraints Files
The operating system under which APR is running determines if case
is ignored for constraint file names. Generally, most operating
systems are not case sensitive in constraints files.

Definitions
The following definitions are useful when reading the descriptions of
constraints.

● Block — Any block of the design, for example, CLB, IOB, and so
on.

● Pin — A block’s input or output pin.

● Net — Any net named in an Addnet statement in the input LCA
design file. A net can contain zero or more pins.

● Net weight — The higher the net weight, the more important it is
that the net be routed using a fast path.

● Location — A specific place where APR should assign a block as
part of a placement. Each Xilinx FPGA contains a fixed number of
CLB and IOB locations.
5-18 Xilinx Development System

APR
● External IOB — An IOB APR must place on an IOB location that is
bonded to a package pin. Read “External and Internal IOBs” at the
end of this section for more information.

● Area — An area of two or more blocks where APR can assign or
prohibit a block as part of a placement, as illustrated in Figure 5-1.
For example, CLBs can be confined to or prohibited from a
rectangular region of the CLB array. IOBs can be assigned to or
prohibited from an edge or half-edge of the part.

Figure 5-1 Edge Constraints for IOBs

The following list defines the letter designations in the previous
figure.

T — top edge
R — right edge
B — bottom edge
L — left edge
TL — top-left
TR — top-right
RT — right-top
RB — right-bottom
BR — bottom-right
BL — bottom-left
LB — left-bottom
LT — left-top

L

T
TL TR

LT

LB

R

RT

RB

B

BL BR

X1883
Development System Reference Guide, Volume 2 5-19

Development System Reference Guide, Volume 2
● Internal IOB — Any IOB that is not bonded to a package pin.

● Locked block — A block whose placement has been locked with a
Lock Block, Place Block, Lock IOBs, or Lock Net constraint, or
with the -p command-line option.

● Net-locked block — A block whose placement has been locked
because it has a pin routed to a net that was locked with a Lock
Net constraint or with the -p command-line option. Every net-
locked block is by definition also a locked block.

Constraints
A constraints file can be empty or contain multiple comments,
statements, or both. This syntax applies to both SCP and CST files.
Comments begin with a semicolon (;) in the first column and end
with a carriage return. Break comments longer than one line into two
or more comments, each beginning with a semicolon in the first
column.

Statements begin with one or more keywords and end with a
semicolon. Separate all words in a statement, both keywords and
arguments, from each other by one or more spaces, tabs, or carriage
returns. Since statements end with a semicolon instead of a carriage
return, they can span any number of lines.

The following conventions are used in the sample syntax statements.

● Any word or phrase in italics represents a type of argument. For
example, block_name should be replaced with the actual name of a
block. All other words or phrases should be entered literally; they
are keywords.

● An ellipsis (...) indicates when more than one of an item is
acceptable. For example, “file_name ...” means one or more file
names.

This section describes each constraint available in APR. Table 5-3
provides a summary of APR constraints.

Allow Block

The Allow Block constraint tells APR that the specified block — an
IOB, CLB, TBUF or pull-up — must be placed in one of the specified
locations (loc1 through locn), as illustrated by the following syntax.
5-20 Xilinx Development System

APR
allow block blockname loc1 loc2 ... locn ;

The blockname argument is the logical name of an IOB, CLB, TBUF, or
pull-up in the input design. The loc1 through locn arguments are
physical locations on the part, as displayed in XDE.

For CLBs and TBUFs, you can specify the location as a specific
physical location (AB, AC, TBUF.BE.1) or as a rectangular area
(BB:HH, AC:DE, TBUF.CC.1:TBUF.ED.2) defined by the upper left
and lower right CLB positions of the area. For IOBs, you can specify
the location as a specific physical location (P9) or as an area on the
edge or half-edge of the part. You can also use wildcards to specify a
group of locations.

The following constraint forces APR to put the block named mux1
into either CLB location BC or anywhere in column D, as indicated by
the wildcard character, * (asterisk).

allow block mux1 bc *d ;

The following constraint forces APR to put the block named Enable
into any of the CLBs in the area bounded by CLB locations EB and
GD.

allow block enable eb:gd ;

The following constraint forces APR to put the IOB block named INA
into any of the IOBs located on the top edge of the part.

allow block ina t ;

For other IOB location options, refer to the previous figure, Edge
Constraints for IOBs.

Flag IOB

The external form of this statement tells APR that the named IOBs are
external and must be placed on a pin-bonded IOB. The internal form
tells APR that the named blocks must be placed on an IOB that is not
bonded to an external pin. The blockname arguments are logical name
of IOBs in the input design. See the “External and Internal IOBs”
section in this chapter for more information.

flag iob external blockname ... ;
flag iob internal blockname .. ;
Development System Reference Guide, Volume 2 5-21

Development System Reference Guide, Volume 2
Flag Net

The Flag Net constraint sets a flag for the named nets. These flags are
as follows.

Critical — Weight net critical
Uncritical — Weight net uncritical
Normal — Weight net normal
Longline — Routes named nets using longlines

The syntax for each flag follows.

flag net critical netname ... ;
flag net uncritical netname ... ;
flag net normal netname ... ;
flag net longline netname ... ;

You can set the net weight with either this constraint or the Weight
Net statement. Net weights are only significant in their relative
magnitude, not in their absolute value. Weighting all nets critical
produces the same results as weighting all nets normal.

Include

The Include constraint tells APR to process the constraints in each of
the specified files before processing the remainder of the file
containing the Include statement. Each file is treated as if it had been
specified with -c; APR searches for a file with a .cst extension in the
following directories.

● First, in the directory specified by the leading path on the file
name.

● Second, in the current directory.

● Third, in the directory containing the input design file.

To use this constraint, enter the following syntax.

include filename ;

A file can also contain Include statements including other files. The
maximum nesting depth for constraints files is ten.

After processing all the constraints in an included file, APR closes the
included file. Processing continues either with the contents of the
5-22 Xilinx Development System

APR
next file named in the Include statement or with the next statement in
the current file if no more files were named.

Lock Block

The Lock Block constraint prevents the named blocks from being
moved during the placement phase. To use this constraint, enter the
following syntax.

lock block blockname ... ;

Usually a block’s location during constraint processing is the same as
that occupied in the input design file. However, a block’s location
might have been changed with a Place Block statement.

APR automatically locks a block if one of its pins is on a locked net
and that pin is connected to programmed interconnect, that is, if the
block is net-locked.

Use this constraint with caution. You can over-constrain APR so that
it cannot find a placement solution that satisfies all specified
constraints. One way to do this is to lock enough internal IOBs onto
bonded IOB locations so that all external IOBs cannot be placed. APR
detects this condition and issues an error message.

Lock IOBs

The Lock IOBs constraint locks all IOBs in their current locations. You
can lock individual IOBs with the Lock Block command. To use this
constraint, enter the following syntax.

lock iobs ;

Lock Net

The Lock Net constraint enables APR to determine which pins are
presently connected to programmed interconnect for each specified
net. APR locks those pins and net-locks their blocks. To use this
constraint, enter the following syntax.

lock net netname ... ;

APR preserves all routing information for that net undisturbed by
previous Place Block statements and protects routing information
from further change.
Development System Reference Guide, Volume 2 5-23

Development System Reference Guide, Volume 2
Once you lock a block by using this command, you cannot use the
Place Block constraint. The Place Block statement removes the
routing information associated with the pins on the block being
placed.

Pins that belong to a net not connected to programmed interconnect
are not locked, nor are their blocks.

Lock Pin

The Lock Pin constraint tells APR not to move the named pins even if
moving them might improve the final routing completion. To use this
constraint, enter the following syntax.

lock pin pinname ... ;

A pin is automatically locked if it is connected to programmed
interconnect and is on a net that is locked with the Lock Net
command or with the -p command-line option.

Place Block

The Place Block constraint assigns the named block to the named
location. To use this constraint, enter the following syntax.

place block blockname location ;

Block type and location must match; you cannot assign a CLB to an
IOB location. APR automatically locks the block after it is assigned to
its new location. APR assigns the block even if it was previously
locked, except if the block is net-locked.

You cannot place net-locked blocks with this constraint. It removes
the routing information associated with the pins on the block being
placed.

If APR places a block on a location already occupied by another
block, it displaces the other block, unless the other block is already
locked. APR removes the routing from all pins on the placed block,
unless the new location and old location match.

If a Prohibit Location statement prohibits the use of a location, a Place
Block statement cannot use that location.
5-24 Xilinx Development System

APR
Place Net

The Place Net constraint places the blocks connected to the specified
net along the longline if possible. This constraint is effective for
placing TBUF output nets and TBUF enable nets. To use this
constraint, enter the following syntax.

place net netname location ;

Enter the location as a longline name in the form used by the XDE’s
Querygrid command. Valid names can be determined by loading the
design into XDE, starting the Querygrid command, then using the
mouse to click on any programmable interconnect point (pip) along
the desired longline. XDE returns the longline name in the form
rownumber.X.long.Y.

For example, the following constraint forces APR to place the blocks
connected to the net named bus<0> on the first horizontal longline at
the top of a 3020. Enter the longline name as it appears in XDE.

place net bus<0> row.A.long.3 ;

Prohibit Block

The Prohibit Block constraint prohibits APR from placing the
specified block—IOB, CLB, or TBUF—in any of the specified
locations. To use this constraint, enter the following syntax.

prohibit block blockname location ;
prohibit block blockname area ;

You can use wildcards when specifying locations. You can specify
areas for CLBs by listing the CLBs at the upper-left and lower-right
corners of the box. You can specify areas for IOBs by using the edge
or half-edge constraint specifications.

In the following example, the constraint prohibits APR from placing
mux1 in any of the CLBs inside the box defined by corner locations
CC and EE.

prohibit block mux1 cc:ee ;

The following constraint forces APR to prohibit the placement of IOB
in_a on the right edge of the part. For additional location options,
refer to Figure 5-1 in the previous section.

prohibit block in_a r ;
Development System Reference Guide, Volume 2 5-25

Development System Reference Guide, Volume 2
Prohibit Location

The Prohibit Location constraint prohibits APR from placing any
configured blocks—IOBs, CLBs, or TBUFs—in the specified location.
Once this constraint prohibits the use of a location, a Place Block
statement cannot use that location. To use this constraint, enter the
following syntax.

prohibit location location ;

In the following example, APR prohibits all CLBs from being placed
in the third row from the top, as indicated by the letter “c.”

prohibit location c* ;

The size of the part determines the number of rows and columns. All
rows and columns are designated by a single alphabetic character.

Weight Net

The Weight Net constraint sets the net weight for the named nets.
Three symbolic net weights are currently defined as follows.

Critical = 10
Normal = 3
Uncritical = 1

The last form of this statement allows you to explicitly set the net
weight to any value between 1 and 99. Enter this constraint by using
one of the following syntax examples.

weight net critical netname ... ;
weight net normal netname ... ;
weight net uncritical netname ... ;
weight net weightvalue netname ... ;

You can also set net weights using the Flag Net statement.

Net weights are only significant in their relative magnitude, not in
their absolute value. Weighting all nets critical produces the same
results as weighting all nets normal. Weighting a net 99 and the next
98, 97, 96,3, 2, 1 controls the individual net ranking and routing
order. All nets with the same weight have the same rank.
5-26 Xilinx Development System

APR
Table 5-3 Summary of APR Constraints

Improving APR Results
Use the Place Block statement to preplace those parts of your design
for which you already know the best placement. You can preplace
and preroute whole sections of your design and use the Lock Net
statement to lock those sections. APR then only replaces and reroutes
those parts of the design that are not locked. This incremental use of
APR is useful for those designs containing timing-sensitive sections
whose placement and routing must meet strict delay requirements.

Syntax Summary Meaning

Allow Block blockname location ... ; Places block in any of the specified locations.

Flag IOB Internal blockname ... ; Flags IOB as internal.

Flag IOB External blockname ... ; Flags IOB as external.

Flag Net Critical netname ... ; Same as Weight Net Critical.

Flag Net Longline netname ... ; Allows net to use long line.

Flag Net Normal netname ... ; Same as Weight Net Normal.

Flag Net Uncritical netname ... ; Same as Weight Net Uncritical.

Include filename ... ; Reads more constraints from file.

Lock Block blockname ... ; Does not move block.

Lock IOBs ; Does not move any IOBs.

Lock Net netname ... ; Preserves net routing information.

Lock Pin pinname ... ; Does not swap pin.

Place Block blockname location ; Places block, then locks it.

Place Net netname longline ... ; Guides blocks on net along named longline

Prohibit Block blockname location ... ; Prohibits use by the named block.

Prohibit Location location ... ; Prohibits any use of the location.

Weight Net Critical netname ... ; Raises net weight above normal.

Weight Net Normal netname ... ; Sets net weight to normal.

Weight Net Uncritical netname ... ; Lowers net weight below normal.

Weight Net weightvalue netname ... ; Sets net weight as desired.
Development System Reference Guide, Volume 2 5-27

Development System Reference Guide, Volume 2
The more blocks you preplace, the less time APR takes to place and
route your design.

External and Internal IOBs
Using FPGAs in packages that have fewer pins than the number of
IOBs places some restrictions on IOB placement. When an IOB is
being used as an input and/or an output of the FPGA, the IOB must
be placed on an IOB location bonded to a package pin.

You can configure some IOBs simply as registers for internal use
without the need for bonding to a package pin. APR distinguishes
between these two uses of IOBs. IOBs requiring a bonded IOB
location are considered external IOBs. IOBs that do not require a
bonded IOB location are considered internal IOBs. APR uses the
initial placement and the constraints in the SCP file to determine
whether an IOB is external or internal.

The Flag IOB statement in a constraints file explicitly flags an IOB as
external or internal. Flagging an IOB overrides any designation that
APR assigned to it during initial placement. The Flag IOB constraint
can designate more IOBs as external than there are bonded IOB
locations to accommodate them, resulting in an “over-constrained”
condition. APR detects this over-constrained condition and issues an
error message. The following options are available.

● Designate some of the IOBs as internal, if possible.

● Reduce the number of external IOBs needed in the design.

● Move the design to a package with a higher pin count.

Another over-constrained condition results from placing and locking
IOBs designated as internal on bonded IOB locations. It effectively
reduces the number of bonded IOB locations that are available for the
external IOBs that need them. Over-constraining occurs when you
either designate an IOB as internal and then lock it on a bonded IOB
location, or use the Place Block statement to place an internal IOB on
a bonded IOB location. APR detects this over-constrained condition if
it occurs and issues an error message. You can then select one of the
following options.

● Designate more IOBs as internal.

● Make sure internal IOBs are not locked on bonded IOB locations.
5-28 Xilinx Development System

APR
Output Files
APR creates output files during and after placing and routing your
design, which can include an output design file, a report file, and a
message file. All output files are discussed in the following sections.

During processing, APR displays informational messages on the
screen. To redirect messages into a file, refer to the “Message File”
section below for more information. Table 5-4 provides a summary of
output files.

Output Design File
APR generates an LCA design file, filename.lca, that contains the new
placement and routing information, which is called the output design
file. Specify the output design file name on the APR command line.

If you specify an output design name that is the name of an existing
LCA design file, APR prompts for permission to overwrite it. You
then have the opportunity to specify a different output-design name.

Report File
APR generates a report file, filename.rpt, that describes several aspects
of the placement and routing activity.

This file is always created, even if APR fails to produce an output-
design file, either through detecting an error or because you
interrupted the APR execution before it finished. If APR detects an
error or issues a warning, the error or warning message appears in
the report file. See the “APR Reports” section for more information.

Message File
You can redirect all informational messages that APR produces,
which are normally displayed on your screen, to a message file. APR
creates this file, filename.out, when you use the -o command-line
option.
Development System Reference Guide, Volume 2 5-29

Development System Reference Guide, Volume 2
Table 5-4 Output File Summary

During the placement phase, APR displays several columns of
information showing the progress of the placement algorithm. This
information appears for those who are curious about the workings of
the placement algorithm. See “The APR Annealing Progress
Messages” section for a complete description of this information.

APR Reports
APR always produces a report file that has the same name as the
output design file but with an extension of .rpt. This report file
contains useful information about the final state of your design when
APR finishes its processing. The report file is organized in the
following manner.

● Header information

● Final results summary

● Unrouted nets listing

● Net routing order

● Block placement and pin swapping table

● Net flags table

● Block flags table

● Location flags table

● Net delay table

Output Files Extension Notes

Output design file .lca Always created

Report file .rpt Always created

Message file .out With -o option
5-30 Xilinx Development System

APR
Header Information
The header information tells what files APR used and what options
were specified on the command line. For example, a header
information section might appear as shown following.

AUTOMATED PLACE AND ROUTE PROGRAM -- Version 5.00
Copyright (c) 1986-1994, by Xilinx, Inc. All Rights Reserved.
Wed Jan 5 09:53:32 1994
 Input Design File: rob_dr3.lca
 Part Type: 3090pg175
 Guide Design File: (none)
 Schematic File: (none)
 Constraints File: rob_dr3.cst
 Options: -a1 -l -r3 -s1564
Output Design File: rob_k1.lca
 Report File: rob_k1.rpt
 Message File: rob_k1.out
 Speed Grade: -100

The header section of the report file provides information about the
particular run of APR. In this case, APR was run on the input design
file rob_dr3.lca without a schematic constraints file, but with a user
constraints file rob_dr3.cst. APR generated three files: an output
design file, rob_k1.lca; a report file, rob_k1.rpt; and a message file,
rob_k1.out.

The first few lines identify the version of APR and the date and time
when APR was run. The rest of the header information section lists
the files used and the options specified on the command line.

APR always includes the seed used for the pseudo-random number
generator, followed by the -s, in the Options line of the report file
header. You can use this seed in a subsequent iteration to repeat the
same results if there is no change to the design file or constraints files.

Final Results Summary
The final results summary might look like the following example.

FINAL RESULTS:
+--+
Total:	Unrouted:	
Blks (CLBs IOBs TBUFs PLUPs CLKs OSCs) Pins Nets	Loads Nets	
	448 262 96 88 0 2 0 1860 444	2 2
+--+
Development System Reference Guide, Volume 2 5-31

Development System Reference Guide, Volume 2
In this particular design, a total of 448 blocks and 1860 pins were used
in routing 444 nets. In this APR run, two load pins on two nets were
not successfully routed.

Unrouted Nets Listing
This list contains the nets that APR could not completely route. It is
useful when going back to interactively route these unrouted nets.
The following example shows the list format. There is an entry for
each unrouted net. An entry in the example consists of the net name,
d4m; the source pin of that net, d4.X; and the load pins the net failed
to route to, MD4.O. The names of the source and load pins consist of
the block names and the pins on those blocks the net was to connect
to.

Nets with Unrouted Load Pins
+---+
| Net d4m (source pin = d4.X)has 1 unrouted pin (out of 2)|
| MD4.O |
| Net s16q(source pin=s16.Y)has 1 unrouted pin(out of 4)--|
| AS16.O |
+---+

Net Routing Order
This section lists the nets in the order APR routes them.

Block Placement and Pin Swapping Table
The block placement and pin swapping table has three columns. The
first column contains the names of the blocks. The second column
contains the names of the locations occupied by the blocks. The third
column lists the pins for each block that were swapped to improve
routability.

If two pins are swapped with each other, they are shown as a pair of
pin names separated by a double arrow (↔). Otherwise, the pin
names are separated with a single arrow (→), indicating that one pin
was moved onto a different pin.

For example, in the following block placement table, the X and Y pins
on block D0, location AH, were swapped with each other, while on
block D3, location EH, pin A was moved to pin B, and pin C was
moved to pin D.
5-32 Xilinx Development System

APR
Final Placement:
+--------------+------------+-----------------------------+
| Block Name | Location | Moved or Swapped Pins |
+--------------+------------+-----------------------------+
DB0	P6	
DB1	P5	
DB2	P4	
DB3	P3	
D0	AH	X <-> Y
D1	BH	X <-> Y, C <-> D
D2	CH	
D3	EH	A -> B, C -> D
+--------------+------------+-----------------------------+

Net, Block, and Location Flags Tables
The block, location, and net flag tables indicate which blocks,
locations, and nets have been flagged or weighted. The following
tables illustrate examples of all three.

Flagged Nets:
+--------------+--+
| Net Name | Flags |
+--------------+--+
datena	Critical Weight=10
ntreset	Normal Weight=3
datbus	Longline
+--------------+--+

Flagged Blocks:
+--------------+--+
| Block Name | Flags |
+--------------+--+
clkgen	Locked
phix	Locked External
abupdate	Locked
+--------------+--+

Flagged Locations:
+--------------+--+
| Location Name| Flags |
+--------------+--+
P6	Prohibited
P5	Prohibited
P4	Prohibited
+--------------+--- --------------------------------------+
Development System Reference Guide, Volume 2 5-33

Development System Reference Guide, Volume 2
Net Delay Table
The net delay report consists of five columns: net status, net name,
source pin location, delay, and load pin location. An example of part
of a net delay report follows.

Net Delays: (using -125 Speedgrade)

 Net Name Source Pins Delay Load Pins

M--- BIT04TBUF.HC.1.O . . . ~12 P48.O
 TBUF.HD.1.O
 TBUF.HF.1.O
-L-- BIT05 . . . U GE.X
S--- BIT06. *** FG.A
 *** FH.A

Net Status

The Net Status column in the Net Delay Table has no column header
and is four characters wide. The letters in Table 5-5 might appear in a
net status column.

Table 5-5 Net Status

Net Name

The Net Name column in the Net Delay Table contains the name of
each net.

Source Pins

The Source Pins column in the Net Delay Table contains the physical
locations of each source pin on the net followed by the logical block
name associated with that location.

Net Status Description

C The net is flagged critical

L The net has no load pin

M The net has multiple source pins

S The net has no source pin
5-34 Xilinx Development System

APR
Delay

The Delay column in the Net Delay Table contains the net delays, in
nanoseconds, to each of the net load pins. If instead of a delay value
this column contains three asterisks (***), the corresponding load
pin is not routed to the source pin, so there is no delay for that load
pin.

Sometimes a delay value is preceded by a tilde, for example, ~12 on
P48.0 on net BIT04 in the previous example. The tilde means that the
delay is generated by so many concatenated-capacitor elements
(resistor or pass-transistor), that the value might be less accurate.
Xilinx does not guarantee it as an absolute worst-case value. The
number following the tilde is still conservative; most likely the
parameter in question is better than this value. If the tilde value is
critical to a design, there are two choices.

● Change the layout or routing such that the long uncertain delay is
broken up into two non-tilde values, either by passing the net
through a bi-directional repowering buffer (BIDI) or through an
unused CLB, or by dividing the net into two branches.

● Add 25 percent to the value and ignore the tilde, making the
reasonable assumption that this addition compensates for the
modeling uncertainty.

XC2064 and XC2018 ACLK delay values, though below 10 ns, are
sometimes preceded by a tilde. The tilde can safely be ignored in
these cases.

Load Pins

The Load Pins column in the Net Delay Table contains the physical
locations of each load pin on the net followed by the logical block
name, if any, associated with that location. This table is useful for
checking how well APR routed critical nets.
Development System Reference Guide, Volume 2 5-35

Development System Reference Guide, Volume 2
APR Annealing Progress Messages
APR outputs progress messages to the screen while it is running
unless you specified the -o option, which directs the output messages
to an output file. The following is an example of an annealing
progress message.

 Best % of Avg
 Temp %Chng Score Init Score %Chng Stdev CPU time

 766.2 -23% 67603 221% 76794 -7.4% 5.1% 00:06:20

The following table provides a brief description of each message.

Table 5-6 Placement Progress Message Descriptions

Placing and Routing Larger Designs
Some designs, in particular those using 80 percent or more of the
resources of the larger FPGAs, can be difficult to completely place
and route automatically. When your design has a high utilization of
FPGA resources, there are two alternate courses of action to help APR
produce better results.

First, create constraint files that give APR more information about the
design placement and routing desired. This step can be challenging,

Heading Description

Temp Current temperature of annealing process

%Chng Percent change in temperature (cooling rate)

Best Score Best placement score achieved so far

% of Init Best placement score as a percent of initial placement

Avg Score Average placement score at current temperature

%Chng Percent change in average placement score

Stdev Standard deviation of placement scores at current
temperature as a percent of the average placement
score

CPU Time Cumulative execution time in CPU seconds
5-36 Xilinx Development System

APR
especially for designs that are partitioned automatically when
translated from a schematic-capture program.

Second, you can obtain improved results by running APR on your
design several times, using a different seed for the pseudo-random
number generator each time. The random seeds are automatically
generated in APRLoop. When APR is run with different seeds, it
produces different placements with varying degrees of routability.
Running APR successively, or iteratively, on an input design
generates a set of output designs, some of which are more completely
routed than others.

Running APR Iteratively on the Same Design
The APRLoop program that accompanies APR provides an easy way
to run APR iteratively on the same design. Use the following syntax.

aprloop count options input output

The iteration count is a value between 1 and 99 that specifies the
number of times APR should run on the input design. APR runs until
exhausting the specified number of iterations or until APR execution
terminates abnormally due to multiple control-breaks or running out
of disk space. You can terminate APR and APRLoop by typing the
appropriate control character. Refer to “Interrupting APR During
Processing” section in this chapter for more information.

The other arguments, input and output, represent the input design
name and the output design name. The following is an example of a
typical command line.

aprloop 16 -c juke.cst input output

This command causes APR to run 16 times. APR uses the user
constraints file, juke.cst, for each run.

You can use any APR option when running APRLoop. Refer to the
“Options” section in this chapter for more information.
Development System Reference Guide, Volume 2 5-37

Development System Reference Guide, Volume 2
Differentiating Between Iterations
APRLoop passes the output design name to APR after performing the
following modifications.

● It truncates the output design name to six characters, if necessary.

● It appends a two-digit number to the resulting name.

The number that is appended to the output design name depends on
the current iteration number. For example, if you run APRLoop with
the following command line.

aprloop 3 input output

APR executes three times with the following three command lines.

apr input output00

apr input output01

apr input output02

The following is an APRLoop command line example for the PC.

aprloop 3 input mydesign

This results in the following three command lines.

apr input mydesi00

apr input mydesi01

apr input mydesi02

Typically, all command-line options you specify on the APRLoop
command line are passed without modification to the APR command
lines.

Redirecting the Output
If you specify the -o command-line option, APRLoop redirects all
message output for all iterations of APR into the file named with the -
o command-line option. APRLoop appends an .out file name
extension on the message file specified with the -o command-line
option. If you specify a different extension, APRLoop issues an error
5-38 Xilinx Development System

APR
message and aborts. The following two examples illustrate what you
enter on the command line.

aprloop 3 -o output.out input output

aprloop 3 -o output input output

In both examples, APRLoop creates the file named output.out. In the
second example, APRLoop automatically supplies the .out extension.
Development System Reference Guide, Volume 2 5-39

Development System Reference Guide, Volume 2
5-40 Xilinx Development System

Chapter 6
Development System Reference Guide, Volume 2 — 0401406 01 6-1

PPR

This program is compatible with the following families.

● XC3000A

● XC3000L

● XC3100A

● XC4000

● XC4000A

● XC4000H

● XC5200

The Partition, Place, and Route (PPR) program maps, places, and
routes an XC3000A/L, XC3100A, XC4000 (including XC4000A/H), or
XC5200 design. It gives you the option of retaining the timing for a
design that has been mapped, placed, and routed, then subsequently
changed. It re-establishes the same LCA block mapping, placement,
and routing for logic elements that have not changed in the design.
The LCA design implementation is modified only where necessary to
accommodate the design change.

The input design is an XTF file generated by XNFPrep or a MAP file
generated by XNFMAP. The output is an LCA design file that is used
by the XACT bitstream generator. It can also act as a guide file when
you reiterate block mapping, placement, and routing for a design to
which minor changes have been made after the previous iteration.

For information on the placement and routing of XC2000 or XC3000
designs, refer to the ‘‘APR” chapter of this reference guide.

Development System Reference Guide, Volume 2
Design Flow
This section describes PPR’s place in the Xilinx design flow. PPR is
involved in four separate design flows. In addition, the default PPR
flow is also discussed.

Default PPR Flow
This section describes how PPR implements a design by default. You
can modify some of this behavior by changing PPR options.

1. For XC4000 and XC5200 designs, gates in the input XTF files are
mapped into function generators.

For XC3000A/L or XC3100A designs, XNFMAP maps gates into
function generators and LCA blocks. PPR receives mapped logic
in the input MAP file.

2. The function generators, flip-flops, and other blocks that make up
the design are assigned to specific locations on the device. The
XACT-Performance specifications and a user-specified degree of
‘‘effort” guide the placement process.

3. The design is routed with XACT-Performance.

4. PPR generates an LCA and a report (RPT) file for the design.

5. If the timing-insensitive route in step 3 yielded a completely
routed design, the design is rerouted according to the
XACT-Performance specifications. If the original route yielded
any unrouted pins, however, PPR does not continue with this step.

6. PPR generates an LCA and a report (RPT) file for the design
routed with XACT-Performance. The LCA file generated in step 4
is now renamed to an LCB file.

The flow chart in Figure 6-1 illustrates this process.
6-2 Xilinx Development System

PPR
Figure 6-1 Default PPR Design Flow

XC4000 and XC5200 Designs
XC4000 and XC5200 designs are processed by the following
programs.

1. A schematic-to-XNF program or synthesis program generates a
netlist. This process outputs one or more XNF files.

2. XNFMerge merges all the input XNF files and flattens the design.
It outputs an XFF file.

3. XNFPrep performs a design-rule check on the XFF file and trims
unused and unneeded logic from the design. It outputs an XTF
file.

4. PPR maps, places, and routes the design in the XTF file and
outputs an LCA file. If you change any logic and select the Guide
option, it maps, places, and routes just the changed portions of the
design using the LCA file from the previous iteration as a guide
file. You can also change some of the placement and routing of the

X6545

MAP gates into
function generators

XTF

Place flip-flops,
function generators

and other blocks

Route design using
XACT-Performance

LCA RPT

XC3000
Designs MAP

XC4000, XC5200 Designs

Indicates a report file
Development System Reference Guide, Volume 2 6-3

Development System Reference Guide, Volume 2
design in the XACT Design Editor before using the LCA file to
guide PPR.

The following flow chart illustrates this design flow.

Figure 6-2 XC4000 Design Flow

XC3000A/L and XC3100A Designs
The design flow for XC3000A/L and XC3100A designs is similar to
that for XC4000 designs.

1. A schematic-to-XNF program or synthesis program generates a
netlist and outputs an XNF file for each hierarchical block,
including Xilinx macros.

2. XNFMerge merges all the input XNF files and flattens the design.
It outputs an XFF file.

3. XNFPrep performs a design-rule check on the XFF file and trims
unused and unneeded logic from the design. It outputs an XTF
file.

4. XNFMAP maps the design in the XTF file into CLBs and IOBs,

X3655

XNF XNF XNF

XNFMerge

XFF

XNFPrep

XTF

PPR

LCA

XDE

Guide File

MRG

PRP

RPT

Indicates a report file
6-4 Xilinx Development System

PPR
then outputs a MAP file. If any logic is changed and the Guide (-k)
option is selected, XNFMAP uses the PGF file as a guide file to
map only the changed portions of the design.

5. PPR places and routes the design in the MAP file and outputs an
LCA file. If you change any logic and select the Guide option, it
uses the LCA file as a guide file to place and route just the
changed portions of the design. XNFMAP has a similar guide
option using the PGF file. You can also change some of the
placement and routing of the design in the XACT Design Editor
before using the LCA file to guide PPR.

This flow is shown in the following figure.

Figure 6-3 XC3000A/L and XC3100A Design Flow

X3656

XNF XNF XNF

XNFMerge

XFF

XNFPrep

XTF

PPR

LCA

XDE

XNFMap

MAP

PGF

Guide File

MRG

PRP

CRF

RPT

LCA2XNF

Indicates a report file
Development System Reference Guide, Volume 2 6-5

Development System Reference Guide, Volume 2
XC4000 and XC5200 Designs with X-BLOX
For XC4000 designs with X-BLOX elements, the design flow is as
follows.

1. A schematic-to-XNF program or synthesis program generates a
netlist and outputs an XNF file for each hierarchical block,
including Xilinx macros.

2. XNFMerge merges all the input XNF files and flattens the design.
It outputs an XFF file.

3. XNFPrep performs a design-rule check on the XFF file and trims
unused and unneeded logic from the design. It outputs an XTG
file.

4. X-BLOX takes the higher-level design contained in the XTG file
and generates a gate-level netlist. It instructs MemGen to create
RAMs and ROMs as needed. X-BLOX outputs an XG file.

5. XNFPrep checks the design expanded by X-BLOX and trims any
unused logic in the expanded design. It outputs a new XTF file.

6. PPR maps, places, and routes the design and outputs an LCA file.
If you change any logic and select the Guide option, it maps,
places, and routes just the changed portions of the design using
the LCA file from the previous iteration as a guide file. You can
also change some of the placement and routing of the design in
the XACT Design Editor before using the LCA file to guide PPR.

Note: If you have made major structural changes in an X-BLOX
design — for example, adding large modules or changing from an
8-bit datapath to a 16-bit datapath — the Guide option is not
recommended.

This design flow is illustrated in the next flow chart.
6-6 Xilinx Development System

PPR
Figure 6-4 XC4000 Design Flow with X-BLOX

XC3000A/L and XC3100A Designs with X-BLOX
X-BLOX elements are also available with XC3000A/L and XC3100A
designs, although the design flow is slightly different from that of
XC4000 designs.

1. A schematic-to-XNF program or synthesis program generates a
netlist and outputs an XNF file for each hierarchical block,
including Xilinx macros.

2. XNFMerge merges all the input XNF files and flattens the design.
It outputs an XFF file.

X3658

XNF XNF

XNFMerge

XFF

XNFPrep

XTG

XG

X-BLOX

XTF

PPR

LCA

XDE

Guide File

BLX

MEM

MRG

PRX

PRP

RPT

XNFPrep

Indicates a report file
Development System Reference Guide, Volume 2 6-7

Development System Reference Guide, Volume 2
3. XNFPrep performs a design-rule check on the XFF file and trims
unused and unneeded logic from the design. It outputs an XTG
file.

4. X-BLOX takes the higher-level design contained in the XTG file
and generates a gate-level netlist. It outputs an XG file.

5. XNFPrep checks the design expanded by X-BLOX and trims any
unused logic in the expanded design. It outputs a new XTF file.

6. XNFMAP maps the design in the XTF file into CLBs and IOBs,
then outputs a MAP file. If any logic is changed, it uses the PGF
file as a guide file to map only the changed portions of the design.

7. PPR places and routes the design in the MAP file and outputs an
LCA file. If you change any logic and select the Guide option, it
uses an LCA file as a guide file to place and route just the changed
portions of the design. XNFMAP has a similar guide option using
the PGF file. You can also change some of the placement and
routing of the design in the XACT Design Editor before using the
LCA file to guide PPR.

Note: If you have made major structural changes in an X-BLOX
design — for example, adding large modules or changing from an 8-
bit datapath to a 16-bit datapath — the Guide option is not
recommended.

The XC3000A/L and XC3100A design flow with X-BLOX is shown in
Figure 6-5.
6-8 Xilinx Development System

PPR
Figure 6-5 XC3000A/L and XC3100A Design Flow with X-BLOX

Files

Input Files
PPR accepts one of the following two files as the input design:

● design.xtf is an XTF file output by XNFPrep for an XC4000 or
XC5200 design. You do not need to specify the .xtf extension, since
an XTF file is the default for XC4000 and XC5200
designs.

● design.map is a MAP file output by XNFMAP for an XC3000A/L
or XC3100A design. You must specify the .map extension.

X4062

XNF XNF

XNFMerge

XFF

XNFPrep

XTG

XG

X-BLOX

XTF

PPR

LCA

XDE

Guide File

MAP

XNFMAP

BLX

MRG

PRX

PRP
CRF

XNFPrep

PGF

RPT
LCA2XNF

Indicates a report file
Development System Reference Guide, Volume 2 6-9

Development System Reference Guide, Volume 2
PPR also accepts either or both of the following optional input files:

● guide.lca is a guide file output by a previous iteration of PPR that
may have been edited in XDE. PPR uses this file to re-establish the
same LCA block mapping, placement, and routing for logic
elements that have not changed in the new iteration.

● design.cst is the optional constraints file that PPR automatically
reads, if it is present in the design directory. Refer to the
‘‘Constraints File Syntax” section at the end of this chapter or to
the Libraries Guide for information about the constraints file
syntax.

Output Files
PPR outputs the following files:

● design.lca is the placed and routed LCA file that PPR generates. It
is given the input design name with an .lca extension unless you
use the Outfile option, described in the ‘‘PPR Options” section of
this chapter, to specify a different output file name.

● design.lcb is a backup copy of the previous LCA file.

● ppr.log contains all information output to the screen during PPR
execution. You can specify a log file name other than ppr.log by
using the Logfile option described in the ‘‘PPR Options” section.

● design.rpt is a report file that includes design statistics and device
utilization, program run information, the location of I/O pins, and
other information. You can use this information to help analyze
your design. This file is given the input design name with an .rpt
extension unless you use the Outfile option described in the “PPR
Options” section of this chapter to specify a different output file
name.

Guided Design
The term guided design refers to the process in which a previously
implemented design — also known as a guide file — is used to guide
mapping, placement, and routing. Guided design allows logic to be
modified or added to a design while preserving the layout and
performance that have been previously achieved.
6-10 Xilinx Development System

PPR
Types of Guided Design
There are three ways that you might use guided design:

● Iterative design — If a logic change is required in a design that has
already been verified for timing, guided design can minimize the
impact of that change on the new layout. This process is known as
iterative design. It simplifies the mapping, placement, and routing
process, as well as reverifies the design timing.

In iterative design, the original design is specified as the guide
file, and PPR attempts to copy as much of its mapping, placement,
and routing as possible. It implements logic that has not been
changed using exactly the same LCA resources as in the guide file,
which ensures that the timing on those paths is identical. For logic
that has been changed, it uses the normal mapping, placement,
and routing process.

● Incremental design — You can implement and verify a design in
stages using guided design. First PPR maps, places, and routes a
single functional block and verifies the timing internal to that
block. Then you add a second functional block to the design. PPR
maps, places, and routes the design using the first result as the
guide file. You then verify the timing of the new logic. By
repeating this process, you can build and verify a complete design
piece by piece. This type of design is known as incremental
design.

● Placement and routing in the XACT Design Editor (XDE) —
Guided design also allows you to place and route extremely
critical portions of a design manually and then direct PPR to finish
the placement and routing. This procedure is as follows.

a) PPR places the design without performing any routing.

b) You load the placed but unrouted design into XDE, moving
blocks and pre-routing signals as needed. For example, you
might align the CLBs associated with a counter in a single
column and then route an enable input via a vertical longline.

c) The pre-placed and pre-routed design is used as the guide file,
with the same input design as that used for the previous
iteration. Since the input design and the guide file are logically
equivalent, PPR copies all of the placement and routing
Development System Reference Guide, Volume 2 6-11

Development System Reference Guide, Volume 2
specified in the guide file and then completes the place and
route process.

Obtaining the Best Results from Guided Design
Guided design relies on signal names in order to match logic between
the guide file and the input design netlist. For this reason, it is very
important to minimize signal name changes when guided design is to
be used. Following are some points to keep in mind.

● When the design is flattened by the XNFMerge program, a
hierarchical path name is added to the beginning of every signal
name. For example, the ENABLE signal inside a symbol named
CNTR is resolved to CNTR/ENABLE after XNFMerge. If any new
hierarchy is created at the top of the design, the names of every
signal underneath are changed, and guided design would not
operate on the associated logic. Continuing with the example, if
the CNTR symbol is moved underneath a symbol called
CONTROL, the signal that was called CNTR/ENABLE in the
previous iteration would be called CONTROL/CNTR/ENABLE
instead; in guided design, these signals would not be considered
the same signal.

● IOBs are matched to the guide file by the name of the signal
attached to the I/O pad symbol. To ensure that IOBs are guided
properly, do not change the names of these signals.

● Schematic editors typically assign names to unnamed signals. If
your schematic editor assigns names consistently, such
assignment is no problem. However, if the names of unnamed
signals are changed each time the design is processed, you should
assign a name to every signal in the design.

● Synthesis software creates new nodes in a design and therefore
new signal names. If changes are made to logic inside a
synthesized module, names may no longer match those in the
guide file. For best results with guided design, avoid changing
synthesized logic as much as possible.

● XDE does not represent nodes internal to a CLB as named signals.
For example, a signal going from a function generator to a flip-
flop in the same CLB does not have a name in XDE. For this
reason, XDE can be used to modify placement and routing but
should never be used to add or change logic in the design. As a
6-12 Xilinx Development System

PPR
general rule, any operation that is allowed in XDE’s safe mode
does not adversely affect guided design.

Guided Design Flow for XC4000 and XC5200 Designs
For an XC4000 and XC5200 design, the guided design process is
completely controlled by the PPR program. As shown in Figure 6-2,
the guide file is an LCA file generated by a previous run of PPR,
which may or may not have been edited using XDE.

Consider an example in which an LCA guide file named original.lca
is used to guide the mapping, placement, and routing of a modified
version described in new.xtf. Specification of a guide file with the
following command automatically causes PPR to use guided design:

PPR new guide=original

Several PPR options control the guided design process. In most cases,
the defaults for these options are satisfactory, so the options need not
be explicitly set. See the ‘‘PPR Options for Guided Design” section,
following, for more information on these options.

Guided Design Flow for XC3000A/L and XC3100A
Designs

For an XC3000A/L or XC3100A design, the guided design process is
controlled by both the XNFMAP and PPR programs. XNFMAP
guides the mapping of the design into CLBs, and PPR guides the
placement and routing. As shown in Figure 6-3, the guide file is an
LCA file generated by a previous run of PPR, which may or may not
have been edited using XDE. The guided design procedure for
XC3000A/L and XC3100A designs is as follows.

1. If the PGF file created by XNFMAP on the previous design
iteration is available, use it to guide XNFMAP.

If the PGF file is not available, run the LCA2XNF program on the
LCA guide file using the -b option. You should specify the output
file name to match the name of the new input design with an
extension of .pgf. This output file is the partitioning guide file that
XNFMAP uses.
Development System Reference Guide, Volume 2 6-13

Development System Reference Guide, Volume 2
2. Run XNFMAP on the new input design using the -k option, which
tells XNFMAP to use the information in the PGF file to guide
partitioning.

3. Run PPR on the MAP file generated by XNFMAP, using the Guide
option to specify the LCA guide file. The specification of a guide
file automatically causes PPR to use guided design.

Consider an example in which an LCA guide file named original.lca
is used to guide the mapping, placement, and routing of a modified
version described in new.xtf. The following commands implement
the steps just given.

LCA2XNF -B original new.pgf
XNFMAP -K new
PPR new guide=original

Several PPR options control the guided design process. In most cases,
the defaults for these options are satisfactory, so the options need not
be explicitly set.

PPR Options for Guided Design
The options that control the guided design process are listed in the
following table. The use of these options is explained in this section,
and reference information on them can be found in the ‘‘PPR
Options” section of this chapter.

Table 6-1 Guided Design Options

In most cases, the default values of these options is sufficient, but this
section explains when it may be helpful to use alternative settings.

PPR Option Valid Values Default Value

guide_blks all, routed_only all

guide_routing all, whole_sigs all

guide_thru_routes all, whole_sigs, none whole_sigs

lock_routing all, whole_sigs, none whole_sigs

guide_only true, false false
6-14 Xilinx Development System

PPR
Iterative Design

For iterative design, that is, changing logic in a design that has
already been implemented and verified, the default settings of the
guide options are usually appropriate. Using these defaults, PPR
copies all of the routing in the guide file for each signal that it can
match in the new input design. However, if a signal has changed in
some way — that is, if one or more of the pins on that signal do not
match between the guide file and the input design — PPR reroutes
that signal if it can improve the timing. The Whole_sigs default
setting of both the Lock_routing and Guide_thru_routes options
locks only the routing of whole, or intact, signals.

Locking Partial Routes

To prevent PPR from rerouting any guided signals, even those which
have changed in some way, set both Lock_routing and
Guide_thru_routes to All. However, if any pins on a signal do not
match between the guide file and input design, it may be more
difficult for PPR to connect the changed pins to the guide file routing
than it would be to reroute the entire signal. For this reason, using the
All setting can result in worse performance than using Whole_sigs,
which allows PPR to reroute signals where needed. The
‘‘Lock_routing and Guide_thru_routes Options” section later in this
chapter describes when it might be desirable to set these two options
to different values.

Incremental Design

The following flow chart illustrates the design flow for incremental
design, in which you build up a design in stages by adding new
functional blocks. This design flow also applies to iterative design,
described in the preceding section.
Development System Reference Guide, Volume 2 6-15

Development System Reference Guide, Volume 2
Figure 6-6 Incremental Design

For incremental design, all of the default settings of the guide options
are appropriate. Using these defaults, PPR copies all of the routing in
the guide file for each signal that it can match in the new input
design. Furthermore, it does not change the routing found in the
guide file on any signal when all pins in the guide file match those of
the input design. With these defaults, all signals that are completely
internal to a functional block are preserved, provided that the logic of
that block is unchanged. The signals that connect the new logic to that
in the guide file is routed or possibly rerouted by PPR.

In some situations, you may want to control which signals PPR is
allowed to reroute. For more information, see the ‘‘Locking Partial
Routes” section earlier in this chapter.

When you have made small changes to a design, or when the design
density is not at maximum, use the options and settings shown in the
following table.

X6169

PPR

PPR

LCA

XTF

XC4000/XC5200
Designs

LCA

RPT

Indicates a report file.

Indicates a changed input.

XTF

XC4000/XC5200
Designs

RPT

XNFMAP

XNFMAP

PGF

MAP

XC3000 Designs

Guide File Guide FileOriginal Design

Changed Design

XC3000 Designs

XTF MAP

XTF
6-16 Xilinx Development System

PPR
Table 6-2 Default Incremental Design Options

When larger changes to the design are involved, or when the density
of the design is at maximum, use the same options with the settings
shown in Table 6-3.

Table 6-3 Other Incremental Design Options

Placement and Routing in XDE

The design flow involved in using a guide file output by a previous
iteration of PPR, editing it in XDE, and allowing PPR to complete the
placement and routing is shown in the following illustration.

Option Setting

guide_blks all

guide_routing all

guide_thru_routes whole_sigs

lock_routing whole_sigs

Option Setting

guide_blks all

guide_routing whole_sigs

guide_thru_routes none

lock_routing none
Development System Reference Guide, Volume 2 6-17

Development System Reference Guide, Volume 2
Figure 6-7 Guided Design with Manual Placement and Routing

Suppose that you use XDE to floorplan a design. Pre-placement and/
or pre-routing has been completed for some of the blocks and nets.
PPR can be expected to complete most of the design automatically,
given this guidance.

Note: Set the Route option to False if you are planning to edit the
design in XDE so PPR generates the LCA file as fast as possible.

If you use guided design to preserve manual placement and routing
done in XDE, some of the default settings of the guide options are not
appropriate.

By default, PPR copies the placement of every block in the guide file
that it can match to the input design. When preserving manual
placement and routing, the guide file and input design are logically
equivalent, and PPR can match everything. However, it is likely that
only a portion of the design was pre-placed in XDE and that the
placement of the other blocks was not optimized. If PPR were to
simply copy the placement of these blocks from the guide file, the
overall placement would suffer.

X6168

PPR

PPR

LCA

XDE

LCA

XTF

XC4000/XC5200
Designs

LCAPGF

RPT

Indicates a report file.

Indicates a changed input.

XTF

XC4000/XC5200
Designs

RPT

XNFMAP

XNFMAP

PGF

MAP

XC3000 Designs

Guide File Guide FileOriginal Design

Changed Design

XC3000 Designs

XTF MAP

XTF
6-18 Xilinx Development System

PPR
To direct PPR to guide only those blocks that have routing connected
to them in the guide file, set the Guide_blks option to Routed_only.
With this option set, blocks that have no routing attached to them are
subject to the normal PPR placement process.

In the guided routing process, PPR copies all of the routing in the
guide file for each signal that it can match in the new input design.
However, by default, PPR is allowed to reroute signals on which one
or more pins have changed or been moved. If only a portion of a
signal was pre-routed in the guide file, that routing may be changed.

As an example, suppose that in the guide file, all of the CLBs
associated with a register are aligned in a single column and the
clock-enable input pins are routed onto a vertical longline: since the
source block of the enable signal may move, only the load pins of that
signal are pre-routed. PPR most likely moves the source pin during
the placement process, since that block was not routed. Because the
placement of the source pin was not matched to the guide file, the
guide routing process would, by default, copy the routing on the load
pins but would consider the entire signal eligible to be rerouted.

To prevent PPR from changing any of the routing specified in the
guide file, set both the Lock_routing and Guide_thru_routes options
to All. In the example just given, these options would cause the
routing of the load pins to be preserved, even though the source pin
was not routed in the guide file.

One other useful option for guiding a manually edited design is
Guide_only. If it is set to True, PPR guides the placement, places all
unguided blocks, and guides the routing, but it does not route
unguided signals. You can use Guide_only to guide a new design
iteration from a previous one and use manual placement and routing
done in XDE. First, run PPR on the new input design, using the
previous design iteration as the guide file and setting Guide_only to
True. This step produces a design that is guided against the last
iteration; the LCA file is then loaded into XDE and pre-placed and
routed as desired. The modified LCA file acts as a guide file to
another run of PPR on the same input design but this time with
Guide_only set to False. This process produces an LCA file that is
guided against the manual work done in XDE, as well as against the
previous design iteration.
Development System Reference Guide, Volume 2 6-19

Development System Reference Guide, Volume 2
The following table summarizes the options and settings to use with
guided design to preserve the manual placement and routing done in
XDE.

Table 6-4 XDE Placement and Routing Options

Lock_routing and Guide_thru_routes Options

In general, the Lock_routing and Guide_thru_routes options both
control whether or not PPR is allowed to reroute signals that were
routed in the guide file, and these two options are usually set to the
same value. However, there is a subtle difference between the two
options that may occasionally be important.

The Lock_routing option simply controls whether or not the PPR
router is allowed to unroute the guide file routing on a signal and
reroute that signal to improve the timing. You can prevent it from
doing so either for all signals with Lock_routing=All or only for
signals that were completely guided with Lock_routing=Whole_sigs.
A third setting, Lock_routing=None, allows PPR to unroute and
reroute any signal.

However, in order to improve routability and timing, PPR may route
some signals through a CLB or other block; this type of routing is
known as a through-route. Although it improves routing, it requires a
function generator to pass the signal from one side of the CLB to the
other. In the XC4000 family, a flip-flop output pin can be used to pass
the signal, since the XQ or YQ pin moves the signal out of the CLB.
Similarly, in the XC5200 family, a signal may be routed from the DI
pin of an LCE (in a CLB) to the DO pin. If a signal that is routed in this
fashion is to be guided, certain CLB resources must be left unused
during the placement process. Thus, the guide file routing is favored
over the placement of the unguided logic.

Option Setting

guide_blks routed_only

guide_routing all

guide_thru_routes whole_sigs

lock_routing whole_sigs
6-20 Xilinx Development System

PPR
The Guide_thru_routes option controls which through-routes are
preserved, using the All and Whole_sigs settings similar to those of
Lock_routing. With Guide_thru_routes=All, PPR preserves all
through-routes. With Guide_thru_routes=Whole_sigs, PPR preserves
through-routes only on signals that were completely matched in the
input design; for other signals, those CLB resources can be used for
other logic. As with Lock_routing, the None setting allows PPR to use
all through-route resources for other logic.

Note: Using different settings for Lock_routing and
Guide_thru_routes may be desirable when a design uses a high
percentage of the LCA device resources. If you add new logic to the
input design and use a guide file, the CLB resources used for
through-routes may make placement of that new logic more difficult.
By using Lock_routing=All and Guide_thru_routes=None, those
signals that do not use through-routes are preserved, but the CLB
resources used for other signals are available for new logic.

Guided Design and XACT-Performance
If guided design is used and XACT-Performance timing
requirements have been specified, the information in the guide file
normally takes precedence over the specified path delay
requirements. If a given path is placed and routed in the guide file so
that it exceeds the specified delay, PPR does not normally attempt to
improve the timing on this path, and the specification is not met. To
direct PPR to attempt some improvement on such paths, set the
Lock_routing and Guide_thru_routes options to None; these settings
allow the routing on these paths to be discarded and rerouted if the
timing can be improved. However, the placement is still limited by
the placement in the guide file.

Guided Design and Constraints
If guided design is used and any constraints have been specified
either in the schematic or in a constraints (CST) file, the constraints
normally take precedence over the guide file information. However,
there are options that allow specific categories of constraints to be
ignored, allowing the guide file to be used. These options are the
following follows.

● For an XC4000 design, if the PPR Ignore_maps option is set to
Development System Reference Guide, Volume 2 6-21

Development System Reference Guide, Volume 2
True, PPR ignores all FMAP and HMAP symbols when grouping
gates into function generators.

● For an XC5200 design, if the PPR Ignore_maps option is set to
True, PPE ignores all F5MAP and FMAP symbols when grouping
gates into function generators.

● For an XC3000A/L or XC3100A design, if the XNFMAP -m option
is used, XNFMAP ignores all CLBMAP symbols when mapping
gates and flip-flops into CLBs.

● If the PPR Ignore_xnf_locs option is set to True, PPR ignores all
LOC constraints specified in the schematic. To ignore location
constraints specified in a CST file, modify or rename the CST file.

● If the PPR Ignore_rlocs option is set to All, PPR ignores all relative
location (RLOC) constraints specified in the input design. The
constraints can come either from the schematic or from a synthesis
program such as X-BLOX. If an XC4000 design contains any carry
logic (CY4) symbols, the RLOC constraints on these symbols are
not ignored. If an XC5200 design contains any carry mux or F5
mux symbols, then user-defined RLOC constraints are ignored
and PPR will generate device-specific structures for these
symbols.

See the ‘‘PPR Options” section later in this chapter for more
information on the PPR options just listed. Also refer to the
‘‘XNFMAP” chapter in this reference guide for more information on
the -m and other options.

XC3000A/L and XC3100A Guided Design with PPR
PPR guided design provides the same functionality as the APR
guided design process for XC3000, although the method is slightly
different. This section describes the correlation between the APR and
PPR procedures.

For iterative and incremental design, the basic behavior of the PPR
Guide option is the same as the APR -g option: it uses a guide LCA
file to control the placement and routing of a changed input design.
Although the input design to PPR is not an LCA file, the result is the
same, since the mapping process is also guided by XNFMAP for
XC3000A/L and XC3100A, or by PPR for XC4000.
6-22 Xilinx Development System

PPR
For pre-placement and pre-routing work done in XDE, the PPR
Guide option is used in place of the APR -p option. Rather than using
the pre-placed and pre-routed LCA file as the input design, as is done
with Apr -p, it is specified as the guide file. This guide file is
generated by a previous run of PPR and is edited in XDE to specify
placement and routing information. The input design to PPR on the
guided run is the same netlist as that used on the previous run. You
might use the Guide_blks=Routed_only option to restrict guided
placement to routed blocks, as Apr -p would do; see ‘‘PPR Options
for Guided Design” earlier in this chapter for more information on
this option.

Constraints
You can set a number of optional constraints to control the PPR
program. They control the placement of specified logic and the
routing of certain nets. These constraints are listed and described in
the Libraries Guide.

You can specify these constraints either on the schematic or in a CST
file. Schematic constraints are attached to symbols or nets and are
passed into the XNF file by the schematic-to-XNF translator.
Constraints specified in a CST file are read directly by PPR.

By default, PPR reads the constraints file that carries the same name
as the input design with a .cst extension; however, you can specify a
different constraints file name with the Cstfile option, described in
the ‘‘PPR Options” section of this chapter.

The exact syntax of all constraints available in the CST file is given in
the ‘‘Constraints File Syntax” section at the end of this chapter and in
the Libraries Guide. That guide also gives a number of examples of
placement constraints. Each statement is terminated by a semicolon
(;). No continuation characters are necessary if a statement exceeds
one line, since a semicolon marks the end of the statement. Lines that
begin with the pound sign (#) character are comments. Statements do
not have to be placed in any particular order in the CST file.

The constraints in the CST file and the constraints in the schematic or
XNF file are applied equally; it does not matter whether a constraint
is entered in the schematic or in the CST file.
Development System Reference Guide, Volume 2 6-23

Development System Reference Guide, Volume 2
If by mistake two or more elements are locked onto a single location,
PPR detects the conflict and stops processing so that you can correct
the mistake.

How to Use PPR
This section gives examples that show how to perform PPR’s major
functions. For detailed information on the options that implement
these functions, see the ‘‘PPR Options” section later in this chapter.

Invoking PPR
You can execute PPR from the XACT Design Manager (XDM) or from
an operating system prompt. From XDM, you can execute PPR from
either the menu or the command line. Executing PPR from the
operating system provides more control over PPR functions than
executing PPR from XDM.

From XDM

To execute PPR from the XDM menus, follow these steps:

1. Ensure that the correct family is specified in the Family field in the
lower left corner of the screen; also ensure that your working
directory is specified in the Directory field.

2. Click the left mouse button on PlaceRoute and then on PPR.

3. Click on the desired XTF or MAP file from the list of files that
appears. If there are no XTF files in the directory in which PPR is
invoked, you can specify a path name and a file name at the
select input file: prompt.

4. Click on the desired options from the resulting list; if you do not
see the option that you are interested in, click on (DISPLAY
ADDITIONAL OPTIONS) .

5. After you have set the options, select Done to run PPR.

A window now appears in which PPR’s processing is displayed.

To cancel a transaction at any point before you run PPR, click on
Cancel; to terminate PPR’s processing once it has started, press
Control Break on PCs or Control C on workstations. If the run aborts
6-24 Xilinx Development System

PPR
during processing, the error is displayed at the top of the XDM screen
on workstations and at the bottom of the XDM screen on PCs.

From the Command Line

Use the following syntax to execute PPR from the XDM command
line or the operating system prompt.

ppr designname [options]

Designname is the input design file. For an XC4000 or XC5200 design,
an .xtf extension is assumed; for an XC3000 design, a .map extension
is assumed.

Options can be any number of the PPR options listed in the ‘‘PPR
Options” section of this chapter and their respective values. They do
not need to be listed in any particular order. Separate multiple
options with spaces. The syntax for each option is option=value.

Typing in Ppr with no arguments or Ppr -help displays the syntax of
the Ppr command and an explanation of design and the Parttype,
Estimate, and -Helpall options.

The DOS command line only accepts 127 characters per command. If
this limit becomes a problem, use a parameter file.

A parameter file is a separate file that contains all the PPR commands
that you intend to use in any one session. Using this file saves you
from having to enter a number of options at the system prompt every
time that you execute PPR. A parameter file is a text file, created with
a text editor, containing a list of desired options and their respective
values, as in the following example.

parttype=4005pg156
estimate=true
ignore_xnf_locs=io

Use the following syntax to execute PPR with a parameter file named
textfile.

ppr designname paramfile= textfile [options]

You can specify additional options at the command line whenever a
parameter file is used; these override similar parameters specified in
the parameter file.
Development System Reference Guide, Volume 2 6-25

Development System Reference Guide, Volume 2
Running PPR in XMake
XMake automatically runs PPR as part of its processing. See the
‘‘XMake” chapter of this reference guide for instructions on invoking
XMake.

Suspending PPR Operation
You can suspend PPR operation during the placement or routing
phase by entering Control Break on PCs or Control C on
workstations. Specifically, you can suspend PPR operation when the
following message appears on the screen:

+ Suspension enabled.

You cannot suspend PPR operation when the following message
appears on the screen:

+ Suspension disabled.

When the ability to suspend PPR’s operation is enabled, the
following screen appears after PPR receives the interrupting
keystroke. The screen may appear several minutes later, because
interrupt messages are polled only at intervals. Pressing Control
Break or Control C a number of times does not speed the process.
Here is an example of this screen:

*** User Interrupted Execution with Ctrl-C ***

Select one of the following options:

 S - Save the current results and then quit
the program

 C - Continue running the program; ignore
this interrupt

 Q - Quit the program immediately

Option:
6-26 Xilinx Development System

PPR
As this screen indicates, you have three options once you interrupt
PPR’s processing:

● Entering s stops PPR operation, saves the result (the current
placement in the placement phase and the current routing in the
routing phase) and terminates the interrupted PPR task. The
placement phase is terminated after saving the current results and
routing is initiated on that placement. However, when you
interrupt PPR in the routing phase, entering s saves the current
routing result and exits PPR since it is PPR’s last phase.

● Entering c continues with the interrupted operation.

● Entering q exits PPR without saving the current results.

This flexibility is useful in running PPR for an extended period and
then interrupting it when you are ready to save the current results.
When saving the current routing results, you can resume routing by
using the output LCA file as a guide file.

Using xactinit.dat Files
As an alternative to specifying options on the PPR command line or
in a parameter file, as just described, most PPR options can also be
specified in a file called xactinit.dat. The xactinit.dat file is similar to a
parameter file, except that it is automatically used every time that
PPR is run, so that you do not have to specify the file name each time.

The syntax of options in the xactinit.dat file is slightly different from
the command line syntax. For this reason, the xactinit.dat syntax is
shown for each option listed in the ‘‘PPR Options” section of this
chapter.

The xactinit.dat file is a normal text file that you can create with any
ASCII text editor. Although the name of the file must always be
xactinit.dat, it can be located in any of three directories. PPR reads the
xactinit.dat file in these directories in the order shown and uses the
options specified in all three files. The xactinit.dat files are read as
follows:

1. PPR first reads the global xactinit.dat file in the data subdirectory
of the directory specified by the XACT environment variable, or
$XACT/data. The options specified in this file are used by every
run of PPR. In a multiple-user environment, options specified
here apply to all users.
Development System Reference Guide, Volume 2 6-27

Development System Reference Guide, Volume 2
2. PPR next reads the user xactinit.dat file in your home directory,
specified by the HOME environment variable or simply C:\ on the
PC. The options specified in this file are used every time that you
run PPR. In a single-user environment, this file is essentially no
different than the global xactinit.dat file.

3. Lastly, PPR reads the local xactinit.dat file in the directory where
PPR is run. The options specified in this file are used only when
PPR is run from that directory. Typically, design-specific options
are specified here.

If the same option is specified in more than one xactinit.dat file, the
one read last is used. For example, if Guide_routing=All is in the
global xactinit.dat file but Guide_routing=None is in the local
xactinit.dat file, Guide_routing=None is used.

You can add a comment to an xactinit.dat file by placing a pound sign
(#) at the beginning of the line.

Setting General Processing Options
The following examples show how to use a few basic PPR options.
The name of the design used is ‘‘top.”

Changing Output LCA and RPT File Names

By default, the output LCA and RPT files have the same name as the
input design file. To specify a different name, invoke PPR as follows:

ppr top outfile=newtop

Changing Log File Name

By default, PPR echoes its screen output to the ppr.log file. To specify
a different name, invoke PPR as follows:

ppr top logfile=pprtop.out

Determining Device Utilization

If you need an estimate of device utilization for a design that is not
complete, PPR can generate a report file with these statistics when
you enter the following:

ppr top estimate=true
6-28 Xilinx Development System

PPR
Running PPR in this fashion does not generate an LCA file output but
only a report file. If the design contains any sourceless or loadless
signals that should be preserved, the XNFPrep program should be
run with the Savesig=True option before running PPR, as shown in
the ‘‘XNFPrep” chapter of this reference guide.

Placing and Routing a Partial Design

To support incremental design, PPR can place and route a partial
design, which may contain signals that are still sourceless or loadless.
To tell PPR that additional logic is still to be added to the design, you
must set the Complete option as follows.

ppr top complete=false

With this setting, PPR preserves any sourceless or loadless signals in
the design and avoids routing through resources that may be needed
for future logic. The default of the Complete option is True.

Controlling Constraints
The following examples show how you can manipulate constraints
with PPR options.

Specifying an Alternate CST File

By default, PPR reads the CST file that has the same name as the
input design. You can use the Cstfile option to specify a different file.
For example, if the constraints file is called pinout.cst, invoke PPR as
follows:

ppr top cstfile=pinout

Ignoring MAP Symbols

For an XC4000 or XC5200 design, direct PPR to ignore all F5MAP,
FMAP, and HMAP symbols as follows:

ppr top ignore_maps=true

For an XC3000A/L or XC3100A design, CLBMAP symbols can be
ignored by using the -m option in XNFMAP. See the ‘‘XNFMAP”
chapter of this reference guide for more information.
Development System Reference Guide, Volume 2 6-29

Development System Reference Guide, Volume 2
Ignoring Absolute Location Constraints

Absolute location constraints are specified either as LOC parameters
on individual symbols or by an RLOC_ORIGIN parameter on an
RLOC set. PPR can ignore all such constraints in the input design
when you enter the following:

ppr top ignore_xnf_locs=all

To ignore all location constraints except those on I/O pads, invoke
PPR this way:

ppr top ignore_xnf_locs=interior

To ignore only the location constraints on I/O pads, invoke PPR as
follows:

ppr top ignore_xnf_locs=io

Ignoring Relative Location Constraints

To ignore any relative location (RLOC) constraints in the input
design, use the following syntax:

ppr top ignore_rlocs=true

However, if the design contains any CY4 symbols or any Xilinx
macros that are implemented using carry logic, the RLOC constraints
are not ignored on those CY4 symbols.

Controlling Placement and Routing
The following examples show how the place and route process can be
controlled through PPR options.

Setting Level of Placement Effort

By default, PPR attempts to balance good-quality placement with a
reasonable execution time. However, it can work harder on
placement at the cost of additional run time. This level of effort is
controlled by the Placer_effort option, which takes an integer value
between 1 and 5 to determine how hard PPR should work during
placement. The default is 2. For example, to direct PPR to work as
hard as possible on placement, invoke the program as follows.

ppr top placer_effort=5
6-30 Xilinx Development System

PPR
Although the run time is extended, the placement results are usually
improved over the default. Similarly, to direct PPR to do a fast, lower-
quality placement, invoke the program as follows.

ppr top placer_effort=1

Setting Level of Router Effort

By default, PPR attempts to balance good-quality routing with a
reasonable execution time. However, it can work harder on routing at
the cost of additional run time or vice-versa. This level of effort is
controlled by the Router_effort option, which takes an integer value
between 1 and 4 to determine how hard PPR should work during
routing. The default value for the Router_effort option is 2, which
provides a good balance between execution and quality for most
designs. To direct PPR to do a fast, lower-quality route, invoke the
program as follows.

ppr top router_effort=1

Conversely, to direct PPR to work harder to achieve routing quality,
invoke the program as follows.

ppr top router_effort=3

Although the run time is extended, the routing results are usually
improved over the default. Setting the Router_effort option to 4
causes the router to work the hardest at achieving a quality result.
However, this setting should be used with caution, since it can
significantly increase the execution time.

ppr top router_effort=4

Controlling the Timing-Insensitive Quick Route

By default, PPR routes the design while considering the XACT-
Performance timing requirements. For a low-speed design, PPR can
perform only the timing-insensitive routing if you invoke the
program as follows.

ppr top timing=ignored

The Timing=Ignored option completely turns off XACT-Performance.
Development System Reference Guide, Volume 2 6-31

Development System Reference Guide, Volume 2
On the other hand, if XACT-Performance timing requirements need
to be considered only when the design is routable, you should run
PPR as follows.

ppr top timing=when_routable

Controlling Through-Routes

In order to improve routability and timing, PPR may route some
signals through a CLB or other block. This type of routing is known
as a through-route. Although this technique usually improves the
routing, PPR allows this feature to be limited or disabled entirely.

For incremental design, that is, building up a design by placing and
routing functional blocks one at a time, it makes sense to prevent PPR
from routing through blocks that do not contain any logic, since they
may be needed for a functional block that is still to be added to the
design. To direct PPR to avoid routing through such empty blocks,
invoke the program as follows.

ppr top route_thru_blks=limit

In this mode, PPR may still route through blocks that are already
used for logic.

PPR can also be directed to avoid through-routing completely for
XC3000A/L and XC3100A designs, but doing so may make the
design more difficult to route and may degrade the overall design
timing. However, to direct PPR to avoid routing through any block,
invoke the program as follows.

ppr top route_thru_blks=never

There are some situations in which it is impossible to route without
using through-routes. If you use the Route_thru_blks=Never option
in these cases, PPR cannot route the design completely. The Never
option is not available for XC4000 and XC5200 designs.

Routing Through Global Buffers

Rather than routing only through general interconnect, PPR can route
through unused global buffers — BUFGS in (SWAP) XC4000, BUFG
in XC5200,or GCLK and ACLK in XC3000 — if doing so seems more
efficient. Use the following syntax.

ppr top route_thru_bufg={ok|never}
6-32 Xilinx Development System

PPR
If the Route_thru_bufg option is set to Ok, PPR routes signals
through the unused buffers noted above. If it is Never, PPR does not
use global buffers needed for later design iterations. The default
value depends on the value of the Complete option. If Complete is set
to True, Route_thru_bufg defaults to Ok; if Complete is set to False,
Route_thru_bufg is set to Never.

Controlling Guided Design
The following examples using the ‘‘new” input file show how you
can control guided design through PPR options.

Specifying a Guide File

If an LCA guide file named original.lca is to be used to guide the
placement and routing of a modified version described in new.xtf,
you would invoke PPR as follows.

PPR new guide=original

The specification of a guide file automatically causes PPR to use
guided design.

Guiding Placement of Routed Blocks

By default, PPR copies the placement of every block in the guide file
that it can match to the input design. When preserving manual
placement and routing done in XDE, the guide file and input design
are logically equivalent, and PPR is able to match everything.
However, if only a portion of the design was pre-placed in XDE, and
the placement of the other blocks was not optimized, the overall
placement would suffer if PPR guided the placement of every block
in the guide file.

To direct PPR to guide only those blocks that have routing connected
to them, use the following syntax.

ppr new guide=original guide_blks=routed_only

Guiding Routing of Unchanged Signals Only

By default, PPR copies the routing of any signal in the guide file for
which it can match any pins to the input design. However, it may be
desirable to ignore routing in the guide file for signals on which pins
Development System Reference Guide, Volume 2 6-33

Development System Reference Guide, Volume 2
have been added or removed. To direct PPR to ignore the guide file
routing on such signals, invoke the program as follows.

ppr new guide=original guide_routing=
whole_sigs

This option causes PPR to guide only the routing of signals for which
all pins in the guide file are matched to the input design: these are the
whole, or intact, signals.

Locking Routing from Guide File

By default, PPR does not change the routing found in the guide file
on any signal when all pins in the guide file match those of the input
design. However, signals that are not completely matched may be
rerouted, if PPR can improve on the routing of the overall signal. To
prevent PPR from changing any routing that was copied from the
guide file, invoke the program as follows.

ppr new guide=original lock_routing=all
guide_thru_routes=all

To allow PPR to reroute any signal, even if routing was copied from
the guide file, invoke the program as follows:

ppr new guide=original lock_routing=none
guide_thru_routes=none

As noted in the ‘‘Controlling Through-Routes” section earlier in this
chapter, PPR may route signals through CLBs or other blocks. In
order to guide such signals, those CLB resources must not be used for
new logic during the placement process. By default, PPR sets these
resources aside for signals when all pins in the guide file are matched
with those in the input design. However, if the device is highly
utilized and new logic has been added to the design, it may be
desirable to favor the placement of that new logic over the guiding of
these through-routes.

To allow PPR to use the through-route resources on any signal for the
placement of new logic, start the program as follows.

ppr new guide=original guide_thru_routes=none
6-34 Xilinx Development System

PPR
Copying Guide File Without Finishing Routing

To direct PPR to copy the placement and routing in the guide file
without finishing the routing on unguided signals, invoke the
program as shown in the following statement.

ppr new guide=original guide_only=true

This option can generate an LCA file in which a new design iteration
has been guided against a previous iteration but in which no
additional work has been done. You can then manually edit this LCA
file in XDE and use it as a guide file for another run of PPR.

Using XACT-Performance Specifications
Using the XACT-Performance feature of PPR, you can specify path
delay requirements on the schematic to guide the mapping,
placement, and routing process. The ‘‘XACT-Performance Utility”
chapter of this reference guide explains how to specify these
requirements. Basic control over the XACT-Performance process is
also available through the PPR command line options, as shown
following.

Specifying Default Path Delays

For maximum flexibility, specify timing requirements in the
schematic, as described in the ‘‘XACT-Performance Utility” chapter.
However, for simple one-clock designs, you can specify basic timing
requirements on the PPR command line.

As an example, consider the following PPR command.

ppr top dc2s=40 dc2p=auto dp2s=auto
dp2p=ignore

PPR interprets these options as follows.

● dc2s=40: PPR attempts to keep all clock-to-setup paths within 40
ns. Unlike requirements specified in the schematic, numbers on
the command line must always be specified in nanoseconds.

● dc2p=auto: PPR chooses a reasonable path delay target for clock-
to-pad paths and attempts to meet this target.

● dp2p=ignore: PPR ignores the path delay on pad-to-pad paths,
which are strictly combinatorial. If the delays on such paths are
Development System Reference Guide, Volume 2 6-35

Development System Reference Guide, Volume 2
insignificant, the Ignored option allows PPR to concentrate on the
other paths that are speed-critical.

You can use any of these option values — a number of nanoseconds,
Auto, or Ignored — for any of the four options Dc2s, Dc2p, Dp2s, and
Dp2p.

If any of these parameters is not specified, PPR does not supply a
default value. However, for each flip-flop-related path type — flip-
flops to flip-flops, flip-flops to pads, pads to flip-flops — for which
you have not specified a parameter, PPR uses the Auto option to
generate a specification that covers all paths of that type.

Controlling Delay When C2S Specifications Differ

By default, the path between two flip-flops that have different C2S
specifications is not controlled by XACT-Performance; that is, no
target delay is assigned to that path. You can assign such delay to
these paths by setting the following option to True.

use_faster_c2s=true

The path between two such flip-flops is assigned a target delay equal
to the faster of the two C2S specifications.

Controlling PPR if Specifications Cannot Be Met

By default, if PPR finds that it cannot meet a specified timing
requirement, it relaxes the specification by a factor of 1.5 and
continues with the place and route process.

To have PPR stop the placement and routing process if it finds that a
specified timing requirement cannot be achieved, invoke it as follows.

ppr top stop_on_miss=true

Ignoring Path Delays in Place and Route

To place and route a design without taking path delays into
consideration, use the following syntax when invoking PPR.

ppr top path_timing=false

This option causes any specified timing requirements to be ignored
and also prevents PPR from choosing its own path delay targets.
6-36 Xilinx Development System

PPR
Ignoring Specified Timing Requirements

To ignore the timing requirements specified in the design, invoke the
program as follows.

ppr top ignore_timespec=all

Controlling Delays on Incomplete Paths

In a partial design, there may be paths that are not yet complete. You
cannot control these paths with XACT-Performance specifications.
Instead, use the following option to provide a maximum delay target
for PPR to use when routing signals along such paths.

dflt_sig_dly= value

Value can be a number between 5 and 80, inclusive.

The delay represented by Dflt_sig_dly is not a path delay but only the
routing delay of an individual signal. Dflt_sig_dly does not affect the
partitioning or placement of an incomplete path.

Options
This section lists and explains the options that are available in PPR.
They are listed in alphabetical order. The syntax of these options is
option=value.

Complete
The Complete option tells PPR whether or not any additional logic is
still to be added to the design.

Command line syntax: complete={true|false}

Xactinit.dat file syntax: None

XDM command: PlaceRoute ➝ PPR➝-nocomplete

Values: true , false

Default value: true

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Complete option is set to False, PPR preserves any sourceless or
loadless signals in the design. It also avoids routing through
Development System Reference Guide, Volume 2 6-37

Development System Reference Guide, Volume 2
resources that may be needed for future logic, such as unused global
buffers and completely empty CLBs. The default for this option is
True.

Cstfile
The Cstfile option specifies the name of the constraints file to use.
When this option is used, PPR ignores the design.cst file.

Command line syntax: cstfile= filename

Xactinit.dat file syntax: None

XDM command: PlaceRoute ➝ PPR➝ cstfile= file

Values: filename, which can have any extension

Default value: filename. cst

Applicable family: XC3000A/L, XC3100A, XC4000

Dc2p
The Dc2p option specifies the default clock-to-pad time.

Command line syntax: dc2p= value

Xactinit.dat file syntax: /ppr/dc2p= value

XDM command: PlaceRoute ➝ PPR➝ dc2p=
{ns|AUTO|IGNORE}

Values: floating-point_number, auto , ignore

Default value: None

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Dc2p option is used, PPR ensures that the delay along all clock-
to-pad paths in the design that are not otherwise specified is less than
the specified value, in nanoseconds. The value specified by this
option overrides the Dc2p value specified in your schematic. Value
can be one of the following settings.

● floating-point_number is a floating-point number in nanoseconds in
the range of 0.1 to 3000.0.

● Auto selects a moderately aggressive target delay to apply to all
clock-to-pad paths.
6-38 Xilinx Development System

PPR
● Ignore ignores the timing of all clock-to-pad paths, which allows
PPR to concentrate on other paths.

You can also specify XACT-Performance requirements on the
schematic with much greater granularity than that available from the
PPR command line. The ‘‘XACT-Performance Utility” chapter in this
reference guide explains how to specify these requirements.

Dc2s
The Dc2s option specifies the default clock-to-setup time.

Command line syntax: dc2s= value

Xactinit.dat file syntax: /ppr/dc2s= value

XDM command: PlaceRoute ➝ PPR➝ dc2s=
{ns|AUTO|IGNORE}

Values: floating-point_number, auto , ignore

Default value: None

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Dc2s option is used, PPR ensures that the delay along all clock-
to-setup paths in the design that are not otherwise specified is less
than the specified value, in nanoseconds. The value specified by this
option overrides the Dc2s value specified in your schematic. Value
can be one of the following settings.

● floating-point_number is a floating-point number in nanoseconds in
the range of 0.1 to 3000.0.

● Auto selects a moderately aggressive target delay to apply to all
clock-to-setup paths.

● Ignore ignores the timing of all clock-to-setup paths, which allows
PPR to concentrate on other paths.

You can also specify XACT-Performance requirements on the
schematic with much greater granularity than that available from the
PPR command line. The ‘‘XACT-Performance Utility” chapter in this
reference guide explains how to specify these requirements.
Development System Reference Guide, Volume 2 6-39

Development System Reference Guide, Volume 2
Dflt_sig_dly
In a partial design, there may be paths that are not yet complete. Such
paths cannot be controlled by XACT-Performance specifications. The
Dflt_sig_dly option provides a maximum delay target for PPR to use
when routing signals along such paths.

Command line syntax: dflt_sig_dly= value

Xactinit.dat file syntax: /ppr/dflt_sig_dly= value

XDM command: PlaceRoute ➝ PPR➝
dflt_sig_dly= num

Values: Number of nanoseconds, between 5 and
80, inclusive

Default value: 80 nanoseconds

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If XACT-Performance cannot determine a target routing delay for a
given signal because the path that includes that signal is not
complete, the value of the Dflt_sig_dly option is used as a target
delay. The delay represented by Dflt_sig_dly is not a path delay but
only the routing delay of an individual signal. Dflt_sig_dly does not
affect the partitioning or placement of an incomplete path.

Dp2p
The Dp2p option specifies default pad-to-pad time.

Command line syntax: dp2p= value

Xactinit.dat file syntax: /ppr/dp2p= value

XDM command: PlaceRoute ➝ PPR➝ dp2p=
{ns|AUTO|IGNORE}

Values: floating-point_number, auto , ignore

Default value: None

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Dp2p option is used, PPR ensures that the delay along all pad-
to-pad paths in the design that are not otherwise specified is less than
the specified value, in nanoseconds. The value specified by this
6-40 Xilinx Development System

PPR
option overrides the Dp2p value specified in your schematic. Value
can be one of the following settings.

● floating-point_number is a floating-point number in nanoseconds in
the range of 0.1 to 3000.0.

● Auto selects a moderately aggressive target delay to apply to all
pad-to-pad paths.

● Ignore ignores the timing of all pad-to-pad paths, which allows
PPR to concentrate on other paths.

You can also specify XACT-Performance requirements on the
schematic with much greater granularity than that available from the
PPR command line. The ‘‘XACT-Performance Utility” chapter in this
reference guide explains how to specify these requirements.

Dp2s
The Dp2s option specifies the default pad-to-setup time.

Command line syntax: dp2s= value

Xactinit.dat file syntax /ppr/dp2s= value

XDM command: PlaceRoute ➝ PPR➝ dp2s=
{ns|AUTO|IGNORE}

Values: floating-point_number, auto , ignore

Default value: None

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Dp2s option is used, PPR ensures that the delay along all pad-
to-setup paths in the design that are not otherwise specified is less
than the specified value, in nanoseconds. The value specified by this
option overrides the Dp2s value specified in your schematic. Value
can be one of the following settings.

● floating-point_number is a floating-point number in nanoseconds in
the range of 0.1 to 3000.0.

● Auto selects a moderately aggressive target delay to apply to all
pad-to-setup paths.

● Ignore ignores the timing of all pad-to-setup paths, which allows
PPR to concentrate on other paths.
Development System Reference Guide, Volume 2 6-41

Development System Reference Guide, Volume 2
You can also specify XACT-Performance requirements on the
schematic with much greater granularity than that available from the
PPR command line. The ‘‘XACT-Performance Utility” chapter in this
reference guide explains how to specify these requirements.

Estimate
The Estimate option generates a report file containing device
utilization statistics.

Command line syntax: estimate={true |false}

Xactinit.dat file syntax: None

XDM command: PlaceRoute ➝ PPR➝ -estimate

Values: true , false

Default value: false

Applicable family: XC4000, XC5200

If the Estimate option is set to True, PPR maps the design without
placing or routing it and creates a report (RPT) file; no LCA file is
created. For partially completed designs, the Estimate=True option
can be used to estimate resource utilization. False, the default,
indicates that complete PPR processing will be performed.

Guide
The Guide option uses a specified LCA file to guide the design
implementation. PPR follows the guide file’s mapping, placement,
and routing where possible.

Command line syntax: guide= filename

Xactinit.dat file syntax: None

XDM command: PlaceRoute ➝ PPR➝ guide= file

Values: Any LCA file name

Default value: None

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200
6-42 Xilinx Development System

PPR
Guide_blks
The Guide_blks option determines the type of blocks to be guided.

Command line syntax: guide_blks= value

Xactinit.dat file syntax: /ppr/guide_blks= value

XDM command: PlaceRoute ➝ PPR➝
guide_blks= param

Values: all , routed_only

Default value: all

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

This option can be set to the following values:

● All guides all blocks in the guide file that are matched in the input
design.

● Routed_only guides only those blocks that have some routing
connected to them in the guide file and that are matched in the
input design.

Guide_only
The Guide_only option guides placement and routing and completes
all placement but does not complete routing that is not guided.

Command line syntax: guide_only={true |false}

Xactinit.dat file syntax: None

XDM command: PlaceRoute ➝ PPR➝ -guide_only

Values: true , false

Default value: false

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

When this option is set to True, PPR guides and completes the
placement but does not complete unguided routing. When it is set to
False, it completely guides and routes the design.
Development System Reference Guide, Volume 2 6-43

Development System Reference Guide, Volume 2
Guide_routing
The Guide_routing option determines which routing to copy from the
guide file.

Command line syntax: guide_routing= value

Xactinit.dat file syntax: /ppr/guide_routing= value

XDM command: PlaceRoute ➝ PPR➝
guide_routing= param

Values: whole_sigs, all

Default value: all

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

You can set this option to the following values.

● Whole_sigs guides the routing only for signals that completely
match all pins in the guide file.

● All guides the routing for all matching signals.

Guide_thru_routes
The Guide_thru_routes option controls which through-routes are
preserved during guided routing. A through-route is a signal that
PPR has routed through a CLB or other block. PPR uses through-
routes to improve the routability and timing of a signal.

Command line syntax: guide_thru_routes= value

Xactinit.dat file syntax: /ppr/guide_thru_routes= value

XDM command: PlaceRoute ➝ PPR➝
guide_thru_routes= param

Values: all , whole_sigs , none

Default value: whole_sigs

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

This option can be set to the following values.

● All locks the through-routes for all guided signals, preventing
PPR from using those block resources to implement new user
logic.
6-44 Xilinx Development System

PPR
● Whole_sigs locks through-routes only on signals with completely
matched pins. PPR can use the block resources used for through-
routes on incompletely matched signals to implement new user
logic.

● None allows any through-routes to be discarded, so PPR can use
these block resources to implement new user logic.

–Helpall
The -Helpall option displays a list of the available PPR options.

Command line syntax: -helpall

Xactinit.dat file syntax: None

XDM command: PlaceRoute ➝ PPR➝ -helpall

Values: None

Default value: None

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

Ignore_maps
The Ignore_maps option ignores all FMAP and HMAP symbols in an
XC4000 design.

Command line syntax: ignore_maps={true|false}

Xactinit.dat file syntax: /ppr/ignore_maps={true|
false}

XDM command: PlaceRoute ➝ PPR➝ -ignore_maps

Values: true,false

Default value: false

Applicable family: XC4000, XC5200

When this option is set to True, PPR ignores FMAP and HMAP
symbols in the design; when it is set to False, it does not.
Development System Reference Guide, Volume 2 6-45

Development System Reference Guide, Volume 2
Ignore_rlocs
The Ignore_rlocs option ignores all RLOC parameters in the design
and in the constraints filfile.

Command line syntax: ignore_rlocs={true|false}

Xactinit.dat file syntax: /ppr/ignore_rlocs={true|
false}

XDM command: PlaceRoute ➝ PPR➝
-ignore_rlocs

Values: true , false

Default value: false

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

When this option is set to True, PPR ignores RLOC parameters; when
it is set to False, it does not.

Note: XC4000 carry logic (CY4) symbols must have either RLOC or
LOC constraints. If a design contains CY4 symbols with RLOC
constraints, the Ignore_rlocs option will not ignore these RLOC
constraints.

Ignore_timespec
The Ignore_timespec option ignores timing requirements specified
for a design.

Command line syntax: ignore_timespec= value

Xactinit.dat file syntax: /ppr/ignore_timespec= value

XDM command: PlaceRoute ➝ PPR➝
ignore_timespec= param

Values: none , all

Default value: none

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Ignore_timespec option is set to All, PPR ignores any timing
requirements. If it is set to None, the specified timing requirements
are used in placing and routing.
6-46 Xilinx Development System

PPR
Note: To selectively ignore timing requirements from only the design
file or the CST file, use the Ignore_timespec option of the XNFPrep
program. The PPR Ignore_timespec=All option ignores timing
requirements from both files.

Ignore_xnf_locs
The Ignore_xnf_locs option ignores the LOC parameters in the input
design file for specific types of logic.

Command line syntax: ignore_xnf_locs= type

Xactinit.dat file syntax: /ppr/ignore_xnf_locs= type

XDM command: PlaceRoute ➝ PPR➝
ignore_xnf_locs= type

Values: all , io , interior , none

Default value: none

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

Type specifies the logic on which to ignore LOC parameters.

● All ignores LOC parameters on all logic.

● Io ignores LOC parameters on I/O symbols.

● Interior ignores LOC parameters on internal logic, that is, on
everything except I/O symbols.

● None does not ignore any LOC parameters.

Note: XC4000 carry logic (CY4) symbols must have either RLOC or
LOC constraints. If a design contains CY4 symbols with LOC
constraints, the Ignore_xnf_locs option will not ignore these LOC
constraints.

Lock_routing
The Lock_routing option determines which routing PPR can change
from the guide file.

Command line syntax: lock_routing= value

Xactinit.dat file syntax: /ppr/lock_routing= value
Development System Reference Guide, Volume 2 6-47

Development System Reference Guide, Volume 2
XDM command: PlaceRoute ➝ PPR➝
lock_routing= param

Values: all , whole_sigs , none

Default value: whole_sigs

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

This option can be set to the following values:

● All locks the guided routing for all guided signals, preventing
PPR from rerouting those signals.

● Whole_sigs locks guided routing only on signals with completely
matched pins.

● None allows guided routing to be discarded and re-routed to
improve the timing.

Logfile
The Logfile option specifies an alternate name for the ppr.log file.

Command line syntax: logfile= filename

Xactinit.dat file syntax: None

XDM command: None

Values: filename[.log]

Default value: ppr.log

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

Use the Logfile option to assign a different name to the ppr.log file.
The .log extension is appended if you do not specify an extension
with the new file name. If the Logfile option is not used, the screen
output is written to the ppr.log file, overwriting any previous
versions of this log file.

Open_guide_blocks
The Open_guide_blocks option places new logic into guided blocks.

Command line syntax: open_guide_blocks={true|false}
6-48 Xilinx Development System

PPR
Xactinit.dat file syntax: /ppr/o pen_guide_blocks={true|
false}

XDM command: None

Values: true , false

Default value: false

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If you set the value to true, new logic can be placed into guided
blocks even if lock_routing={whole_sigs, all}. If you set the value to
false, logic may be added to guided blocks only if lock_routing=none.

Outfile
The Outfile option specifies an alternate output file name for the LCA
and RPT files.

Command line syntax: outfile= filename

Xactinit.dat file syntax: None

XDM command: PlaceRoute ➝ PPR➝ outfile= name

Values: filename

Default value: designname (input file name)

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

Use the Outfile option to name the RPT and LCA file with a name
different from the input design name. The .lca and . rpt extensions are
appended to these file names.

Paramfile
Using the Paramfile option, you can specify PPR options in a separate
file, called a parameter file, instead of from the operating system
prompt. A parameter file is a text file containing a list of desired
options and their respective values, as in the following example.

parttype=4005pg156
estimate=true
ignore_xnf_locs=io

Command line syntax: paramfile= filename
Development System Reference Guide, Volume 2 6-49

Development System Reference Guide, Volume 2
Xactinit.dat file syntax: None

XDM command: PlaceRoute ➝ PPR➝ paramfile= file

Values: filename

Default value: None

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

Use the name of the parameter file as the value for the Paramfile
option.

You can specify additional options on the command line whenever a
parameter file is used; these override similar options specified in the
parameter file.

Parttype
The Parttype option specifies the target LCA device, the package, and
the speed. It overrides the part type, if any, specified in the input file.

Note: The XNFPrep program performs numerous checks on the
design based on the LCA part type. For this reason, it is
recommended that the part type not be changed in PPR directly. To
quickly target a design to a new part, rerun XNFPrep using that
program’s Parttype option and proceed with the normal design flow
from that point.

Command line syntax: parttype= parttype

Xactinit.dat file syntax: None

XDM command: None; the XDM Part command specifies
the part type.

Values: Valid LCA part

Default value: Taken from XTF or MAP file

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

Use the Parttype option to specify a target LCA device, package, and
speed. The part type specified with this option overrides any part
type previously specified in the design flow. Examples of valid part
types are as follows.

4010PG191-5
4003APC84-6
6-50 Xilinx Development System

PPR
3042APG132-6
5210M208-5

The Parttype option is not available from XDM, since XDM passes
the correct part to PPR automatically.

Path_timing
The Path_timing option controls whether path delays are considered
in placement and routing.

Command line syntax: path_timing={true|false}

Xactinit.dat file syntax: /ppr/path_timing={true|false}

XDM command: PlaceRoute ➝ PPR➝
-nopath_timing

Values: true , false

Default value: true

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Path_timing option is set to True, the mapping, placement, and
routing phases are controlled by the XACT-Performance timing
requirements specified in the design file, or if none are specified, by
path delay targets chosen by PPR. If Path_timing is set to False, PPR
is controlled by routability requirements only.

Placer_effort
The Placer_effort option controls the compromise between PPR
execution time and placement quality. A lower value directs PPR to
produce a quick result that may be of lower quality, while a higher
value directs PPR to take more time to produce a better result.

Command line syntax: placer_effort= value

Xactinit.dat file syntax: /ppr/placer_effort= value

XDM command: PlaceRoute ➝ PPR➝
placer_effort= num

Values: Integer between 1 and 5, inclusive

Default value: 2
Development System Reference Guide, Volume 2 6-51

Development System Reference Guide, Volume 2
Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

The settings of Placer_effort are interpreted as follows.

● 1 produces a quick placement, which may or may not be routable
within the specified timing requirements.

● 2, 3, and 4 are relative degrees of effort that PPR should use in
placing the design; higher numbers indicate more effort.

● 5 keeps working on the placement until no more improvement can
be made.

Report_pagelength
The Report_pagelength option specifies the number of lines on a
page.

Command line syntax: None

Xactinit.dat file syntax: report_pagelength= value

XDM command: None

Values: positive integer

Default value: 66

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

The report_pagelength option is a global option, so if you specify this
option in PPR, it will effect report files generated by other programs.

Report_leftmargin
The Report_leftmargin specifies the width of the left page margin in
characters.

Command line syntax: None

Xactinit.dat file syntax: report_leftmargin= value

XDM command: None

Values: positive integer

Default value: 4

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200
6-52 Xilinx Development System

PPR
The report_leftmargin option is a global option, so if you specify this
option in PPR, it will effect report files generated by other programs.

Report_textwidth
The Report_textwidth option specifies the number of characters
across the width of the page. This may also be referred to as line
length.

Command line syntax: None

Xactinit.dat file syntax: report_textwidth= value

XDM command: None

Values: positive integer

Default value: 70

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

The report_textwidth option is a global option, so if you specify this
option in PPR, it will effect report files generated by other programs.

Route
The Route option controls whether or not the design is routed.

Command line syntax: route={true |false}

Xactinit.dat file syntax: None

XDM command: PlaceRoute ➝ PPR➝ -noroute

Values: true , false

Default value: true

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

Set this option to False only if you want an unrouted LCA file. To use
guided routing, select the Guide_only option instead.

Route_thru_blks
In order to improve routability and timing, PPR may use through-
routes, which route some signals through a CLB or other block.
Although this technique usually improves the routing, the
Route_thru_blks option allows it to be limited or disabled entirely.
Development System Reference Guide, Volume 2 6-53

Development System Reference Guide, Volume 2
Command line syntax: route_thru_blks= value

Xactinit.dat file syntax: /ppr/route_thru_blks= value

XDM command: PlaceRoute ➝ PPR➝
route_thru_blks= param

Values: ok , limit , never . Never is not
available with XC4000 and XC5200
designs.

Default value: ok if complete=true ; limit if
complete=false

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

The value can be one of the following settings.

● Ok allows PPR to route through any block in order to improve the
routability and timing of the design.

● Limit prevents PPR from routing through any block that has not
already been used for design logic. That is, if the flip-flops in a
given CLB are already used, PPR is allowed to route through the
unused function generator in that CLB. The Limit value is helpful
for incremental design, because it prevents PPR from using CLBs
outside of the current functional block’s area.

● Never prevents PPR from ever routing through a block. Doing so
may make the design more difficult to route and degrade the
overall design timing. If the Never value is used in these cases,
PPR is not able to route the design completely. This option cannot
be used with XC4000 designs.

Route_thru_bufg
The Route_thru_bufg command allows PPR to route through unused
global buffers — BUFGS in XC4000, BUFG in XC5200, or GCLK and
ACLK in XC3000 — if doing so seems more efficient than using
general interconnect.

Command line syntax: route_thru_bufg= value

Xactinit.dat file syntax: /ppr/route_thru_bufg= value

XDM command: PlaceRoute ➝ PPR➝
route_thru_bufg= param
6-54 Xilinx Development System

PPR
Valid settings: ok , never

Default Value: never if complete=false ; ok if
complete=true

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Route_thru_bufg option is set to Ok, PPR routes signals
through the unused buffers noted above.

The default value of the Route_thru_bufg options is dependent on
the value of the Complete option. If Complete is set to True,
Route_thru_bufg defaults to Ok; if Complete is set to False,
Route_thru_bufg defaults to Never. If the Complete=False option is
used, Route_thru_bufg is set to Never automatically so that global
buffers that may be needed for later design iterations are not used by
PPR.

Router_effort
The Router_effort option controls the compromise between PPR
execution time and routing quality. A lower value directs PPR to
produce a quick result that may be of lower quality, and a higher
value directs it to take more time to produce a better result.

Command line syntax: router_effort= value

Xactinit.dat file syntax: /ppr/router_effort= value

XDM command: PlaceRoute ➝ PPR ➝
router_effort= num

Values: Integers between 1 and 4 (inclusive),
not-in-use

Default value: 2

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

The settings of Router_effort are interpreted as follows.

● 1 produces a quick route, which may or may not meet the
specified timing requirements.

● 2 is the default.

● 3 works harder than the default to meet the specified timing
requirements.
Development System Reference Guide, Volume 2 6-55

Development System Reference Guide, Volume 2
● 4 keeps working at routing until the design has been routed to
meet the timing requirements, or until no more improvement can
be made, given the current placement.

● Not-in-use allows detailed manual control of advanced router
options from the xactinit.dat file.

Rpt_net_loc
The Rpt_net_loc option prints a summary of net locations in the RPT
file.

Command line syntax: rpt_net_loc={true|false}

Xactinit.dat file syntax: /ppr_rpt_net_loc={true|false}

XDM command: None

Values: true , false

Default value: false

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Rpt_net_loc option is set to True, a list containing the final
location of the sources for all nets in your design is included in the
PPR report file, design.rpt. False indicates that the PPR report file will
not contain a list of net locations.

Rpt_net_loc
The Rpt_net_loc option prints a summary of net locations in the RPT
file.

Command line syntax: rpt_net_loc={true|false}

Xactinit.dat file syntax: /ppr_rpt_net_loc={true|false}

XDM command: None

Values: true , false

Default value: false

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Rpt_net_loc option is set to True, a list containing the final
location of the sources for all nets in your design is included in the
6-56 Xilinx Development System

PPR
PPR report file, design.rpt. False indicates that the PPR report file will
not contain a list of net locations.

Rpt_sym_loc
The Rpt_sym_loc option prints a summary of symbol locations in the
RPT file.

Command line syntax: rpt_sym_loc={true|false}

Xactinit.dat file syntax: /ppr/rpt_sym_loc={true|false}

XDM command: None

Values: true , false

Default value: false

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Rpt_sym_loc option is set to True, a list containing the
placement of all symbols from your original design is included in the
PPR report file, design.rpt. When this option is set to False, which is
the default, this symbol placement list is not included in the PPR
report file.

Save_files
The Save_files option saves PPR intermediate files after PPR
completes.

Command line syntax: save_files={true |false}

Xactinit.dat file syntax: /ppr/save_files= value

XDM command: Not available from XDM

Values: true , false

Default value: false

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

The Save_files option determines whether or not PPR deletes its
intermediate files after execution. If this option is set to True, PPR
preserves these temporary files.
Development System Reference Guide, Volume 2 6-57

Development System Reference Guide, Volume 2
Seed
A seed is a random number that determines the order of the cells in
the design to be placed. The Seed option specifies the seed used
during placement improvement.

Command line syntax: seed= value

Xactinit.dat file syntax: None

XDM command: PlaceRoute ➝ PPR➝ seed= num

Values: Positive integer

Default value: Random seed generated by PPR

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

Normally PPR should be allowed to generate its own random seed,
which is the default condition.

Stop_on_miss
The Stop_on_miss option stops PPR if the XACT-Performance timing
requirements cannot be met.

Command line syntax: stop_on_miss={true|false}

Xactinit.dat file syntax: /ppr/stop_on_miss={true|false}

XDM command: PlaceRoute ➝ PPR➝
-stop_on_miss

Values: true , false

Default value: false

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

If the Stop_on_miss option is set to True, PPR stops if it cannot meet
an XACT-Performance requirement that you have specified. It also
includes in the log file information about path endpoints whose
XACT-Performance requirements cannot be met. If this option is set
to False, PPR continues to process the design, producing the best
results possible.
6-58 Xilinx Development System

PPR
Timing
The Timing option controls how PPR uses delay information in
routing.

Command line syntax: timing= value

Xactinit.dat file syntax: /ppr/timing= value

XDM command: PlaceRoute ➝ PPR➝ timing= param

Values: when_routable , forced_on ,
ignored

Default value: forced_on

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

Use the Timing option to specify how PPR uses timing information
when routing the design. Three settings are available for this option.

● When_routable completes up to two routing passes. Routing
during the first pass is based on minimizing the resources used. If
this pass is successfully completed, PPR initiates a second pass,
which is based on timing information.

● Forced_on completes one routing pass, which is based on timing
information.

● Ignored routes the design once, ignoring timing information. This
setting can reduce PPR run time but usually yields a lower-
performance design. This option turns off XACT-Performance
completely.

Xilinx recommends that you use delay information, that is, that the
timing option be set to When_routable or Forced_on.

Use_faster_c2s
The Use_faster_c2s option controls whether or not PPR applies a path
delay target to a path between two flip-flops that have different C2S
specifications.

Command line syntax: use_faster_c2s={true|false}

Xactinit.dat file syntax: /ppr/use_faster_c2s={true|
false}
Development System Reference Guide, Volume 2 6-59

Development System Reference Guide, Volume 2
XDM command: PlaceRoute ➝ PPR➝
-use_faster_c2s

Values: true , false

Default Value: false

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

By default, the path between two flip-flops that have different C2S
specifications is not controlled by XACT-Performance; that is, no
target delay is assigned to that path. If the Use_faster_c2s option is set
to True, the path between two such flip-flops is assigned a target
delay equivalent to the faster of the two C2S specifications.

User_search_path
The User_search_path option specifies a path for searching for data
files.

Command line syntax: None

Xactinit.dat file syntax: user_search_path= value

XDM command: None

Values: path

Default value: None

Applicable family: XC3000A/L, XC3100A, XC4000, XC5200

The User_search_path option specifies additional directories where
PPR should search for data files. The value can contain one or more
fully qualified directory paths, each with a trailing slash. These
directories are searched for data files — for example, XTF files — that
are not found in the current directory.
6-60 Xilinx Development System

PPR
Options Summary
Table 6-5 summarizes the options available in PPR. They are listed in
alphabetical order within each group.

Table 6-5 PPR Options

Option Default Description Families

General Options

complete=
{true|false}

true Tells PPR if design
needs to add or
remove logic

XC3000A/L,
XC3100A,
XC4000, XC5200

estimate=
{true|false}

false Report estimated
resource use

XC4000, XC5200

-helpall No default Show all help infor-
mation

XC3000A/L,
XC3100A,
XC4000, XC5200

logfile= filename ppr.log Rename log file XC3000A/L,
XC3100A,
XC4000, XC5200

outfile= filename Input file name Specify output file
name

XC3000A/L,
XC3100A,
XC4000, XC5200

paramfile= filename No default Specify parameter
file name

XC3000A/L,
XC3100A,
XC4000, XC5200

parttype= type Taken from XTF
or MAP file

Set device, pack-
age, speed

XC3000A/L,
XC3100A,
XC4000, XC5200

save_files=
{true|false}

false Save intermediate
files

XC3000A/L,
XC3100A,
XC4000, XC5200
Development System Reference Guide, Volume 2 6-61

Development System Reference Guide, Volume 2
Constraint Options

cstfile= filename filename.cst file Specify constraints
file to use and
ignore filename.cst
file

XC3000A/L,
XC3100A,
XC4000, XC5200

ignore_maps=
{true|false}

false Ignore F5MAP,
FMAP, and HMAP
symbols

XC4000, XC5200

ignore_rlocs=
{true|false}

false Ignore RLOC
parameters in
design file

XC3000A/L,
XC3100A,
XC4000, XC5200

ignore_xnf_locs=
{all|io|interior
none}

none Ignore LOC param-
eters in design file
for specified type

XC3000A/L,
XC3100A,
XC4000, XC5200

Placement and Routing Options

dflt_sig_dly= value,
where value = 5 – 80 ns

80 ns Specify signal delay
target for incom-
plete paths not con-
trolled by XACT-
Performance

XC3000A/L,
XC3100A,
XC4000, XC5200

placer_effort= num,
where num = 1 – 5

1=least effort
5=most effort

2 Set level of placer
effort. Balance of
speed vs. quality.

XC3000A/L,
XC3100A,
XC4000, XC5200

route={true|false} true Continue after
placement through
routing

XC3000A/L,
XC3100A,
XC4000, XC5200

route_thru_blks=
{ok|limit|never}

ok: any available block
limit: partially used

blocks only
never: no blocks

ok if complete=
true; limit if
complete=
false

Allow routing
through blocks

XC3000A/L,
XC3100A,
XC4000, XC5200
(never option is
not available with
XC4000 and
XC5200)
6-62 Xilinx Development System

PPR
route_thru_bufg=
{ok|never}

never if com-
plete =false;
ok if
complete=true

Allow routing
through unused
BUFG, BUFGS,
GCLK, or ACLK
buffers

XC3000A/L,
XC3100A,
XC4000, XC5200

router_effort= num,
where num = 1 – 4

1=least effort
4=most effort

2 Set level of router
effort. Balance of
speed vs. quality.

XC3000A/L,
XC3100A, XC4000

seed= num, where num =
positive integer

Random seed gen-
erated by PPR

Set random seed
used during place-
ment improvement

XC3000A/L,
XC3100A,
XC4000, XC5200

timing={ |forced_on |
when_routable|
ignored}

when_routable Allow use of delay
information to
guide router

XC3000A/L,
XC3100A,
XC4000, XC5200

XACT-Performance Options

dc2p={ number|auto|
ignore}

No default Set default clock-to-
pad time

XC3000A/L,
XC3100A,
XC4000, XC5200

dc2s={ number|auto|
ignore}

No default Set default clock-to-
setup time

XC3000A/L,
XC3100A,
XC4000, XC5200

dp2p={ number|auto|
ignore}

No default Set default pad-to-
pad time

XC3000A/L,
XC3100A,
XC4000, XC5200

dp2s={ number|auto|
ignore}

No default Set default pad-to-
setup time

XC3000A/L,
XC3100A,
XC4000, XC5200

ignore_timespec=
{all|none)

none Ignore design file
timing specifica-
tions

XC3000A/L,
XC3100A,
XC4000, XC5200

path_timing=
{true|false}

true Use path analysis
to guide implemen-
tation

XC3000A/L,
XC3100A,
XC4000, XC5200
Development System Reference Guide, Volume 2 6-63

Development System Reference Guide, Volume 2
stop_on_miss=
{true|false}

false Stop if a timing
specification is not
met

XC3000A/L,
XC3100A,
XC4000, XC5200

use_faster_c2s=
{true|false}

false Use faster of two
C2S specifications
for paths between
independently
specified flip-flops

XC3000A/L,
XC3100A,
XC4000, XC5200

Report Options

rpt_net_loc=
{true|false}

false Print summary of
net locations in the
RPT file

XC3000A/L,
XC3100A,
XC4000, XC5200

rpt_sym_loc=
{true|false}

false Print a summary of
symbol locations in
the RPT file

XC3000A/L,
XC3100A,
XC4000, XC5200

Guide Options

guide= filename File with .lca
extension

Use specified LCA
file to guide design
implementation

XC3000A/L,
XC3100A,
XC4000, XC5200

guide_blks={all|
routed_only}

all: any blocks with
matching signals

routed_only: blocks
with matching signals
and some connected
routing

all Set criteria for
guiding blocks

XC3000A/L,
XC3100A,
XC4000, XC5200

guide_only=
{true|false}

false Guide placement
and routing with-
out finishing rout-
ing

XC3000A/L,
XC3100A,
XC4000, XC5200
6-64 Xilinx Development System

PPR
Constraints File Syntax

Attributes, Constraints, and Carry Logic
For information, refer to the chapter with this title in the Libraries
Guide.

guide_routing=
{all|whole_sigs}

all: for any matching
pins

whole_sigs: only for
 signals that completely
match all pins

all Restore routing for
signals

XC3000A/L,
XC3100A,
XC4000, XC5200

guide_thru_routes=
{all|whole_sigs|
none}

whole_sigs Control which
through-routes are
preserved during
guided routing

XC3000A/L,
XC3100A,
XC4000, XC5200

lock_routing={all|
whole_sigs|none}

all: lock routing for all
guided signals

whole_sigs: lock only
signals with completely
matched pins

none: allow rip-up
improvement on all
guided routing

whole_sigs Lock routing from
guide file

XC3000A/L,
XC3100A,
XC4000, XC5200
Development System Reference Guide, Volume 2 6-65

Development System Reference Guide, Volume 2
6-66 Xilinx Development System

Chapter 7
Development System Reference Guide, Volume 2 — 0401406 01 7-1

The MakeBits Program

This program is compatible with the following families.

● XC2000

● XC2000L

● XC3000

● XC3100

● XC3000A

● XC3000L

● XC3100A

● XC4000

● XC4000A

● XC4000H

● XC5200

The MakeBits program creates configuration bitstreams for your
FPGA designs. The configuration bitstream describes the internal
logic functions and interconnections of an FPGA device. MakeBits
provides commands to generate configuration bitstreams, as well as
change startup options and run the XACT Design Rules Checker
(DRC).

There are two functionally equivalent versions of MakeBits. There is
a stand-alone version, used by XMake, that you use from the
operating system shell. Another version is available from XDM and
the XACT Design Editor (XDE). The two versions differ only in their
user interface; both produce an identical BIT file.

Development System Reference Guide, Volume 2
You can also use MakeBits to generate other types of files and reports,
in addition to the configuration bitstream, that contain information
about the design and the design rule violations.

The first part of this chapter describes the MakeBits syntax, and the
input and output files for the program. Next, is a description of the
options available with the stand-alone version, followed by a
description of the MakeBits version run within XDE.

Syntax
MakeBits accepts multiple FPGA design files as input and creates an
individual bitstream for each input file.

The following command line syntax creates a binary bitstream file
from your FPGA design file.

makebits [options] design.lca

where:

● options are one or more valid command line options

● design.lca is one or more placed and routed FPGA designs

Files
The input files that MakeBits requires and the output files that
MakeBits generates are described below. Regardless of the MakeBits
version you use (stand-alone, XDM, or part of XDE), the input and
output files are the same.

Input Files
MakeBits requires an LCA file for input.

design.lca

This input file contains a design partitioned into the FPGA
architecture. The design must be completely routed and free of the
XACT system fatal DRC errors before you run MakeBits.
7-2 Xilinx Development System

The MakeBits Program
Output Files
The first three output files are created when you use MakeBits. The
last three files, design.rbt, design.msk and design.lca are created when
you use the -b option, the -m option, and the -n and -t options,
respectively.

design.bit

This binary file contains the configuration data for an FPGA design.

design.ll

This file is created when you use the MakeLL option. It is an ASCII
file that lists the positions of flip-flop outputs, CLB, and RAM
memory cells in the bitstream. The location of each output is
referenced by frame and frame offset within the bitstream. It is used
by the XChecker program as part of the readback.

design.mbo

This file is created automatically when MakeBits generates the
bitstream file. The MBO file contains CONFIGURE commands that
record the state of all configuration options at the time the bitstream
file was created.

design.rbt

This file is created when you use the -b option. It is an ASCII version
of the configuration bitstream file.

design.msk

This file is created by the -m option. This MSK file is needed to read
back the configuration data of an operating FPGA device.

_design.lca

This file is created by the -n option when used with the tie (-t) option.
It saves the tied FPGA design file as _design.lca, so the tied design can
also be used for simulation.
Development System Reference Guide, Volume 2 7-3

Development System Reference Guide, Volume 2
Options (Stand-Alone Version)
The options that you can use with the stand-alone MakeBits program
are described below in alphabetical order. The options and settings
for the -f option are also listed in alphabetical order.

–b Generate ASCII Configuration Data

This option creates a rawbits (RBT) file and a binary BIT file. The RBT
file is a text file that contains ASCII 1s and 0s. These characters
represent the actual bits that are contained in the configuration
bitstream and are downloaded to the FPGA design.

Designers using a microprocessor to configure a single FPGA design
can process the RBT file to create a source file that can be included in
the microprocessor source code. The sequence of characters in the
RBT file is the same as the bit sequence that must be written to an
FPGA device. When the RBT file is included in the source code, some
file reformatting is required. For example, eight ASCII characters,
each defined by eight bits, must be converted into one byte of
configuration data.

Note: Do not use the -b option with the -m option. If you want both a
rawbits file and a mask file, run MakeBits twice — once with the -b
option, and once with the -m option.

Note: If you specify both the -b and -m options, and only run the
program once, MakeBits ignores the -m option.

–c Set CMOS Input Signal Threshold (XC2000 and
XC3000 Only)

This option sets the FPGA design input-signal thresholds for XC2000
and XC3000 designs to CMOS level for interface capability. If this
option is not used, the input thresholds default to TTL levels. The
special-purpose clock inputs, Tclkin, Bclkin, and Pwrdwn (the
PowerDown pin), always require CMOS-level signals, even if the
FPGA design input thresholds are specified as TTL compatible.

–d Run the Design Rules Checker

This option runs DRC. You should run DRC in Editls or in MakeBits
before creating a bitstream. DRC detects any design errors that could
7-4 Xilinx Development System

The MakeBits Program
cause the FPGA device to function improperly. If a fatal error occurs,
you must correct the error before creating the bitstream.

MakeBits does not generate a bitstream when you use this option.
After DRC is run and no fatal errors are detected, re-start MakeBits
with the desired options; do not specify the -d option again.

Note: The -d option cannot be combined with any other command-
line options.

–f Set Configuration (XC4000 and XC5200 Only)

This option specifies the startup timing and other bitstream options
for the XC4000 and XC5200 devices. Timing sequences are predefined
startup defaults that use the following syntax.

makebits -f timing_sequence

There are four valid startup sequences: Cclk_Nosync, Cclk_Sync,
Uclk_Nosync, and Uclk_Sync. These startup sequences are described
in the next section. Refer to Figure 7-1 to view the startup sequences
for the XC4000 or XC5200 family. For more information about startup
timing, refer to The Programmable Logic Data Book.

The default for the -f option is Cclk_Nosync. This startup sequence
makes an XC4000 or XC5200 device compatible with an XC3000
device that is set for early Done and late Reset. Enter the following,

makebits -f cclk_nosync

The -f option has sub-options that represent settings you use to set
the configuration for an XC4000 or XC5200 design. These options
have the following syntax.

makebits -f option:setting

For example, to enable Cyclic Redundancy Checking (CRC), use the
following syntax.

makebits -f crc:enable

The following sections describe the startup sequences for the -f
option.
Development System Reference Guide, Volume 2 7-5

Development System Reference Guide, Volume 2
Startup Sequences (-f option)
This section describes the four startup sequences and their defaults;
then it describes the options, their settings, and their defaults.

Note: When mixing devices, the one with the latest “finished point”
should be the master. (The master stops clocking when it reaches the
finished point.) See Figure 7-1 for more information.

Cclk_Nosync

Selecting this sequence causes the following defaults to take effect.

StartupClk: Cclk
SyncToDone: No
DoneActive: C1
OutputsActive: C2
GSRActive: C3

This startup sequence makes an XC4000 or XC5200 device consistent
with an XC3000 device set for early Done and late Reset.

Cclk_Sync

Selecting this sequence causes the following defaults to take effect.

StartupClk: Cclk
SyncToDone: Yes
DoneActive: C1
OutputsActive: DI_PLUS_1
GSRActive: DI_PLUS_1

This startup sequence is the most consistent with the XC2000 and
XC3000 devices, since it synchronizes the release of GSR and I/Os to
the external DoneIn signal. This startup sequence makes an XC4000
or XC5200 device consistent with an XC3000 device set for early Done
and late Reset.

Uclk_Nosync

Selecting this sequence causes the following defaults to take effect.

StartupClk: Userclk
SyncToDone: No
DoneActive: U2
7-6 Xilinx Development System

The MakeBits Program
OutputsActive: U3
GSRActive: U4

This startup sequence makes XC4000 or XC5200 devices inconsistent
with XC2000 or XC3000 devices if they are in the same daisy chain,
since the release of Done is synchronized to an external User Clock.
There is no synchronization of I/Os or GSR to DoneIn.

Uclk_Sync

Selecting this sequence causes the following defaults to take effect.

StartupClk: Userclk
SyncToDone: Yes
DoneActive: U2
OutputsActive: DI_PLUS_1
GSRInActive: DI_PLUS_2

This startup sequence makes XC4000 or XC5200 devices inconsistent
with XC2000 or XC3000 devices if they are in the same daisy chain,
since the release of Done is synchronized to an external User Clock.
IOs and GSR are synchronous to the clocks following DoneIn.

Note: When using Vclk_sync or Vclk_nosync you must provide a
user clock to finish the configuration sequence. Without a user clock
the FPGA will not configure.
Development System Reference Guide, Volume 2 7-7

Development System Reference Guide, Volume 2
Figure 7-1 Startup Timing Sequences for XC2000, XC3000,
XC4000, and XC5200 Devices

XC5200 & XC4000
UCLK_SYNC

XC5200 & XC4000
UCLK_NOSYNC

XC5200 & XC4000
CCLK_SYNC

XC5200 & XC4000
CCLK_NOSYNC

XC3000

XC2000

GSR Active

UCLK Period

DONE IN

DONE IN

Di Di+1 Di+2

Di Di+1 Di+2

U2 U3 U4

U2 U3 U4

U2 U3 U4C1

Synchronization
Uncertainty

Di Di+1

Di Di+1

DONE

I/O

GSR Active

DONE

I/O

GSR Active

DONE

C1 C2

C1 U2

C3 C4

C2 C3 C4

C2 C3 C4

I/O

GSR Active

DONE

I/O

DONE

Global Reset

I/O

DONE

Global Reset

I/O

F = Finished, no more configuration clocks needed

CCLK Period
Length Count

F

F

F

F

F

X1597

C1, C2 or C3
7-8 Xilinx Development System

The MakeBits Program
Startup Sequence Options
The options available with the four startup sequences are described
below.

CRC

Enable or disable Cyclic Redundancy Checking (CRC) on a chip-by-
chip basis during configuration.

Settings: Enable, Disable
Default: Enable

ConfigRate

Select the configuration clock rate. There are two choices: slow or fast.
Slow is equivalent to 1 MHz, and fast is equivalent to 8 MHz
(nominal).

Settings: Slow, Fast
Default: Slow

DonePin

Enable or disable an internal pull-up to the Done pin.

Settings: Pullup, Nopullup
Default: Pullup

TdoPin (XC4000 Only)

Add a pull-up or a pull-down to the TDO pin (Test Data Out for
Boundary Scan).

Settings: Pullup, Pulldown
Default: Neither

M1Pin (XC4000 Only)

Add a pull-up or a pull-down to the M1 pin.
Settings: Pullup, Pulldown
Default: Neither

Note: The Pullup and Pulldown options for the TDO and M1 pins act
as toggles and are mutually exclusive. The default is inactive.
Development System Reference Guide, Volume 2 7-9

Development System Reference Guide, Volume 2
Selecting one option enables it and disables the other. Selecting the
same option a second time disables it.

BSReconfig (XC5200 Only)

Enable or disable reconfiguration via boundary scan.

Settings: Enable, Disable
Default: Disable

OscClk (XC5200 Only)

Drive oscillator with either user clock or internal oscillator.

Settings: UserClk (user supplied), Cclk (internal)
Default: Cclk

ReadCapture

Enable or disable readback of configuration bitstream.
Settings: Enable, Disable
Default: Disable

ReadAbort

Enable or disable aborting the readback sequence during the
readback sequence.
Settings: Enable, Disable
Default: Disable

ReadClk

Set the readback clock to be Cclk or a user-supplied clock (from a net
inside the FPGA that is connected to the ‘i’ pin of the rdclk block).
Settings: Cclk (pin*), Rdbk (user supplied)
Default: Cclk

StartupClk

Select a user-supplied clock or the internal Cclk for controlling the
post-configuration startup phase of the FPGA initialization.
Settings: Cclk (pin*), UserClk (user supplied)
Default: Cclk
7-10 Xilinx Development System

The MakeBits Program
*In modes where Cclk is an output, this pin is driven by the internal
oscillator.

SyncToDone

Synchronize the I/O startup sequence to the external DoneIn signal.
Settings: Yes, No
Default: No

DoneActive

Select the event that activates the FPGA Done signal. There are a
maximum of four events that you can select from at one time. These
events are Cclk edges or external (user) clock edges. The actual
options available at any time depend on the selections made for
StartupClk and SyncToDone.

Settings: C1 —first-Cclk rising edge after the length count is met
C2 —second-Cclk rising edge after the length count
is met
C3 —third-Cclk rising edge after the length count is met
C4 —fourth-Cclk rising edge after the length count is met
U2 —second-valid-user-clock rising edge after C1
U3 —third-valid-user-clock rising edge after C1
U4 —fourth-valid-user-clock rising edge after C1

Default: C2

Note: U2, U3, and U4 options are available only when UserClk is
selected.

OutputsActive

Select the event that releases the I/O from 3-state condition and turns
the configuration related pins operational. There are a maximum of
four events that you can select from at one time. These events are
Cclk edges, external (user) clock edges, and the external signal
DoneIn. The actual options available at any time depend on the
selections made for StartupClk and SyncToDone.

Settings: C2 —second-Cclk rising edge after the length count is met
C3 —third-Cclk rising edge after the length count is met
C4 —fourth-Cclk rising edge after the length count is met
U2 —second-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met)
Development System Reference Guide, Volume 2 7-11

Development System Reference Guide, Volume 2
U3 —third-valid-user-clock rising edge after C1 (first-
Cclk rising edge after length count is met)
U4 —fourth-valid-user-clock rising edge after C1 (first-
Cclk rising edge after length count is met)
DI — when the DoneIn signal goes High
DI_PLUS_1 — first Cclk or valid user clock rising edge
(depending on selection of StartupClk) after DoneIn
goes High
DI_PLUS_2 — second Cclk or valid user clock rising
edge (depending on selection of StartupClk) after DoneIn
goes High

Default: C3

Note: U2, U3, U4, DI, DI_PLUS_1, and DI_PLUS_2 options are
available only when SyncToDone is selected (set to Yes).

GSRInactive

Select the event that releases the internal set-reset to the latches and
flip-flops. There are nine events that you can select. These events are
Cclk edges, external (user) clock edges and the external signal
DoneIn. Only some of these events become options at one time
depending on the combination of StartupClk and SyncToDone
selected.

Settings: C2 —second-Cclk rising edge after the length count is met
C3 —third-Cclk rising edge after the length count is met
C4 —fourth-Cclk rising edge after the length count is met
U2 —second valid user-clock rising edge after C1 (first-
Cclk rising edge after length count is met)
U3 —third valid user-clock rising edge after C1 (first-
Cclk rising edge after length count is met)U4 —fourth
valid user-clock rising edge after C1 (first-Cclk rising
edge after length count is met)
DI — when the DoneIn signal goes High
DI_PLUS_1 — first-Cclk or valid-user-clock rising edge
(depending on selection of StartupClk) after DoneIn goes
High
DI_PLUS_2 — second-Cclk or valid-user-clock rising
edge, depending on selection of StartupClk, after DoneIn
goes High

Default: C4
7-12 Xilinx Development System

The MakeBits Program
Note: You can only select DI, DI_PLUS_1, and DI_PLUS_2 when
SyncToDone is yes.

–help Display the Usage Help Screen

This option displays the help screen for the MakeBits program and its
associated options.

–i Ignore Critical Net Flags

This option ties the design using critical nets. The -i option uses
critical nets in the ‘normal’ tie order. It tells TIE to ignore critical net
flags and use any nets that are flagged as critical whenever it is
necessary to do so. These critical nets are not used as a last resort;
instead, they are used in the normal TIE order.

–l Create a Logic-Allocation (design.ll) File

This option creates a logic allocation file (design.ll) for the selected
design. Select this option if you use XChecker to verify or probe the
internal logic of a design.

The logic-allocation file indicates the bitstream position of latches,
flip-flops, and IOB inputs and outputs. Other Xilinx programs, such
as XChecker, use this file to locate signal values inside a readback
bitstream.

–m Generate a Mask File

This option causes MakeBits to create a MSK file (masked bitstream)
that contains information about flip-flop and RAM bits in the
configuration bitstream. These bits represent the current state of each
flip-flop and IOB slip-flop, and can be ignored during readback.The
MSK file contains a 1 for each of these bits, and can be used to mask
them when a “readback” bitstream is compared to the bitstream
programmed into the FPGA. The MSK file has the same format as a
BIT file.

Refer to the XC2000 and XC3000 FPGA readback procedure
information about readback verification and signature analysis in the
Development System User Guide. Some of the bits read back from the
FPG0......................... A device are not the same as the bits in the
original configuration bitstream. These bits represent the current
Development System Reference Guide, Volume 2 7-13

Development System Reference Guide, Volume 2
state of each flip-flop and IOB flip-flop, and must be ignored during
readback. The Mask option creates an ASCII file that contains a 0 in
each bitstream location to be ignored.

For XC4000 or XC5200 designs, you can disable the ReadCapture
option to mask out flip-flop values in the readback bit stream. A mask
file is only needed if bitstream verification and readback of flip-flop
states are performed on the same device.

If the bitstream mask file is stored in an EPROM, you can use the
MakePROM program to create a HEX file from the mask file. Since
the MakePROM program requires a file extension of .bit, the mask
file, design.msk, must be renamed to design.bit.

Do not use the -m option with the -b option. If you want both a mask
file and a rawbits file, run MakeBits twice, once with the -m option
and once with the -b option.

Note: If you specify both the -b and -m options, and only run the
program once, MakeBits ignores the -m option.

–n Save a Tied Design

This option, used with the Tie (-t) option, saves the tied FPGA design
file as _design.lca, where design is the name of the input FPGA design
file. When you start MakeBits with the Tie option, all unused
interconnect is tied to a known level. The -n option saves the tied
design so it can be processed for simulation or other similar post-
processing. The _design.lca file contains all of the nets created by the
Tie option.

Note: In the PC environment, file names are limited to eight
characters. Please notice that the -n prefixes an underscore at the
beginning of the original file name. The new file name is truncated to
eight characters.

–o Rename a Configuration Bitstream File

This option specifies a file name for the output BIT file. If you do not
use this option, the BIT file is called design.bit, where design is the
name of the input FPGA design file.

You can only specify one output file name with the -o option. Do not
use this option when MakeBits generates multiple bitstreams, as
successive bitstreams are written to the same file.
7-14 Xilinx Development System

The MakeBits Program
–p Disable Internal Pull-up for Done Pin

This option disables the internal pull-up resistor on the Done/
Program (D/P) pin in the XC3000 and XC2000 devices or the Done
pin in XC4000 or XC5200 devices. Use this option only if you are
planning to connect an external pull-up resistor to this pin. The
internal pull-up resistor has a value of 2 to 8 kΩ and is automatically
connected if you do not use this option. The Done (XC4000 or
XC5200) or D/P (XC2000/XC3000) pins configure an open-drain
driver that requires a pull-up resistor to indicate the end of the
configuration.

–r (0|1|2) Specify Readback Options (XC2000 and
XC3000 Only)

This option specifies readback options for XC2000 and XC3000
families only. After the FPGA design has been configured, the FPGA
configuration data can be read back and compared with the original
configuration data. Readback is initiated by a Low-to-High transition
on the M0/RTRIG pin. Once you give the readback command,
external logic must drive the Cclk input to read back each data bit.
The readback data appears on the Rdata pin. Refer to the Development
System User Guide for more information about readback verification
and signature analysis.

The r0 option disables readback. The r1 option enables a one-time
readback and r2 enables readback on command. Readback on
command is the default option.

The r0 and r1 options are used for design security. The r1 option
allows only one readback, typically performed during
manufacturing. After this, readback can never be invoked again. If
the FPGA device is powered by a stand-by battery and the
configuration source is removed, the FPGA design configuration data
is completely secure from being read or copied.

–s (0|1|2) Set up Crystal Oscillator (XC3000 Only)

This option specifies crystal-oscillator options for XC3000-series
devices. The crystal oscillator is associated with the auxiliary clock
buffer in the lower-right corner of the die, as seen in EditLCA.
Development System Reference Guide, Volume 2 7-15

Development System Reference Guide, Volume 2
The s0 option disables the FPGA crystal oscillator; s1 enables it. The
s2 option enables the oscillator and divides the crystal output
frequency by two in order to guarantee a symmetrical clock signal.
The default option is s0.

Note: In the XC2000 family, the crystal oscillator is enabled or
disabled by Programmable Interconnect Points (PIPs) in the routing,
and is automatically enabled whenever its use is detected in the
design. The XC4000 devices do not have crystal oscillators.

–t Tie Unused Interconnects

This option produces configurations that minimize internal noise and
power consumption that can result from undefined levels on CMOS
gate inputs. The Tie option causes all unused interconnects to be tied
Low only, to User net Low, or to a defined signal. When you specify
this option, the XACT DRC is started before the interconnect is tied. A
message appears on the screen if any errors are found; messages for
these errors are sent to a file named design.drc. Any fatal DRC error
causes the MakeBits program to abort. DRC warnings do not abort
MakeBits, but might cause tiedown to fail.

Note: You must start MakeBits with the -tie and -norestore options
inside XDE for the Querynet -Tiechange option to work.

Following the DRC, the Tie option causes interconnect to be tied Low
as follows.

● As many unused interconnect lines as possible are tied to unused
CLB outputs that are configured to output logic 0 (F=0 or G=0).

● An attempt is made to tie any remaining interconnect to existing
CLB outputs that were not marked critical in XACT with the
Flagnet Critical command set to on. This is not the Flagnet Critical
command used in an APR or PPR constraints file.

To flag a net critical in XDE go to the XACT Editor (with
EditLCA), select FlagNet from the Net menu, select critical, then
select the nets you want marked as critical.

● An attempt is made to tie remaining interconnect to the global or
the auxiliary clock buffer outputs.

Tie does not add interconnect, under any circumstances, to a net that
meets any of the following requirements.
7-16 Xilinx Development System

The MakeBits Program
● The net is marked Critical (see below).

● The net is sourced by 3-state buffer outputs. Tie assumes that the
timing on such nets is critical and must not be disturbed.

● The net is sourced by a XC3000 series IOB Q pin.

In addition, Tie does not add a XC3000, XC4000, or XC5200 series
3-state buffer I (input) or T (3-state) pin to a net, whether or not that
net was created by Tie. These pins are left unconnected to ensure that
no internal contention is created.

Adding interconnect to used CLB or buffer outputs might add delays
to the nets connected to these outputs. You can use the Flagnet
Critical command in the XACT system to guarantee that a net is
unaffected by tiedown. However, if too many nets are flagged critical,
the tiedown process might fail.

Each time an interconnect is tied to a user-defined net, a message is
printed giving the name of the PIP that was programmed. The delay
of the net associated with that source might be altered.

When the MakeBits Tie option cannot tie certain pins, it issues error
messages. You should not ignore these messages; MakeBits does not
generate a partially tied design. You must edit the design so that
MakeBits can complete the tiedown process, or remove the Critical
flag on nets.

The error messages in MakeBits give very specific information about
the untied PIPs (interconnects) in the design. You should edit the
design to eliminate the obstacles causing Tie to fail, in one of two
ways.

● Re-evaluate nets flagged as critical in EditLCA. This problem is
the most common cause of Tie failure.

● Manually re-route a net that cannot source (tie) the untied PIP.

For example, a pin can have several input PIPs that can be used to
source the pin. If all these PIPs are associated with critical nets, Tie
does not use them and the input pin is left untied. To correct this
problem, make one of the critical nets non-critical using the Flagnet
Noncritical command in EditLCA. Any delay added to the net by the
tiedown process can be evaluated with the Querynet Tie change
command.
Development System Reference Guide, Volume 2 7-17

Development System Reference Guide, Volume 2
As stated earlier, the MakeBits Tie option ties unused interconnect,
internal to the FPGA, to a known level. In addition to unused
interconnect, unused package pins must have defined levels; they
must not be left floating. In XC2000-series FPGA devices, there are
two ways to define the logic level of an unused package pin: unused
IOBs can be configured as outputs and driven by internally generated
High or Low signals (F=1 or F=0), or they can be left unconfigured, as
long as the package pins are externally connected to a High or Low
level or to an available signal. In XC3000-, XC4000-, and XC5200-
series FPGAs, unused IOBs are automatically configured as inputs
with pull-up resistors.

–u Use Critical Nets Last

This option uses the nets marked as critical to complete the tiedown
process if necessary. Critical nets are used as a source of last resort,
after an attempt is made to use nets not marked critical.

Note: In the example shown in Figure 7-2, the tag <tie> means a
segment was added to the original net. In most cases the delay before
and after tie remains unchanged. Querynet still reports every net
touched by tie.

Figure 7-2 Using -querynet with -tiechange Option to Determine
Slower Nets

xact 5.0.0, Fri Dec 10 12:15:26 1993
---T CLOCKI_1 CLK. AA.O
 0.0 0.0 AE.B (CLOCKIB_1)
 <tie> 0.0 AE.K (CLOCKIB_1)
 0.0 0.0 AF.K (X00199X)
 0.0 0.0 AH.K (X00192X)
 <tie> 0.0 BA.K
 0.0 0.0 BB.K (RC2_1)
 0.0 0.0 BC.K (RC1_1)
 0.0 0.0 BD.K (_PFAIL_1)
 0.0 0.0 BE.K

Source Net Delay
Before

Delay
After

Destination
Pin

BLK Name
7-18 Xilinx Development System

The MakeBits Program
–v Verbose Mode

This option displays status messages on the screen while MakeBits is
running. This option permits you to track the progress of MakeBits.
The -v option should precede any other option.

–w Rewrites FPGA Design File

Rewrites the FPGA design file after MakeBits has retimed all nets in
the design. Alternatively, you can use the -w option with XDelay.
Refer to “The XDelay Timing Analysis Program” chapter in the
Development System Reference Guide for more information.

–xa Late Done (XC3000 Only)

This option specifies that the D/P pin goes High one Cclk period
after the outputs go active. In XC2000-series devices, D/P always
goes High one Cclk period after the outputs go active.

Late Done clearly indicates the end of the configuration process.
Early Done can be used to de-activate external configuration drivers
so that they do not contend with active outputs on the same pin. The
use of Late Done would create a 1-Cclk-period contention. The
alternative, using the LDC output, might cause a short contention
spike. Early Done avoids these problems.

Late Done cannot be used in XC3000 slave devices driven from an
XC2000 master. The XC2000 generates only two more Cclk pulses
after length count is reached, but a Late Done XC3000 device requires
one additional Cclk pulse.

–xb Early Done (XC3000 Only)

This option specifies that the D/P pin goes High one Cclk period
before the outputs go active. This option is the default.

–ya Late Reset (XC3000 Only)

This option specifies that the Internal Reset on XC3000 devices be
removed one Cclk period after the outputs go active. In XC2000-
series devices, the Internal Reset is always removed one Cclk period
after the outputs go active.
Development System Reference Guide, Volume 2 7-19

Development System Reference Guide, Volume 2
With the -ya option, the outputs go active while all internal flip-flops
are still being held in Reset. This option is the default.

–yb Early Reset (XC3000 Only)

This option specifies that the Internal Reset on XC3000 devices be
removed one Cclk period before the outputs go active.

When you specify the -yb option, the internal logic becomes
operational before the outputs go active.

–mbo=file Use Specified MBO file as MakeBits
Options

This option reads an MBO file when MakeBits generates a bitstream
file. This file contains CONFIGURE commands that record the state
of all configuration options at the time the bitstream was made. This
file is read before MakeBits applies any -f command line options,
permitting values in the file to be overridden by the command line -f
options.

Each time MakeBits is run it creates an .mbo file that records the set of
configuration options that were used, including those options not
explicitly set. This file can be specified to later runs of the MakeBits
program using the -mbo=file option.

Stand-Alone Command Line Examples
This section shows three examples of the MakeBits syntax you can
use on the command line.

The following command generates three configuration bitstreams,
one for each of the three input files specified. The bitstreams are
saved as input1.bit, input2.bit, and input3.bit.

makebits input1 input2 input3

The following command ties all unused interconnect in the input.lca
file to a known value before the configuration bitstream is made
(using the -t option). The tied FPGA design file is saved as _input.lca
(using the -n option). The old tied design is saved as _input.odf.

makebits -n -t input
7-20 Xilinx Development System

The MakeBits Program
or

makebits -nt input

The following command creates a configuration bitstream called
output.bit (using the -o option) from the input FPGA design file,
input.lca. A mask file called output.msk is also created (using the -m
option). The output.bit bitstream configures the target FPGA to have
readback disabled (-r0) and input thresholds set to CMOS levels
(using the -c option).

makebits -o output -m -c -r0 input

or

makebits -o output -mcr0 input

The following command enables the design input.lca CRC checking
and the startup option uclk_sync set. Note that you use the -f option
for each configuration setting.

makebits -f crc:enable -f uclk_sync input.lca

Running MakeBits from XDE
You can access MakeBits from XDE and take advantage of the menus
in the graphic user interface. If you are not familiar with XDE, please
review the “The XACT Design Editor” chapter in the Development
System Reference Guide.

Enter either ‘xde’ or ‘xact’ at the system prompt to start XDE.

Use the Design command or choose from the Designs menu to select
the appropriate design from the executive screen before using
MakeBits.

To access MakeBits, type ‘makebits’ at the command prompt or select
MakeBits from the Programs menu. The XDE MakeBits generates
only bitstreams for one design at a time. To create bitstreams for
multiple designs requires, you must exit MakeBits and select a
different design from the XDE screen each time. When the bitstream
file is created, you should save it using the Writebits command.

To exit MakeBits, type “exit” or select the Exit command in the
MakeBits screen. Always check the Status Bar for error messages and
warnings before exiting.
Development System Reference Guide, Volume 2 7-21

Development System Reference Guide, Volume 2
The MakeBits Screen
The MakeBits screen is divided into four sections: the Command line,
the Status Bar, the Program Options box, and the Menu Headers (see
Figure 7-3). At the Command line prompt, you type commands that
you want to run. The Status Box indicates the name of the current
design and the status of the bitstream (made, not made, written, and
so forth). It is important to know the status of the bitstream, since
some programs overwrite the bitstream buffer. The Program Options
box provides a quick way for reviewing selected FPGA design
configuration options, as well as changing such options by clicking
on them with the mouse. See the Configure command.

The Menu Headers, at the top of the screen, provide interactive
selection of commands. Commands, as well as headers, are divided
into four groups (three only for the workstation) according to their
function, as follows.

● Config menu — Contains commands for changing FPGA design-
configuration options and generating the configuration bitstream.

● Download menu — Contains commands for Download cable
self-test and operation (does not apply to workstations).

● Misc menu — Contains commands for saving and displaying
information and generating reports.

● Profile menu — Contains commands for modifying screen and
mouse settings.

Figure 7-3 shows the MakeBits Screen for the PC. The example shows
the XC3000 family options.
7-22 Xilinx Development System

The MakeBits Program
Figure 7-3 MakeBits Screen (PC only) with XC3000 Options

MakeBits Commands
The MakeBits commands are listed alphabetically. The command
description includes usage information, the name of the menu, the
keyboard syntax, as well as any abbreviations that apply to the
keyboard syntax.

Configure — Change Configuration Options
Menu Config

Syntax configure [option setting]

Abbreviation conf

The Configure command is used to set the options for MakeBits. You
can change FPGA-device configuration options via changes in the
bitstream. The configuration options that are available are dependent
on the device family being used, for example, XC2000, XC3000,
XC4000, or XC5200.

To select the configuration options, use the Config command or click
the desired option in the Configuration Options box. You must run a

XtalOsc
DoneTime
ResetTime

Program Options

Cable: Xchecker Design: TRYCLKLCA
Bit stream: not made

Config Download Misc Profile

Cmd:

Input
Done
Read

TTL CMOS

Pullup No Pullup
0 1 Cmd
Disable Enable Div2

Before After
Before After
Development System Reference Guide, Volume 2 7-23

Development System Reference Guide, Volume 2
MakeBits command for the Configure command to take effect and be
reflected in the bitstream.

XC2000 Configuration
The following options apply only to the XC2000 parts.

Input

Sets the FPGA input threshold level.

Settings: TTL, CMOS
Default: TTL

DonePad

Enables or disables an internal pull-up resistor on the FPGA D/P pin.

Settings: Pullup, Nopullup
Default: Pullup

Read

Permits readback of the configured FPGA device never, once, or on
command.

Settings: 0 (never), 1 (once), CMD (on command)
Default: CMD

XC3000 Configuration
The following options apply only to the XC3000 devices.

DonePad

Enables or disables an internal pull-up resistor on the FPGA Done/
Program pin.

Settings: Pullup, Nopullup
Default: Pullup
7-24 Xilinx Development System

The MakeBits Program
DoneTime

Selects the timing of Done to be one configuration clock before or
after the IOB outputs become active.

Settings: Before, After
Default: After

Input

Sets the FPGA input threshold level.

Settings: TTL, CMOS
Default: TTL

Read

Permits readback of the configured FPGA device never, once, or on
command.

Settings: 0 (never), 1 (once), CMD (on command)
Default: CMD

ResetTime

Selects the timing of release of the internal global Reset to be a
configuration clock before or after the IOB outputs become active.

Settings: Before, After
Default: After

XTALOSC

This option allows the crystal oscillator to be disabled, enabled, or
enabled with a divide-by-two.

Settings: Disable, Enable, Div2
Default: Disable
Development System Reference Guide, Volume 2 7-25

Development System Reference Guide, Volume 2
XC4000 and XC5200 Configuration
The following options apply only to the XC4000 and XC5200 devices.

CRC

Enables or disables CRC (Cyclic Redundancy Checking) during
configuration.

Settings: Enable, Disable
Default: Disable

ConfigRate

Selects the configuration clock rate. There are two choices: slow or
fast. Slow is equivalent to 1 MHz and fast is equivalent to 8 MHz
(nominal).

Settings: Slow, Fast
Default: Slow

DonePin

Enables or disables an internal pull-up to the Done pin.

Settings: Pullup, Nopullup
Default: Nopullup

TdoPin

Adds either a pull-up or a pull-down to the TDO pin for Boundary
Scan.

Settings: Pullup, Pulldown
Default: Neither

M1Pin

Adds either a pull-up or a pull-down to the M1 pin.

Settings: Pullup, Pulldown
Default: Neither
7-26 Xilinx Development System

The MakeBits Program
Note: The Pull-up and Pull-down options for the TDO and M1 pins
act as toggles and are mutually exclusive. The default is inactive.
Selecting one option enables it and disables the other. Selecting the
same option a second time disables it.

BSReconfig (XC5200 Only)

Enable or disable reconfiguration via boundary scan.

Settings: Enable, Disable
Default: Disable

OscClk (XC5200 Only)

Drive oscillator with either user clock or internal oscillator.

Settings: UserClk (user supplied), Cclk (internal)
Default: Cclk

ReadCapture

Enables or disables inclusion of flip-flop and latch contents in the
readback bitstream. If ReadCapture is disabled, the contents are then
read back as Highs.

Settings: Enable, Disable
Default: Disable

Note: Logic levels of latches and flip-flops are inverted when they are
written into the readback bitstream.

ReadAbort

Enables or disables aborting the readback sequence during the
readback sequence.

Settings: Enable, Disable
Default: Disable

ReadClk

Sets the readback clock to be Cclk or a user-supplied clock (from a net
inside the FPGA connected to the i pin of the rdclk block).

Settings: Cclk (pin*), Rdbk (user supplied)
Default: Cclk
Development System Reference Guide, Volume 2 7-27

Development System Reference Guide, Volume 2
*In modes where Cclk is an output, this pin is driven by the internal
oscillator.

StartupClk

Controls the post-configuration startup phase of the FPGA
initialization with either a Configuration clock (Cclk) or a user-clock
supplied clock (UserClk) that is connected to the CLK input of the
startup block of the FPGA.

Settings: Cclk (pin*), UserClk (user supplied)
Default: Cclk

*In modes where Cclk is an output, this pin is driven by the internal
oscillator.

SyncToDone

Synchronizes the post-configuration startup phase of the FPGA
initialization to the Done signal when you use the Yes setting. This
option is useful in situations in which there are multiple XC4000 or
XC5200 family devices in a daisy chain, which should all start
operation synchronously.

Settings: Yes, No
Default: No

DoneActive

Defines the clock edge that is used to activate the Done signal at the
end of the startup phase. There are a maximum of four events that
you can select from at one time, depending on other selections made
for StartupClk and SyncToDone. These events are Cclk edges or
external (user) clock edges.

Settings: C1 —first-Cclk rising edge after the length count is met
C2 —second-Cclk rising edge after the length count is met
C3 —third-Cclk rising edge after the length count is met
C4 —fourth-Cclk rising edge after the length count is

met
U2 —second-valid-user-clock rising edge after C1

(first-Cclk rising edge after length count is met)
U3 —third-valid-user-clock rising edge after C1 (first-

Cclk rising edge after length count is met)
7-28 Xilinx Development System

The MakeBits Program
U4 —fourth-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met)

Default: C2

OutputsActive

Defines the clock edge that is used to de-activate the internal Global
Set/Reset signal at the end of the startup phase. There are four events
that you can select from at one time, depending on other selections
made for StartupClk and SyncToDon. These events are Cclk edges,
external (user) clock edges and the external signal DoneIn.

Settings: C2 —second-Cclk rising edge after the length count is met
C3 —third-Cclk rising edge after the length count is met
C4 —fourth-Cclk rising edge after the length count is met
U2 —second-valid-user-clock rising edge after C1

(first-Cclk rising edge after length count is met)
U3 —third-valid-user-clock rising edge after C1

(first-Cclk rising edge after length count is met)
U4 —fourth-valid-user-clock rising edge after C1

(first-Cclk rising edge after length count is met)
DI — when the DoneIn signal goes High
DI_PLUS_1 — first-Cclk or valid-user-clock rising edge,

depending on the selection of StartupClk,
after DoneIn goes High

D1_PLUS_2 —second-Cclk or valid-user-clock rising
edge, depending on the selection of
StartupClk, after DoneIn goes High

Default: C3

GSRInactive

Selects the event that releases the internal set-reset to the latches and
flip-flops. There are four events that you can select from at one time,
depending on other selections made for StartupClk and SyncToDone.
These events are Cclk edges, external (user) clock edges and the
external signal DoneIn.

Settings: C2 —second-Cclk rising edge after the length count is met
C3 —third-Cclk rising edge after the length count is met
C4 —fourth-Cclk rising edge after the length count is met
U2 —second-valid-user-clock rising edge after C1

(first-Cclk rising edge after length count is met)
Development System Reference Guide, Volume 2 7-29

Development System Reference Guide, Volume 2
U3 —third-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met)

U4 —fourth-valid-user-clock rising edge after C1
(first-Cclk rising edge after length count is met)

DI — when the DoneIn signal goes High
DI_PLUS_1 — first-Cclk or valid-user-clock rising edge,

depending on the selection of Startup
Clk,afterDoneIn goes High

D1_PLUS_2 —second-Cclk or valid-user-clock rising
edge, depending on the selection of
StartupClk, after DoneIn goes High

Default: C4

Note: DI, DI_PLUS_1, and DI_PLUS_2 can only be selected when
SyncToDone is yes.

Defaults — Select From Four Startup Defaults
Menu Config

Syntax defaults startup sequence

Abbreviations def

The Default command lets you select from one of four predetermined
startup sequences that define the settings of StartupClk, SyncToDone,
DoneActive, OutputsActive and GSRActive. Refer to the startup
section of The Programmable Logic Data Book, to a see the diagram of
the startup timing for each Xilinx device family. These startup
sequences are described below.

Cclk_Nosync

This startup sequence makes an XC4000 or XC5200 device consistent
with an XC3000 device set for early Done and late Reset. Selecting
this sequence causes the following defaults to take effect.

StartupClk: Cclk
SyncToDone: No
DoneActive: C1
OutputsActive: C2
GSRActive: C3
7-30 Xilinx Development System

The MakeBits Program
Cclk_Sync

This startup sequence is the most consistent with the XC2000 and
XC3000 devices, since it synchronizes the release of GSR and I/Os to
the Done signal. Selecting this sequence causes the following defaults
to take effect.

StartupClk: Cclk
SyncToDone: Yes
DoneActive: C3
OutputsActive: DI
GSRActive: DI_PLUS_1

Uclk_Nosync

This startup sequence makes XC4000 or XC5200 devices inconsistent
with XC3000 or XC2000 devices in the same daisy chain, since the
release of Done is synchronized to an external user clock. There is no
synchronization of I/Os or GSR to DoneIn. Selecting this sequence
causes the following defaults to take effect.

StartupClk: UserClk
SyncToDone: No
DoneActive: U2
OutputsActive: U3
GSRActive: U4

Uclk_Sync

This startup sequence makes XC4000 or XC5200 devices inconsistent
with XC3000 or XC2000 devices in the same daisy chain, since the
release of Done is synchronized to an external User Clock. I/Os and
GSR are synchronized to DoneIn. Selecting this sequence causes the
following defaults to take effect.

StartupClk: UserClk
SyncToDone: Yes
DoneActive: U2
OutputsActive: DI_PLUS_1
GSRActive: DI_PLUS_2
Development System Reference Guide, Volume 2 7-31

Development System Reference Guide, Volume 2
DOS — Enter Temporary DOS Shell (PC Only)
Menu Misc

Syntax dos dos_command

Abbreviations none

The DOS command temporarily leaves the MakeBits program and
passes control to DOS. To return to the program, type ‘exit’ at the
prompt.

When the specified DOS command finishes, control is returned to
MakeBits automatically.

Download — Transfer the Current Bitstream to an
FPGA

Menu Download

Syntax download

Abbreviations downl, dl

See also: Port, Writebits, MakeBits, Selftest

The Download command in the Download menu transfers the
current bitstream to an FPGA device via a Download cable.

You must use the MakeBits command to make a bitstream file for the
current design. For PCs only, use the Port command to select the cable
port. If you want to use your own download routine, you need to set
the port to User with the Port command. See the Port command later
in this chapter for details about using customized routines in place of
the default Download program.

DRC — Invoke the Design Rules Checker
Menu Misc

Syntax DRC options

Abbreviations none

See also: Report

The DRC command starts the Design Rules Checker for the current
design to check the design for design rules violations. The results
7-32 Xilinx Development System

The MakeBits Program
display as the check progresses. To list the results in a file rather than
on the screen, use the Report command.

The DRC command is identical to the DRC command in the XACT
Design Editor and the Executive. The DRC options are described
below.

Note: If everything needs to be checked, just select DRC and Done.
The Net and Block options are usually used to restrict the amount of
checking.

Net

Checks only the specified net. Use * as a wildcard. For example, DRC
-net g* causes DRC to check only those nets with names that begin
with the character “g.”

Nonet

Skips checking the nets of a routed design.

Block

Checks only the specified block. Use * as a wildcard. For example,
DRC -net g* causes DRC to check only those blocks with names that
begin with the character “g.”

Noblock

Prevents block checking from being performed.

Noroute

Checks the block but not for routing errors. This option is useful
when you have not yet completed routing.

Verbose

Provides running comments of the MakeBits program progress.

Informational

DRC informs of irregularities and general hints that can provide
better device utilization.
Development System Reference Guide, Volume 2 7-33

Development System Reference Guide, Volume 2
Execute — Perform Commands from a Command
File

Menu Misc

Syntax execute filename parameter ...

Abbreviations exec

Execute performs the XDE commands in a command file (text file)
(except Exit) in the order in which they appear in the file. When the
end of the file or the Endfile command is encountered, command
input transfers back to the keyboard or mouse.

Exit — Return to the XACT Executive
Menu Misc

Syntax exit

Abbreviations none

Exit terminates MakeBits and returns control to the Executive.

Note: If a MakeBits Tie Norestore command has been executed
without a Restore command afterwards, Exit issues a warning.

Keydef — Define a Function Key
Menu Misc

Syntax keydef keyname_definition

Abbreviations ke

See Also: Saveprofile, Readprofile, Settings

The key name must be one of the IBM PC function keys, F2 through
F12; F1 is reserved for help. You can use the Shift, Ctrl, or Alt key in
combination with a function key; enter Shift, Ctrl, or Alt before
entering the function-key name.

Pressing F1 displays help in the XACT MakeBits screen. When you
place the cursor over one of the MakeBits configuration table tags,
pressing F1 displays the online help for that tag.
7-34 Xilinx Development System

The MakeBits Program
The keystrokes you type as the function-key definition, terminated
by ↵ or the backslash (\), are stored under that function key. Use
function keys to store command sequences you use frequently.

For example, enter the following definition.

keydef f10 querynet -c

Pressing the F10 key displays the Querynet command and requests
critical net information. When you enter the desired nets, the net
information is displayed.

You can terminate a function-key definition using the Return key or
backslash (\). If you terminate the keystroke sequence by pressing ↵,
the carriage return is included in the key definition. Thus, if you
define a key function as Mouse COM2 and press ↵, the command
Mouse COM2 is typed and entered when you press the function key.
If you terminate the keystroke sequence by pressing the backslash
key (\), the key definition includes only the typed characters but not
a carriage return. Thus, if you define a key function as Mouse B1
Done and press the backslash, Mouse B1 Done is typed when you
press the function key, but you must press Return to execute the
command.

To delete a function-key definition, enter Keydef, the keys, such as
Ctrl F10, and press ↵ without entering a definition.

MakeBits has its own function-key settings independent of the
Executive or other sub-programs. Initial settings for the MakeBits
function keys are contained in the makebits.pro file. Changes to
function-key definitions can be saved in the makebits.pro file using
the Saveprofile command.

MakeBits — Generate a Bitstream for a Design
Menu Config

Syntax MakeBits tie norestore verbose usecritical

Abbreviations makeb

The MakeBits command generates a bitstream for a design and stores
it in the Write Bitstream buffer. The following options are available.
Development System Reference Guide, Volume 2 7-35

Development System Reference Guide, Volume 2
tie Tie Unused Interconnect

You should always use this option for production configurations to
minimize internal noise and power consumption that can result from
undefined levels on CMOS gate inputs. In a tied design, all unused
interconnect is tied High or Low or to a defined signal. When the Tie
option is specified, the XACT DRC is invoked before interconnect is
tied. A fatal DRC error causes the MakeBits program to abort. DRC
warnings do not abort MakeBits but can cause tiedown to fail.

Following DRC, the Tie option causes interconnect to be tied as
follows.

● As many unused interconnect lines as possible are tied to unused
CLB outputs that are configured to output logic 0 (F=0 or G=0).

● An attempt is made to tie any remaining interconnect to existing
CLB outputs that were not marked critical in XACT with the
Flagnet Critical command or flagged critical from the schematic.
This is not the Flagnet Critical command used in an APR
constraints file.

● An attempt is made to tie remaining interconnect to the global or
the auxiliary clock-buffer outputs.

● If Tie cannot be completed successfully, MakeBits uses critical
nets.

Tie does not add interconnect, under any circumstances, to a net that
meets any of the following requirements:

● The net is sourced by an XC3000-series or XC4000-series IOB Q
pin individually.

● The net is sourced by 3-state buffer outputs. Tie assumes that the
timing on such nets is critical and must not be disturbed.

In addition, Tie does not add a XC3000-, XC4000-, or XC5200-series 3-
state buffer I (input) or T (3-state) pin to a net, even if that net was
created by Tie. These pins are left unconnected to ensure that no
internal contention is created.

Adding interconnects to used CLB or buffer outputs can add delay to
the nets connected to these outputs. Use the Flagnet Critical
command in the XACT system to guarantee that a net is unaffected
7-36 Xilinx Development System

The MakeBits Program
by tiedown. If too many nets are flagged critical, however, the
tiedown process can fail.

Each time interconnect is tied to a user-defined net, a message is
printed giving the name of the PIP that was programmed. The delay
characteristics of the net can be altered.

When the MakeBits Tie program cannot tie certain pins, error
messages are issued. You should not ignore these messages; MakeBits
does not generate a partially tied design. The design must be edited
so that MakeBits can complete the tiedown process.

The error messages in MakeBits give very specific information about
the untied PIPs in the design. You should edit the design to eliminate
the obstacles causing Tie to fail. Two suggestions are as follows.

● Manually re-route a net that cannot source (Tie) the untied PIP.

● Re-evaluate nets flagged as critical from EditLCA.

For example, a pin might have several input PIPs, each of which
could be used to source the pin. If all these PIPs are associated with
critical nets, Tie does not use them and the input pin is left untied. To
correct this problem, make one of the critical nets non-critical using
the Flagnet Noncritical command in EditLCA. Any delay added to
the net by the tiedown process can be evaluated with the Querynet
Tie change command.

As stated earlier, the MakeBits Tie option ties unused interconnect,
internal to the FPGA device, to a known level. In addition to unused
interconnects, unused package pins must also have defined levels;
they must not be left floating.

There are two ways to define the logic level of an unused package pin
XC2000-series FPGA devices: unused IOBs can be configured as
outputs and driven by internally generated High or Low signals (F=1
or F=0), or they can be left unconfigured, as long as the package pins
are externally connected to a High or Low level or to an available
signal. In XC3000-, XC4000-,and XC5200-series FPGA devices,
unused IOBs are automatically configured as inputs with pull-up
resistors.
Development System Reference Guide, Volume 2 7-37

Development System Reference Guide, Volume 2
Norestore

This option reflects the effects of tiedown on the timing of the design.
Norestore causes the internal representation of an FPGA design to
remain “tied.” After tiedown is complete, you can use Querynet and
XDelay to check timing. Restore the interconnect using the Restore
command before exiting MakeBits.

To examine the tied design, load it into EditLCA and run the
Querynet command. Querynet -Tiechange provides a listing of the
nets that have been changed by the Tie process. Two delays are given
for each net, the original net delay and the new, post-Tie delay. If the
new delay is longer than the original delay, make sure the timing
requirements of your design are still satisfied.

Note: If you run MakeBits with Tie Norestore options, original
routing data is not restored until you execute a Restore command. As
a consequence, if the design is saved, the routing added to implement
Tie is saved as well. An appropriate warning is issued before you can
save the tied FPGA file.

Verbose

This option displays running messages during the tiedown process.

IgnoreCriticalNetFlags

This option allows MakeBits to tie the design using critical nets. The
-i option uses critical nets in the ‘normal’ tie order. It tells Tie to ignore
critical net flags and use any nets that are flagged as critical whenever
it is necessary to do so. These critical nets are not used as a last resort;
instead, they are used in the normal Tie order.

UseCriticalNetsLast

This option allows the tiedown process to use critical nets. If too
many nets have been flagged as critical from XDE, the tiedown might
fail since there are insufficient resources to tie the unused
interconnect. You can do one of three things if the tiedown fails.

● Use the FlagNet Noncritical command in EditLCA to flag some
nets as non-critical.

● Use the UseCriticalNetsLast option (or the MakeBits -u command)
7-38 Xilinx Development System

The MakeBits Program
to tell MakeBits that it can tie the design using critical nets. This
option builds a list of critical nets and uses them as a last resource.

● Use the IgnoreCriticalNetFlag option (or the MakeBits -i
command) to tell MakeBits to ignore critical net flags during the
tiedown operation. This option essentially removes the critical
flags from all critical nets, and causes MakeBits to use these nets in
the ‘normal’ way to tie interconnect, if it becomes necessary to do
so. Note that these nets are not used as a last resource (as they
would be if you had used the UseCriticalNetsLast option). The
critical net flags are restored to the nets after the tiedown
operation is complete.

Makell

The Makell option creates an ASCII file with a .ll extension that
contains the locations of flip-flop outputs and CLB RAM bits in the
current bitstream. In some applications, you might want to observe
the contents of the FPGA internal registers at different times. The file
created by the Makell option helps you identify which bits in the
current bitstream represent outputs of flip-flops and latches. Bits are
referenced by frame and bit number within the frame.

This is the same as the -l option in stand-alone MakeBits.

Makeconfigset — Create a Configuration Set
Menu Config

Syntax makeconfigset name

Abbreviations makec

Makeconfigset takes the current MakeBits options, such as FPGA
input levels TTL or CMOS, and creates a configuration set with the
current architecture and specified name. The configuration sets are
saved in the makebits.pro file as a sequence of ‘Configure’
statements, preceded by a Defineconfigset statement and closed with
an Endconfigset statement.

Configuration sets are a convenient way to save and use multiple sets
of MakeBits options. You can have multiple configuration sets at one
time.

Use Queryconfigset to view the options in a configuration set.
Development System Reference Guide, Volume 2 7-39

Development System Reference Guide, Volume 2
Makemask — Write a Bitstream Mask to a File
Menu Config

Syntax makemask filename

Abbreviations makem

Makemask is for FPGA-device designers who use a microprocessor in
their FPGA design to periodically perform a configuration readback
and compare during FPGA operation. You can use the FPGA
readback facility to verify that an FPGA device has been properly
configured. See the Development System User Guide for more
information about readback verification and signature analysis.

Makemask writes the bitstream mask data to the specified file. The
file extension must be MSK. The XACT system automatically
appends the MSK extension if it is not supplied.

If a bitstream mask file is to be stored in an EPROM in your system,
the MakePROM program can be used to create a HEX file from the
bitstream mask file. Since the MakePROM program requires an
extension of BIT, you must rename the MSK file to a BIT extension in
order to use MakePROM to create a HEX version of the mask file.

Mouse — Change the Mouse Configuration
Menu Profile

Syntax mouse [button function]

Abbreviations mou

See Also: Saveprofile, Readprofile, Settings

Mouse defines the mouse button functions. You define these
functions by selecting the button and the function.

Note: This command applies to a three-button mouse.

If you select B1, B2, or B3, you must also enter one of the four
functions that determine the action of the selected button.

B1 Selects mouse button #1

B2 Selects mouse button #2

B3 Selects mouse button #3 (if applicable)
7-40 Xilinx Development System

The MakeBits Program
Select

Enters the cursor location. This is the default setting for all the mouse
buttons.

Done

Applies the function you entered for the selected mouse button and
returns you to the Select Mouse Options menu.

Menu

Displays the most recently displayed menu and moves the cursor to
the most recently selected item. If a menu is already displayed, the
mouse button enters the cursor location (same as Select).

Switch

This option is not relevant in MakeBits; any mouse button that is
programmed as ‘switch’ is ignored.

Use the Saveprofile command to save the MakeBits configuration in
the makebits.pro file. Use the Settings command to display the
current configuration.

The following example defines button #1 as Done, and button #2 and
button #3 as Select.

mouse b1 done b2 select b3 select

Port — Specify the XChecker/Download Cable Port
Menu Misc

Syntax port options

Abbreviations port

See Also: Download

Port selects the port used for downloading the current bitstream. The
ports could be parallel ports (lptx) that are supported for the
Download cable, or serial ports (COMx) that are supported with
XChecker.
Development System Reference Guide, Volume 2 7-41

Development System Reference Guide, Volume 2
When you select MakeBits from XDE, it checks for the presence of the
XChecker cable. If it is present, it is used, and the Port command
shows only the User option.

If you select User, a prompt asks you to provide the name of your
customized routine. For example, if the name of your customized
routine is myprog, you would reply as follows.

Enter user command line: myprog

The executable for the routine myprog should be placed either in
your working directory or in your search path. The download
command then passes a temporary RBT file to your customized
routine.

Note: The download command passes an RBT (ASCII) file to your
customized routine. This file is a temporary file with no extension.
See the Rawbits command for details on RBT files.

If your customized routine requires more arguments or options, you
can indicate the place of the RBT file in the command line with a “%”
(percent sign). For example, you can select User and reply to the
prompt as follows.

Enter user command line: myprog % -port1 -speed1

This causes the download command to execute the following
command string.

myprog temp_file -port1 -speed1

where temp_file is the temporary RBT file passed to your routine.

Note: When selecting a port, make sure you select a COM port that
the mouse is NOT on, otherwise, you could make the mouse
inoperable.

Print — Create a Printable File of Display Information
Menu Misc

Syntax print options

Abbreviations none

Print stores screen or display information in a printable file with the
specified file name. This command is a subset of the Print command
in the XACT Design Editor.
7-42 Xilinx Development System

The MakeBits Program
Print options are Screen and Display, as follows.

● Screen information includes the entire screen.

● Display information includes only the center portion of the screen
without menu headers.

Printer — Set the Printer Type for the Print Command
Menu Misc

Syntax printe type

Abbreviations printe

See Also: Print

The printer type determines the format of the printable file. Choose
one of the printer types listed in the menu. “The XACT Design
Editor” chapter lists the printers supported by XDE and describes
how to implement drivers for printers not listed.

You can change the initial value for the printer type in the xact.pro or
makebits.pro file. If a makebits.pro file does not exist, the default
value for the printer is taken from the xact.pro file.

Queryconfigset — Display Configuration Sets
Menu Config

Syntax queryconfigset

Abbreviations queryc

Queryconfigset displays all configuration sets that are available for
all architectures. The status line on the MakeBits screen displays the
name of the configuration set currently in effect. Using the mouse to
modify the MakeBits options removes the current configuration set.

Querynet — Display Net Information for the Design
Menu Misc

Syntax querynet option net

Abbreviations queryn, qn

See Also: MakeBits
Development System Reference Guide, Volume 2 7-43

Development System Reference Guide, Volume 2
You can specify nets by name or with wildcards. You can use the
option in conjunction with a wildcard to select a group of nets based
on a common characteristic. Information is displayed for a net only if
it is specified and matches all specified options.

The wildcard (*) can be used to match any characters. For example,
typing A* as a net name represents all net names that begin with the
character A.

Querynet is identical to the Querynet command in the XACT Design
Editor. Execution of this command allows you to examine the net
delays of your design at this stage of the design process. Querynet is
useful for determining any changes in net delays produced by
tiedown by using the Tiechange option. You must choose the
MakeBits Norestore option to see the tiedown effects in path delays
using Querynet.

Options Characteristics

-ALL All nets in design

-Inputs Nets that include IOB I pin

-Outputs Nets that include IOB O pin

-Threestates Nets that include IOB T pin and TBUFs

-Unrouted Net not completely routed

-Nosource Net with no source pin

-Nodest Net with no load pin(s)

-Critical Nets flagged critical for Tie (not APR)

-Tiechange Nets changed by -Tie Option

-Tieadd Nets added by -Tie Option

-Baddly Nets with tilde (~) delays

-Locked Nets flagged as locked

-Unlocked Nets not flagged as locked

-Delayless Nets with a delay less than specified

-Delaygreater Nets with a delay greater than specified

-Clocknets Nets connected to CLB K, IOB IK or OK pins

-Probed Nets connected to an external pad for use as
a probe point
7-44 Xilinx Development System

The MakeBits Program
Rawbits — Create an ASCII Configuration File
Menu Config

Syntax rawbits filename

Abbreviations raw

Rawbits produces an ASCII Configuration Bitstream to simplify
inclusion of bitstream data into microprocessor source code.

Rawbits writes a design bitstream into an ASCII text file, as opposed
to a binary file created by MakeBits. Designers using a
microprocessor to initialize an FPGA design can use the Rawbits file
as initialization data.

The bitstream data appears in the file in the same order as it should
be written to an FPGA in the Peripheral Mode, with ASCII 1 and 0
corresponding to a binary 1 and 0, respectively. Some reformatting of
the file is typically required, depending upon the software language
used to implement the download routine, such as reformatting
groups of eight ASCII bits into ASCII bytes, inserting punctuation,
and so forth.

The file extension must be .rbt. The XACT system automatically
appends the .rbt extension if it is not supplied.

Readbits — Read the Specified Bitstream File
Menu Config

Syntax readbits file

Abbreviations readb

Readbits reads the specified bitstream data file into the bitstream
buffer. The XACT system supplies the extension BIT if it is not typed
as part of the file name.

Since the startup options are written into the bitstream, these options
are restored as the bitstream is read, even if they are not displayed in
the options box.
Development System Reference Guide, Volume 2 7-45

Development System Reference Guide, Volume 2
Readprofile — Update Profile
Menu Profile

Syntax readprofile

Abbreviations readp

See Also: Saveprofile, Settings

Readprofile sets options to the settings in the makebits.pro file. When
the commands in the makebits.pro file, such as Mouse and Keydef,
are executed, the MakeBits options are set. Use Saveprofile to create
the makebits.pro file.

Report — Create a Report
Menu Misc

Syntax report filename command

Abbreviations rep

Report saves block, net delay or other information in a text file. Use
Report to send Querynet and DRC information to a text file instead of
displaying it on the screen. The command must include Querynet or
DRC followed by the required command parameters. Report is
identical to the Report command in the XACT Design Editor. For the
full syntax of each command, see Queryblk, Querynet, and DRC in
“The XACT Design Editor” chapter in the Development System
Reference Guide.

Restore — Restore Design to Untied State
Menu Misc

Syntax restore

Abbreviations resto

See Also: MakeBits

Restore returns tied interconnects to the unused state following
bitstream generation using the Tie and Norestore options. When you
use MakeBits with the Tie option (to tie down the unused
interconnects), the Norestore option saves the interconnects in the
7-46 Xilinx Development System

The MakeBits Program
tied state so that you can examine the effects of tiedown using
Querynet, Xdelay, and Report.

If you use the Norestore option, run Restore before exiting MakeBits.

Note: The tie process adds, and possibly modifies, nets in the original
design. With NoRestore specified, these modifications can be saved
to the disk or viewed in EditLCA. When saving the design to disk,
specify a different name to the entered FPGA file. Upon exiting, a
warning is issued if a Restore command has not been executed
following MakeBits Tie NoRestore.

Saveprofile — Save Current Profile
Menu Profile

Syntax saveprofile

Abbreviations savep

See Also: Readprofile, Settings

Saveprofile saves the current setting of the MakeBits profile options
in the makebits.pro file. The information saved in the file consists of
the following information.

● FPGA configuration options

● Current mouse configuration

● Current function-key definitions

If a profile was previously read with Readprofile or created with
Saveprofile, the profile is saved in the directory of the last profile
read or saved. If no directories contain a makebits.pro file, the profile
is saved in the current directory, if you answer “yes” when asked
whether you want it saved in the current directory.

Commands in this file set the MakeBits options, such as Mouse and
Keydef, and are normally executed automatically when MakeBits is
first started.

Note: XC2000, XC3000, XC4000, and XC5200 profiles are essentially
different. Appropriate warnings are issued if you attempt to read an
incompatible profile.
Development System Reference Guide, Volume 2 7-47

Development System Reference Guide, Volume 2
Selftest — Test Download Cable (PC Only)
Menu Download

Syntax selftest

Abbreviations selft

Selftest performs several circuitry checks on the Download Cable.
You must select the cable port with Port before running Selftest.

Setconfigset — Apply Configuration Set to MakeBits
Options

Menu Config

Syntax setconfigset name

Abbreviations setcon

Setconfigset applies the specified configuration set to the MakeBits
options. The options in the configuration set take effect with
subsequent MakeBits commands as reflected on the MakeBits screen.
The prompt menu displays only those configuration sets that are
relevant for the current architecture.

Settings — Change Current Profile
Menu Profile

Syntax settings

Abbreviations sett

See Also: Saveprofile, Readprofile, Mouse, Keydef, and
Configure

Settings displays the current MakeBits profile settings listed below:

● Current mouse configuration

● Current bitstream-configuration set up

● Current function-key definitions

● Current printer
7-48 Xilinx Development System

The MakeBits Program
Writebits — Save Current Configuration Bitstream
Menu Config

Syntax writebits filename

Abbreviations write

See Also: MakeBits

Writebits writes the contents of the bitstream buffer to the specified
file. The file extension must be BIT. The XACT system automatically
appends the BIT extension if it is not supplied.
Development System Reference Guide, Volume 2 7-49

Development System Reference Guide, Volume 2
7-50 Xilinx Development System

Chapter 8
Development System Reference Guide, Volume 2 — 0401406 01 8-1

The MakePROM Program

This program is compatible with the following families.

● XC2000

● XC2000L

● XC3000

● XC3100

● XC3000A

● XC3000L

● XC3100A

● XC4000

● XC4000A

● XC4000H

● XC5200

MakePROM formats a MakeBits-generated configuration bitstream
(BIT) file into a PROM format file. The PROM file contains
configuration data for the FPGA device. MakePROM converts a BIT
file into one of three PROM formats: MCS-86 (Intel), EXORMAX
(Motorola), or TEKHEX (Tektronix).

There are two functionally equivalent versions of MakePROM. There
is a stand-alone version you can access from an operating system
prompt. There is also an interactive version you can access from
inside the XACT Design Editor (XDE). This chapter first describes the
stand-alone version, then the XDE version.

You can also use MakePROM to concatenate bitstream files to daisy-
chain FPGAs.

Development System Reference Guide, Volume 2
Note: If the destination PROM is one of the Xilinx Serial PROMs, you
are using a Xilinx PROM Programmer, and the FPGAs are not being
daisy-chained, it is not necessary to make a PROM file. See the
Hardware and Peripherals User Guide for more information about daisy-
chained designs.

Stand-Alone MakePROM
You use the stand-alone MakePROM from the operating system shell
to create a PROM-formatted file for one or several configuration
bitstream files.

MakePROM creates two files: a PROM file containing the
configuration information and a PROM image file containing a
memory map of the created PROM file. The PROM file has the
extension of .mcs, .exo, or .tek depending on the selected format. The
image file has a PRM extension.

Syntax
To start the MakePROM program from the operating system prompt,
use the following syntax.

 makeprom options

Options is one of the options described in the next section.

Note: If you do not specify any parameters, MakePROM
automatically goes into the interactive mode. See the “Using
MakePROM in the XACT Design Editor” section in this chapter.

Options
This section describes the options that are available for the stand-
alone version.

–d

This option formats one or more PROM files from the starting
address in a downward direction. Specifying several files after this
option causes the files to be concatenated in a daisy chain. You can
specify multiple -d options to load files at different addresses. You
must specify this option immediately before the input bitstream file.
8-2 Xilinx Development System

The MakePROM Program
Here is the multiple file syntax.

makeprom -d hexaddress0 filename filename...

Here is the multiple -d options syntax.

makeprom -d hexaddress1 filename -d hexaddress2 filename...

–f

This option sets the PROM format to one of the following: MCS (Intel
(MCS86)), EXO (Exormax(Informix)), or TEK (Tekhex(Tektronix)). If
specified, the -f option must precede any -u, -d, or -n options. Below
is an example.

makeprom -f mcs -d hexaddress filename

–help

This option displays help that describes the MakePROM options.

–n

This option loads BIT files up or down from the next available
address following the previous load. The -n option must follow after
a -u, -d, or -n option. Files specified with this option are not be daisy-
chained to previous files. Files are loaded in the direction established
by the nearest prior -u, -d, or -n option.

The following syntax shows how to specify multiple files. When you
specify multiple files, MakePROM daisy-chains the files.

makeprom -n file1 file2...

The syntax for using multiple -n options follows. Using this method
prevents the files from being daisy-chained.

makeprom -d hexaddress file0 -n file1 -n file2...

–o

This option specifies the output file name of a PROM if it is different
from the default. If you do not specify an output file name, the PROM
file has the same name as the first BIT file loaded.

makeprom -d hexaddress file0 -o filename
Development System Reference Guide, Volume 2 8-3

Development System Reference Guide, Volume 2
–s

This option sets the PROM size in kilobytes. The PROM size must be
a power of 2. The default value is 64 K. The -s option must precede
any -u, -d, or -n options.

makeprom -s promsize

Note: MakePROM PROM sizes are specified in bytes. The
Programmable Logic Data Book specifies PROM sizes in bits.

–u

This option formats one or more PROM files from the starting
address in an upward direction. When you specify several files after
this option, MakePROM concatenates the files in a daisy chain. You
can load files at different addresses by specifying multiple -u options.

This option must be specified immediately before the input bitstream
file.

Here is the multiple file syntax.

makeprom -u hexaddress0 filename filename...

Here is the multiple -u options syntax.

makeprom -u hexaddress1 filename -u hexaddress2 filename...

–v

This option enables the verbose mode. It displays the running
messages that MakePROM generates while it creates a BIT file. The
following is an example syntax.

makeprom -v other options filename

Examples
To load the file test.bit up from address 0x0000 in MCS format enter
the following information at the command line.

makeprom -u 0 test

To daisy-chain the files test1.bit and test2.bit up from address 0x0000
and the files test3.bit and test4.bit from address 0x4000 while using a
8-4 Xilinx Development System

The MakePROM Program
32K PROM and the Motorola Exormax format, enter the following
information at the command line.

makeprom -s 32 -f exo -u 00 test1 test2 -u 4000
test3 test4

To load the file test.bit into the PROM programmer at address 0x400
enter the following information at the command line.

makeprom -d 400 test

To specify a PROM file name that is different from the default file
name enter the following information at the command line.

makeprom options filename -o newfilename

Using MakePROM in the XACT Design Editor
You can use MakePROM in the XACT Design Editor. If you are not
familiar with XDE, review “The XACT Design Editor” chapter in the
Development System Reference Guide. It is not necessary to select a
design prior to starting MakePROM.

Note: MakePROM is also available from the Verify menu of the
XACT Design Manager (XDM). See the “The XACT Design Manager”
chapter in the Development System Reference Guide.

To start MakePROM, enter makeprom at the XDE prompt or select
MakePROM from the Programs menu. To exit MakePROM and
return to the XDE screen, enter exit or select it from the Misc menu.

MakePROM Screen
The MakePROM screen has five parts: the command prompt, the
status bar, the current directory bar, the PROM memory table, and
menus. The workstation Make PROM screen is shown in Figure 8-1.

You can enter MakePROM commands at the command prompt, or
use the mouse to select them from the menus.

For PCs, the status bar at the bottom of the screen displays the
selected PROM format (MCS-86, EXORMAX, or TEKHEX) and the
selected size of the current PROM in kilobytes.

The PROM memory table, located in the center of the screen, displays
the addresses at which different design files have been placed. From
Development System Reference Guide, Volume 2 8-5

Development System Reference Guide, Volume 2
left to right, it displays the starting address, the ending address, and
the name of the design or designs. Designs listed in the same line are
concatenated daisy-chained.

Figure 8-1 The MakePROM Screen (Workstation)

MakePROM Menus
MakePROM commands are nested under three menu headers: Prom,
Misc, and Profile.

● Prom — This menu contains commands for specifying PROM
formats, specifying the designs to load, saving the PROM file, and
clearing designs from the PROM.

● Misc — This menu contains commands for online help, exiting,
printing, information on PROM size, setting PROM size, and
executing command files.

● Profile — This menu contains commands used to define screen,
mouse, and function key defaults. The Profile menu also contains
the Saveprofile command for writing over the default file,
makeprom.pro.

A detailed description of each command follows in the “Command
Descriptions” section.

PROM
Memory

Table

Command Prompt

Current Directory Bar Status Bar

Addr1 Addr2 File(s)
8-6 Xilinx Development System

The MakePROM Program
Command Descriptions
Note: MakePROM commands operate only on BIT files that have
been correctly made using the MakeBits program. If you specify an
improper file, the system returns an error message.

This section lists the commands in alphabetical order; parameters are
listed after syntax and option parameters are shown in square
brackets.

Clear — Clear PROM
Menu Prom

Syntax clear

Abbreviations none

Clear removes all files that are currently loaded into the PROM.

Delete — Remove File at Address from PROM
Menu Prom

Syntax delete address
delete segment:offset

Abbreviations d

Note: The segment: offset parameters are valid for the MCS-86
format only.

Delete removes files located at a specified address from the PROM
memory files. Memory previously allocated for that file in the PROM
memory file becomes available for other data.

When the PROM format is set to MCS-86, Delete addresses can be
specified as a hexadecimal segment and offset, for example:

segment:offset

forms an address equivalent to

(segment x 16) + offset
Development System Reference Guide, Volume 2 8-7

Development System Reference Guide, Volume 2
DOS — Temporarily Suspend MakePROM and Enter
Operating System (PC Only)

Menu Misc

Syntax dos command

Abbreviations none

Use the DOS command to execute any DOS command without
ending the current MakePROM session.

If you specify DOS without specifying a command, you get a DOS
prompt. Entering Exit at the prompt returns MakePROM to the state
you left it before you entered DOS.

If you specify DOS with a DOS command, MakePROM immediately
executes the specified DOS command, then prompts you to press a
key to resume the current MakePROM session.

A limited amount of memory is available when you use DOS in this
manner. Some commands that require significant amounts of
memory may not operate correctly and result in an error.

You should not run those DOS commands that cause programs to be
installed in memory.

Directory — Change Working Directory
Menu Misc

Syntax directory directory name

Abbreviations dir

Use this command to change the current working directory, without
exiting to the operating system prompt.

Execute — Perform Commands in Command File
Menu Misc

Syntax execute filename_parameter

Abbreviations exec

Execute causes MakePROM to run the commands in a specified
command file. A command file is a text file that contains MakePROM
8-8 Xilinx Development System

The MakePROM Program
commands. MakePROM runs the commands in the order in which
they appear in the file. When it reaches the end of the file,
MakePROM can receive commands from the keyboard or mouse.

If a command file contains an Execute command, MakePROM runs a
second command file within the first one. You can run up to eight
nested command files in this fashion.

Parameters passed to command files are indicated with a %n (n=1, 2,
3…) within the command file, and refer to the number of the
parameter in the command line. See Figure 8-2 for an example of how
to use parameters within the Execute command.

Figure 8-2 Example of an Execute Command

Exit — Quit MakePROM
Menu Misc

Syntax exit

Abbreviations none

Exit ends the current MakePROM session. If you exit from XDE,
control returns to the XDE Executive screen. If you exit from DOS,
control returns to DOS. If the current PROM memory image has not
been saved in a file, a message stating that the PROM file will be lost
appears, and you are asked to confirm that this is acceptable.

Command file TEST:
set promsize %1
load %2 up %3
load %4 up %5 %6

Input command line:
TEST 64 0000 design1 022c design2 design3

Commands Performed
set promsize 64
load 0000 up design1
load 022c up design2 design3
.
.
.

Development System Reference Guide, Volume 2 8-9

Development System Reference Guide, Volume 2
Format — Select the PROM File Format
Menu Prom

Syntax format format

Abbreviations f

Format sets the type of file format in which the PROM data are
stored. The following are the available formats.

● MCS86 — Intel MCS-86 hexadecimal object

● EXORMAX — Motorola Exormax

● TEKHEX — Tektronix hexadecimal

The file format must be set before executing the Save command or
MakePROM issues a warning message.

Keydef — Define a Function Key
Menu Profile

Syntax keydef [shift|ctrl|alt] keyname

Abbreviations ke

Use this command to assign a command to a function key. The
keyname value must be one of the function keys from F2 through F10.
(F1 is reserved for Help). You can use the Shift, Ctrl, or Alt key in
combination with the function key. To specify a combination key,
select “shift,” “ctrl,” or “alt” before entering the keyname.

To delete a function key definition, enter “keydef keyname,” then ↵ or
a new definition if you want to replace the old definition.

Load — Load a Bitstream File into PROM Memory at
Specified Address

Menu Prom

Syntax load address up|down filename
load address:segment up|down filename

Abbreviations l
8-10 Xilinx Development System

The MakePROM Program
Note: The segment: offset parameters are valid for the MCS-86
format only.

When you use the Load option, the PROM file that is created is used
to load the data, either up or down, from the specified address.
Specifying Up means that the data is loaded from the given address
toward a larger PROM address. Specifying Down means that the data
is loaded from the given address towards 0.

Note: Load addresses are assumed to be in hexadecimal.

If you name more than one bitstream (BIT) file, MakePROM
concatenates the files and includes the appropriate daisy chain
information for loading multiple FPGA devices as a daisy chain. The
length count in such a concatenated file is the sum of the length
counts of all the concatenated bitstream files.

When the PROM format is set to MCS86, you can specify the Load
addresses as either a hexadecimal address, or as an extended base
address consisting of a hexadecimal segment and offset,
where:

segment: offset

forms an address equivalent to

(segment x 16) + offset

The following command creates a PROM configuration file for the
single bitstream in design.bit and loads it in incremental PROM
addresses from location 0 up.

load 0 up design.bit

The following command creates a PROM configuration for a daisy
chain of FPGAs devices where design1.bit represents the first FPGA
device in the chain, design2.bit the second, and design3.bit the third.
The PROM addressing begins at location FFFF (hex) and is
decremented.

load FFFF down design1.bit design2.bit design3.bit
Development System Reference Guide, Volume 2 8-11

Development System Reference Guide, Volume 2
Mouse — Change the Mouse Configuration
Menu Profile

Syntax mouse b1|b2|b3 function

Abbreviations mou

Mouse changes the mouse button functions. You define these
functions by selecting the mouse button and then the function. A
three-button mouse is needed for full functionality.

● B1 selects the left mouse button.

● B2 selects the middle mouse button.

● B3 selects the right mouse button.

After selecting a mouse button, you must also select one of four
functions that determine the action of the selected button.

● Select enters the cursor location. This is the default setting for all
the mouse buttons.

● Done applies the specified function and returns to the selection
menu.

● Menu displays the most recently displayed menu and moves the
cursor to the most recently selected item. If a menu is already
displayed, the mouse button enters the cursor location; it is the
same as Select.

Note: Read the mouse and cursor command descriptions in the “The
XACT Design Editor” chapter of this reference guide for more
information about configuring the mouse.

Print — Print the Current PROM Memory Image
Screen

Menu Misc

Syntax print options filename

Abbreviations pr

Note: See also the “Printer” section in “The XACT Design Editor”
chapter of the Development System Reference Guide.
8-12 Xilinx Development System

The MakePROM Program
Print prints the MakePROM screen to the specified file. Three options
are available with Print.

● Screen prints all the information that appears on the screen,
including menus.

● Display prints the current working window.

● Map generates an ASCII file of the current PROM memory image.

Printing with the Screen or Display option generates a binary
graphics file formatted to a specific type of printer. Printing with the
Map option generates an ASCII text file containing the PROM table.
You select the printer type from the XDE Executive screen with the
Printer command.

Query — Display the Current Setting for the PROM
Size

Menu Misc

Syntax query promsize

Abbreviations que

Query displays the current PROM size in kilobytes.

Readprofile — Set MakePROM Options to Settings in
makeprom.pro File

Menu Profile

Syntax readprofile

Abbreviations readp

Readprofile executes the commands in the makeprom.pro file, which
contains commands for configuring MakePROM such as Mouse, Set
Promsize, and Format. Use Saveprofile to rewrite the makeprom.pro
file with current settings.
Development System Reference Guide, Volume 2 8-13

Development System Reference Guide, Volume 2
Save — Save Currently Specified, Formatted Data
into File

Menu Prom

Syntax save filename

Abbreviations s

Save saves the currently specified and formatted data into the named
file. Save also builds a default save file using the name of the first BIT
file in the first daisy chain in the PROM. If you specify a file format
and it is not MCS, EXO, or TEK, MakePROM displays an error
message and does not save the data. You must use Format to set the
file format before executing Save.

Saveprofile — Save Current MakePROM Options
Settings to makeprom.pro File

Menu Profile

Syntax saveprofile

Abbreviations savep

Saveprofile saves current MakePROM settings in the makeprom.pro
file, which contains commands for configuring MakePROM, such as
Mouse, Set Promsize, and Format. The commands in this file are
automatically executed when you start MakePROM.

Set (PROMSize) — Specify PROM Size
Menu Misc

Syntax set promsize size

Abbreviations none

Set specifies the size of the PROM to be loaded with the current data.
It displays PROM sizes up to 32 megabytes and allows you to enter
any size up to 2 gigabytes on the command line. PROM size must be a
power of 2, as shown in the following example.

set promsize 32

sets the PROM size to 32 kilobytes. The default size is 64 K.
8-14 Xilinx Development System

The MakePROM Program
Set (Endclocks) — Modify Daisy-Chain Length
Menu Misc

Syntax set endclocks n

Abbreviations none

You can modify the length count that is embedded in each daisy-
chain that is built using the Set endclocks command. The actual
length of the daisy chain is unchanged, since no padding 1s are
added. You can use this whether you have one BIT file or multiple
BIT files. The value is part of the output from Settings and
SaveProfile.

Settings — Display Current Values of MakePROM
Settings

Menu Profile

Syntax settings

Abbreviations sett

Settings displays the value of MakePROM settings, such as Set Prom,
Mouse, and Format.
Development System Reference Guide, Volume 2 8-15

Development System Reference Guide, Volume 2
8-16 Xilinx Development System

Index

Symbols
‘‘S’’ parameter, 2-15

constraint files, 5-16, 5-20
case sensitivity, 5-18
syntax, 5-20
Development System Reference Guide, Volume 2— 0401406 01 i

A
ACLK, 4-9, 4-20
AKA file

Map2LCA, 4-2, 4-7, 4-25
XNFMAP, 3-16

all setting, 2-11
guide_blks option, 6-43
guide_routing option, 6-44
guide_thru_routes option, 6-15, 6-19,
6-21, 6-34, 6-44
ignore_locs option, 6-30, 6-47
ignore_timespec option, 6-37, 6-46
lock_routing option, 6-15, 6-19, 6-20,
6-21, 6-34, 6-48

allow block constraint, 5-20
AND gates, 1-7
annealing progress messages, 5-36
APR, 5-1

-a option, 5-3
allow block constraint, 5-20
annealing phase, 5-12
annealing progress messages, 5-36
APRLoop, 5-6
area, 5-19
batch file for multiple runs, 5-11
block, 5-18, 5-24
block matching, 5-5
-c option, 5-3, 5-17
case sensitivity, 5-2
command options summary, 5-9
command–line syntax, 5-2

constraints, 5-16, 5-20
allow block, 5-20
definitions, 5-18
flag IOB, 5-21, 5-28
flag net, 5-22
include, 5-22
lock block, 5-23
lock IOBs, 5-23
lock net, 5-23
lock pin, 5-24
place block, 5-24, 5-28
place net, 5-25
prohibit block, 5-25
prohibit location, 5-26
summary table, 5-27
weight net, 5-26

CST file, 5-3, 5-15, 5-16, 5-17
decrease net delays, 5-7
decrease program run time, 5-8
design files, 5-13

Apollo, 5-14
HP700, 5-14
PC, 5-14
RS6000, 5-14
Sun workstation, 5-14

DEV file, 5-16
device files, 5-16

Development System Reference Guide, Volume 2
evaluate routing effectiveness, 5-10
external IOB, 5-19, 5-28
flag IOB constraint, 5-21, 5-28
flag net constraint, 5-22, 5-26
-g option, 5-4
guided design, 6-22
improving results, 5-27
include constraint, 5-22
incremental design, 5-4
informational messages, 5-29
input files, 5-14

CST file, 5-15
LCA file, 5-15, 5-16
SCP file, 5-15
summary, 5-15

internal IOB, 5-20, 5-28
interrupting, 5-11

continue, 5-12
quit, 5-12
suspend, 5-12
switch to next phase, 5-12

-j option, 5-5
-jpl option, 5-10
-l option, 5-6
LCA file, 5-4, 5-10, 5-15
LCA guide file, 5-16
leading path specifiers, 5-13
-ljg option, 5-10
location, 5-18
lock block constraint, 5-23
lock IOBs constraint, 5-23
lock net constraint, 5-6, 5-23, 5-27
lock pin constraint, 5-24
locked block, 5-20
message file, 5-6
multiple runs, 5-7, 5-11, 5-37
net, 5-18
net matching, 5-5
net weight, 5-18
net–locked block, 5-20

-o option, 5-6, 5-36, 5-38
option combinations, 5-9
options, 5-2

add logic to LCA file, 5-10
complete routing, 5-10
constraints file, 5-3
create report file, 5-10
display all functions, 5-8
-g, 6-22
improve routing time, 5-7
LCA file as guide file, 5-4
lock blocks in place, 5-6
-p, 6-23
place design without routing, 5-5
positioning on command line, 5-2
preserve initial routing informa-

tion, 5-6
redirect message output, 5-6
routing attempts, 5-3
set router type, 5-7
set seed for multiple runs, 5-7
skip annealing algorithm, 5-6
summary, 5-9
suppress overwrite warning, 5-8
use faster placement, 5-8
useful combinations, 5-9

options summary, 5-8
OUT file, 5-6
output file, 5-29
output files, 5-29

LCA file, 5-29
OUT file, 5-29
RPT file, 5-29
summary table, 5-30

-p option, 5-6, 5-20, 5-24
package information files, 5-16
pin, 5-18, 5-24
ii Xilinx Development System

Index
pin matching, 5-5
PKG file, 5-16
-pl option, 5-10
place block constraint, 5-24, 5-27, 5-28
place net constraint, 5-25
placing larger designs, 5-36
prohibit block constraint, 5-25
prohibit location constraint, 5-24, 5-26
-q option, 5-6
quenching phase, 5-12
quitting current run, 5-12, 5-13
-r option, 5-7
report file, 5-29

block placement and pin swapping
table, 5-32

delay table, 5-35
final results summary, 5-31
header information, 5-31
load pins, 5-35
net delay table, 5-34
net routing order, 5-32
net status, 5-34
net, block, and location flags ta-

bles, 5-33
source pins, 5-34
unrouted nets listing, 5-32

reports, 5-30
routing larger designs, 5-36
routing phase, 5-12

continue, 5-13
quit APR run, 5-13
suspend, 5-12
write report file, 5-13

RPT file, 5-10
running APR in background, 5-11
running of RS6000, 5-14
running on Apollo, 5-14
running on HP700, 5-14

running on PC, 5-14
running on Sun workstation, 5-14
-s option, 5-7
SCP file, 5-15, 5-16, 5-17, 5-28
SPD file, 5-16
speed information files, 5-16
-t option, 5-7
timing improvment, 5-7
use with XDM, 5-1
-w option, 5-8
weight net constraint, 5-26
-x option, 5-8
-y option, 5-8

APRLoop, 5-6, 5-13, 5-37
command–line syntax, 5-37
design iterations, 5-38
interrupting, 5-37
-o option, 5-38
options, 5-37
OUT file, 5-39
redirecting output, 5-38
terminating, 5-37

area, 5-19
auto setting

dc2p option, 6-35, 6-38
dc2s option, 6-39
dp2p option, 6-41
dp2s option, 6-41

Automatic Place and Route program, 5-1

B
BIT file

MakeBits, 7-3
MakePROM, 8-1, 8-7

bitstreams
ASCII, 7-39
creating in LCA file, 7-20
download port selection, 7-41
downloading to LCA device, 7-32
generating multiple, 7-2, 7-14, 7-20
generating with MakeBits, 7-1, 7-21,
7-35
Development Sytem Reference Guide, Volume 2 iii

Development System Reference Guide, Volume 2
loading in MakePROM, 8-10
mask file, 7-14
readback, 7-27
reading file, 7-45
renaming file, 7-14
saving, 7-49
tied, 7-47
use with Rawbits, 7-45

BLKNM parameter, 3-23
block, 5-18
blocks

guided placement, 6-18
boundary scan, 7-26
BSReconfig (XC5200)

enable/disable reconfiguration, 7-27
bus pins, 1-15

C
C2S specifications, 6-36, 6-59, 6-64
carry logic, 2-11, 2-15, 6-22, 6-30, 6-46, 6-47
CLBMAP symbols, 1-23, 3-2, 3-6, 3-9, 3-19,
3-52, 4-16, 6-22

guided design, 3-17
CLBs

adding interconnects, 7-17
assigning block names to primitives,
3-23
CLBMAP symbols, 3-19
direct flip–flop input pins, 3-6
FILE= attribute, 3-7
function generators, 3-5, 3-23
invalid location in MAP file, 4-9
location constraints, 1-11
mapping, 3-9
multiple–block placement, 3-26
pairing flip–flops, 3-10, 3-24
partitioning in XNFMap, 6-4, 6-13
placement, 5-19, 5-21
primitive symbols, 1-7
primitives, 3-68
prohibit location, 5-26
reducing number in XNFMAP, 3-8

register ordering, 3-10
relax signal–combining requirements,
3-8
representing internal nodes, 6-12
single–block placement, 3-25
through-routes, 6-20, 6-32

clock-to-pad paths, 6-35, 6-38, 6-63
clock-to-setup paths, 6-35, 6-39, 6-63
CMOS input signal threshold, 7-4
complete option, 6-29, 6-37, 6-61
configuration command

options
donePad, 7-24

constraints
APR, 5-16
PPR, 6-23

constraints file, 2-8, 2-10, 2-12, 6-21
CRC configuration, 7-26
CRF file, 3-2, 3-3

XNFMAP, 3-29
crystal oscillator, 7-15, 7-25
crystal oscillators, 4-19, 4-20
CST file, 2-8, 2-10, 2-12

APR, 5-3, 5-15, 5-17
guided design, 6-21
input to PPR, 6-10, 6-21, 6-23
naming, 6-29, 6-38, 6-62

cstfile option, 2-8, 2-10, 6-29, 6-38, 6-62
CY4 symbols, 2-11, 2-15, 6-22, 6-30, 6-46,
6-47
cyclic redundancy checking, 7-5

D
daisy chain, 7-31, 8-2, 8-5, 8-11
dc2p option, 6-35, 6-38, 6-63
dc2s option, 6-35, 6-39, 6-63
design rule checking, 2-1
Design Rules Checker, 7-1
DEV file

APR, 5-16
dflt_sig_dly option, 6-37, 6-40, 6-62
iv Xilinx Development System

Index
DONE pin pullup
XC3000, 7-24
XC4000/XC5200, 7-26

DONE timing
XC3000, 7-25

dp2p option, 6-35, 6-40, 6-63
dp2s option, 6-41, 6-63
DRC, 7-1

E
EditLCA, 7-17
EPROMs, 7-14
estimate option, 6-28, 6-42, 6-61
EXORMAX format, 8-1, 8-3, 8-5, 8-10, 8-14
explicit (X) attribute, 3-22
external IOB, 5-19

F
flag IOB constraint, 5-21
flag net constraint, 5-22
flattened files, 1-2
FMAP symbols, 6-22, 6-29, 6-45, 6-62
forced_on setting, 6-59
function generators, 6-2, 6-20, 6-22, 6-54
function keys, 7-34, 8-10

G
GCLK, 4-9, 4-20
guide file, 6-1, 6-3, 6-5, 6-6, 6-8, 6-10, 6-12,
6-13, 6-15, 6-19, 6-20, 6-23, 6-27, 6-33, 6-34,
6-35, 6-42, 6-44, 6-47, 6-64, 6-65
guide option, 6-3, 6-5, 6-6, 6-8, 6-14, 6-22,
6-33, 6-42, 6-64
guide_blks option, 6-14, 6-17, 6-19, 6-20,
6-23, 6-33, 6-43, 6-64
guide_only option, 6-14, 6-19, 6-35, 6-43,
6-64
guide_routing option, 6-14, 6-17, 6-20,
6-33, 6-44, 6-65
guide_thru_routes option, 6-14, 6-15, 6-17,
6-20, 6-34, 6-44, 6-65
guided design

constraints, 6-21

definition, 6-10
in incremental design, 6-11, 6-15
in iterative design, 6-11, 6-15
in XDE, 6-11, 6-17
IOBs, 6-12
naming signals, 6-12
obtaining best results, 6-12
options, 6-14
representing internal nodes in XDE,
6-12
synthesized logic, 6-12
XACT-Performance specifications, 6-21
XC3000A/L designs, 6-13, 6-22
XC3100A designs, 6-13, 6-22
XC4000 designs, 6-13

H
HBLKNM parameter, 3-23, 3-24
helpall option, 2-7, 2-10, 6-45, 6-61
hierarchical files, 1-2
HMAP symbols, 6-22, 6-29, 6-45, 6-62

I
I/O symbols, 2-11, 6-47
ignore_maps option, 6-21, 6-29, 6-45, 6-62
ignore_rlocs option, 2-8, 2-11, 6-22, 6-30,
6-46, 6-62
ignore_timespec option, 2-8, 2-12, 6-37,
6-46, 6-63
ignore_xnf_locs option, 2-8, 2-11, 6-22,
6-30, 6-47, 6-62
ignored setting

dc2p option, 6-39
dc2s option, 6-39
dp2p option, 6-36, 6-41
dp2s option, 6-41
timing option, 6-31, 6-59

include constraint, 5-22
incremental design, 6-11, 6-15
input levels

XC3000, 7-25
Development Sytem Reference Guide, Volume 2 v

Development System Reference Guide, Volume 2
Intel MCS-86 PROM format, 8-1, 8-3, 8-5,
8-7, 8-10, 8-11, 8-14
interconnects

unused, 7-16
interior setting, 2-11, 6-47
internal IOB, 5-20
io setting, 2-11, 6-47
IOBs

assigning block names to primitives,
3-23
external, 5-28
internal, 5-20, 5-28
invalid location in MAP file, 4-9
loadless, 4-8
location constraints, 1-11, 3-6
locking, 5-23
matching to guide file, 6-12
pad signals, 1-26
partitioning in XNFMap, 6-4
placement, 5-19, 5-21
placement examples, 3-26
prohibit location, 5-26
Q pin, 7-17
sourceless, 4-8

iterative design, 6-11, 6-15

L
LCA file

APR, 5-1, 5-4, 5-15, 5-16
incremental design, 5-4
input to PPR, 6-10
MakeBits, 7-2
Map2LCA, 4-2
output by PPR, 6-2, 6-3, 6-5, 6-6, 6-8,
6-10, 6-13, 6-19
XNFMAP, 3-16

LCA2XNF
creating partitioning guide file in XNF-
Map, 3-16
options

-b, 6-13

LCB file
output by PPR, 6-2, 6-10

limit setting, 6-54
LL file

MakeBits, 7-3
loadless signals, 2-15
LOC constraints, 6-22, 6-30, 6-47, 6-62

ignoring in XNFPrep, 2-11
LOC parameter, 4-17
LOC parameters, 3-23, 3-24
location, 5-18
lock block constraint, 5-23
lock IOBs constraint, 5-23
lock net constraint, 5-23
lock pin constraint, 5-24
lock_routing option, 6-14, 6-15, 6-17, 6-20,
6-34, 6-47, 6-65
locked block, 5-20
LOG file

output by PPR, 6-10
logfile option, 2-5, 2-13, 6-28, 6-48, 6-61
longlines, 4-23
lower-level files, 1-2

M
M1 pin pullup, 7-26
MakeBits, 8-1

checking circuitry on download cable,
7-48
commands

changing startup and configura-
tion options, 7-24

checking circuitry on download
cable, 7-48

creating ASCII bitstream file, 7-45
defining function keys, 7-34
defining mouse button functions,

7-40
displaying net information, 7-43
displaying profile settings, 7-48
vi Xilinx Development System

Index
downloading bitstream to LCA de-
vice, 7-32

executing XDE command file, 7-34
exiting MakeBits, 7-34
generating bitstream, 7-35
invoking DRC, 7-32
reading specified bitstream file,

7-45
restoring tied interconnects to un-

used state, 7-46
saving information to text file, 7-46
saving options to makebits.pro

file, 7-47
selecting startup sequence, 7-30
setting LCA device startup op-

tions, 7-23
setting options to makebits.pro

file, 7-46
setting printer type, 7-43
specifying download cable port,

7-41
suspending MakeBits, 7-32
writing bitstream buffer to file,

7-49
writing bitstream mask file, 7-40

configure command
options

aborting readback sequence,
7-27

activating LCA Done signal,
7-28

adding pullup/pulldown to
M1 pin, 7-26

adding pullup/pulldown to

TDO pin, 7-26
driving oscillator, 7-27
enabling CRC, 7-26
enabling crystal oscillator am-

plifier, 7-25
enabling pullup resistor on D/

P pin, 7-24
enabling pullup resistor on

Done pin, 7-26
enabling/disabling reconfigu-

ration via boundary
scan, 7-27

including flip-flop and latch
contents in bitstream,
7-27

reading back configured LCA
device, 7-24, 7-25

releasing I/O from three-state
condition, 7-29

releasing set-reset to latches
and flip-flops, 7-29

selecting clock to synchronize
release of Done pin,
7-28

setting configuration clock
rate, 7-26

setting Done timing, 7-25
setting global reset timing,

7-25
setting LCA input threshold

level, 7-24, 7-25
setting readback clock, 7-27
synchronizing I/O startup se-

quence to Done In sig-
nal, 7-28
Development Sytem Reference Guide, Volume 2 vii

Development System Reference Guide, Volume 2
creating a configuration set, 7-39
creating ASCII bitstream file, 7-45
defaults command

options
ensuring compatibility be-

tween XC4000/
XC5200 and XC3000
devices, 7-30

ensuring XC4000 compatibili-
ty with XC2000,
XC3000, 7-31

ensuring XC4000/XC5200 in-
compatibility with
XC2000, XC3000, 7-31

synchronizing GSR and I/O
release to Done In sig-
nal, 7-31

defining function keys, 7-34
defining mouse button functions, 7-40
displaying net information, 7-43
displaying profile settings, 7-48
downloading bitstream to LCA device,
7-32
DRC command

options
checking only specified block,

7-33
checking only specified net,

7-33
checking unrouted design,

7-33
displaying information on

DRC, 7-33
issuing progress status, 7-33
skipping block checking, 7-33
skipping net checking, 7-33

examples, 7-20

executing XDE command file, 7-34
exiting, 7-34
generating bitstream, 7-35
inputs, 7-2
interaction with XDE, 7-21
invoking DRC, 7-32
makeBits command

options
creating file of flip-flop output

locations, 7-39
displaying messages during

tiedown, 7-38
reflecting effects of tiedown on

timing, 7-38
tying unused interconnects,

7-36
using critical nets last in

tiedown, 7-38
Makeconfigset command, 7-39
-mbo= option, 7-20
options, 7-4

creating logic allocation file, 7-13
creating rawbits file, 7-4
disabling pullup resistor for Done

pin, 7-15
displaying help screen, 7-13
displaying status messages, 7-19
generating mask file, 7-13
renaming configuration bitsream

file, 7-14
rewriting FPGA design file, 7-19
running Design Rules Checker, 7-4
saving tied design, 7-14
setting CMOS input signal thresh-

olds, 7-4
setting XC4000/XC5200 configura-

tion, 7-5
viii Xilinx Development System

Index
specifying crystal oscillator op-
tions, 7-15

specifying D/P pin timing, 7-19
specifying readback options, 7-15
specifying reset timing, 7-20
tying unused interconnects, 7-16

outputs, 7-3
purpose, 7-3, 7-4, 7-5, 7-13, 7-15, 7-19
reading specified bitstream file, 7-45
restoring tied interconnects to unused
state, 7-46
saving information to text file, 7-46
saving options to makebits.pro file, 7-47
screen, 7-22
selecting startup sequence, 7-30
Setconfigset command, 7-48
setting LCA device startup options,
7-23
setting options to makebits.pro file,
7-46
setting printer type, 7-43
specifying download cable port, 7-41
suspending, 7-32
syntax, 7-2
tie

changes to net delays, 7-44
writing bitstream buffer to file, 7-49
writing bitstream mask file, 7-40
XC2000 configuration

enabling pullup resistor on D/P
pin, 7-24

reading back LCA device, 7-24
setting LCA input threshold level,

7-24
XC3000 configuration

enabling crystal oscillator amplifi-
er, 7-25

enabling pullup resistor on D/P
pin, 7-24

reading back configured LCA de-
vice, 7-25

setting Done timing, 7-25
setting global reset timing, 7-25
setting LCA input threshold level,

7-25
XC4000 configuration

releasing set-reset to latches and
flip-flops, 7-29

XC4000/XC5200 configuration
aborting readback sequence, 7-27
activating LCA Done signal, 7-28
adding pullup/pulldown to M1

pin, 7-26
adding pullup/pulldown to TDO

pin, 7-26
enabling CRC, 7-26
enabling pullup resistor on Done

pin, 7-26
including flip-flop and latch con-

tents in bitstream, 7-27
releasing I/O from three-state con-

dition, 7-29
selecting clock to synchronize re-

lease of Done pin, 7-28
setting configuration clock rate,

7-26
setting readback clock, 7-27
synchronizing I/O startup se-

quence to Done In signal,
7-28

XC5200 configuration
driving oscillator, 7-27
Development Sytem Reference Guide, Volume 2 ix

Development System Reference Guide, Volume 2
enabling/disabling reconfigura-
tion via boundary scan,
7-27

XDE version, 7-2
XMake version, 7-2

makebits.pro file, 7-46
Makeconfigset command

MakeBits, 7-39
MakePROM

accessing from XDE, 8-1, 8-5
changing mouse button functions, 8-12
clearing PROM memory files fom
RAM, 8-7
commands

clearing memory files from RAM,
8-7

defining function keys, 8-10
defining mouse button functions,

8-12
displaying current MakePROM

settings, 8-15
displaying current PROM size,

8-13
executing command file, 8-8
executing commands in

makeprom.pro file, 8-13
exiting MakePROM, 8-9
loading bitstream file, 8-10
printing MakePROM screen, 8-12
removing file from PRM memory

in RAM, 8-7
saving data into file, 8-14
saving MakePROM settings in

makeprom.pro file, 8-14
selecting PROM format, 8-10
setting PROM size, 8-14
suspending MakePROM, 8-8

defining function keys, 8-10
displaying PROM size, 8-13
displaying value settings, 8-15
examples, 8-4
executing command file, 8-8
executing makeprom.pro file, 8-13
exiting and returning to XDE, 8-9
loading BIT file at specified address,
8-10
menus

Misc, 8-6
Profile, 8-6
Prom, 8-6

options
displaying help screen, 8-3
displaying messages, 8-4
loading BIT files down from hex

address, 8-2
loading BIT files up from hex ad-

dress, 8-4
loading BIT files up or down from

next address, 8-3
setting PROM format, 8-3
setting PROM size, 8-4
specifying PROM output file

name, 8-3
outputs, 8-2
printing screen, 8-12
purpose, 8-1
removing files from PROM memory in
RAM, 8-7
saving information to file, 8-14
saving settings in makeprom.pro file,
8-14
screen

command prompt, 8-5
PROM memory table, 8-6
status bar, 8-5
x Xilinx Development System

Index
selecting PROM format, 8-10
specifying PROM size, 8-14
suspending and returning to DOS, 8-8
syntax, 8-2

MakeProm
stand-alone version, 8-1

makeprom.pro file, 8-13
manipulating XACT-Performance parame-
ters in XNFMerge, 1-13
MAP file, 3-1, 3-3, 3-32, 3-34

input to PPR, 6-1, 6-2, 6-9
Map2LCA, 4-1, 4-2, 4-8
output by XNFMap, 6-5, 6-8, 6-9
signal binding, 1-8
symbols, 1-8
XNFMerge, 1-2, 1-3, 1-7

MAP2LCA
design.map file, 4-2

Map2LCA
error messages, 4-10
example, 4-4
inputs

MAP file, 4-2
options

ignoring MAP file placement con-
straints, 4-2

specifying LCA device, 4-3
outputs

AKA file, 4-2
LCA file, 4-2
SCP file, 4-2

purpose, 4-1
syntax, 4-1
warning messages, 4-8

mapping your design, 3-1
Mask file, 7-4
MCS–86 format, 8-1, 8-3, 8-5, 8-7, 8-10,
8-11, 8-14
MemGen, 6-6
Misc menu, 8-6

Motorola EXORMAX PROM format, 8-1,
8-3, 8-5, 8-10, 8-14
mouse command

options
done, 7-41
menu, 7-41
select, 7-41
switch, 7-41

MRG file
XNFMerge, 1-4

N
net, 5-18
net locations, 6-56, 6-64
net weight, 5-18
net–locked block, 5-20
never setting, 6-54
none setting, 2-11

guide_thru_routes option, 6-21, 6-45
ignore_locs setting, 6-47
ignore_timespec option, 6-46
lock_routing option, 6-20, 6-48

non-primitive symbols, 1-7, 1-11, 1-14

O
OBUF components, 4-22
ok setting, 6-54
open_guide_blocks option, 6-48
OR gates, 1-7
OrCAD/SDT

register ordering, 3-12
OscClk (XC5200)

drive oscillator, 7-27
OUT file

APR, 5-6, 5-29
outfile option, 2-9, 2-13, 6-10, 6-28, 6-61

P
pad-to-pad paths, 6-35, 6-40, 6-63
pad-to-setup paths, 6-41, 6-63
parameter file, 2-13, 6-25, 6-49, 6-61
paramfile option, 2-13, 6-49, 6-61
Development Sytem Reference Guide, Volume 2 xi

Development System Reference Guide, Volume 2
part type
XNFPrep, 2-14

Partition, Place, and Route program, 6-1
partitioning guide file, 3-3
partlist.xct file, 4-20, 4-24
parttype option, 2-9, 2-14, 6-50, 6-61
path delay, 6-2, 6-21, 6-35, 6-36, 6-40, 6-51,
6-59, 6-62, 6-63, 6-64
path_timing option, 6-36, 6-51, 6-63
PBK file, 3-3
PGF file, 3-2, 3-3, 3-12, 6-5, 6-8, 6-13
pin

APR constraints, 5-18
pins

bus, 1-15
swapping on matched blocks in APR,
5-5
symbols in XNFMerge, 1-8, 1-24

PKG file
APR, 5-16

place block constraint, 5-24
place net constraint, 5-25
place_effort option, 6-30, 6-51, 6-62
PPR

changing routing from guide file, 6-15,
6-20, 6-34, 6-47, 6-65
completing placement but not unguid-
ed routing, 6-19, 6-35, 6-43, 6-64
considering path delays in placement
and routing, 6-36, 6-51, 6-63
constraints, 6-23
controlling placement quality and time,
6-30, 6-51, 6-62
controlling routing quality and time,
6-31, 6-55, 6-63
copying routing from guide file, 6-34,
6-44, 6-65
CST file, 6-22, 6-29
design flow

default, 6-2
XC3000A/L with X-BLOX, 6-7

XC3000A/L without X-BLOX, 6-4
XC3100A with X-BLOX, 6-7
XC4000 with X-BLOX, 6-6
XC4000 without X-BLOX, 6-3

determining blocks to be guided, 6-23,
6-33, 6-43, 6-64
displaying list of options, 6-45, 6-61
families supported, 6-1
generating device utilization statistics,
6-28, 6-42, 6-61
guided design, 6-10

constraints, 6-21
incremental design, 6-11, 6-15
iterative design, 6-11, 6-15
obtaining best results, 6-12
options, 6-14
placement and routing in XDE,

6-11, 6-17
PPR and APR, 6-22
XACT-Performance specifications,

6-21
XC3000A/L designs, 6-13, 6-22
XC3100A designs, 6-22
XC4000 designs, 6-13

guiding design implementation, 6-22,
6-33, 6-42, 6-64
ignoring FMAP/HMAP symbols, 6-22,
6-29, 6-45, 6-62
ignoring LOC constraints, 6-22, 6-30,
6-47, 6-62
ignoring RLOC constraints, 6-22, 6-30,
6-46, 6-62
ignoring XACT-Performance require-
ments, 6-37, 6-46, 6-63
input files, 6-9

CST, 6-10
LCA, 6-10
MAP, 6-1, 6-9
xii Xilinx Development System

Index
XTF, 6-1, 6-9
invoking

command line, 6-25
XDM, 6-24

meeting XACT-Performance require-
ments, 6-36, 6-58, 6-64
naming constraints file, 6-29, 6-38, 6-62
options

complete, 6-29, 6-37, 6-61
cstfile, 6-29, 6-38, 6-62
dc2p, 6-35, 6-38, 6-63
dc2s, 6-35, 6-39, 6-63
dflt_sig_dly, 6-37, 6-40, 6-62
dp2p, 6-35, 6-40, 6-63
dp2s, 6-41, 6-63
estimate, 6-28, 6-42, 6-61
guide, 6-3, 6-5, 6-6, 6-8, 6-14, 6-22,

6-33, 6-42, 6-64
guide_blks, 6-14, 6-17, 6-19, 6-20,

6-23, 6-33, 6-43, 6-64
guide_only, 6-14, 6-19, 6-35, 6-43,

6-64
guide_routing, 6-14, 6-17, 6-20,

6-34, 6-44, 6-65
guide_thru_routes, 6-14, 6-15,

6-17, 6-20, 6-34, 6-44, 6-65
helpall, 6-45, 6-61
ignore_maps, 6-21, 6-29, 6-45, 6-62
ignore_rlocs, 6-22, 6-30, 6-46, 6-62
ignore_timespec, 6-37, 6-46, 6-63
ignore_xnf_locs, 6-22, 6-30, 6-47,

6-62
lock_routing, 6-14, 6-15, 6-17,

6-20, 6-34, 6-47, 6-65
logfile, 6-28, 6-48, 6-61
open_guide_blocks, 6-48

outfile, 6-10, 6-28, 6-49, 6-61
paramfile, 6-49, 6-61
parttype, 6-50, 6-61
path_timing, 6-36, 6-51, 6-63
placer_effort, 6-30, 6-51, 6-62
report_leftmargin, 6-52
report_pagelength, 6-52
report_textwidth, 6-53
route, 6-53, 6-62
route_thru_blks, 6-32, 6-53, 6-62
route_thru_bufg, 6-32, 6-54, 6-63
router_effort, 6-31, 6-55, 6-63
rpt_net_loc, 6-56, 6-64
rpt_sym_loc, 6-57, 6-64
save_files, 6-57, 6-61
seed, 6-58, 6-63
stop_on_miss, 6-36, 6-58, 6-64
timing, 6-31, 6-59, 6-63
use_faster_c2s, 6-36, 6-59, 6-64
user_search_path, 6-60

output files, 6-10
LCA, 6-10
LCB, 6-10
LOG, 6-10
RPT, 6-10

parameter file, 6-25
path analysis, 2-1
placing new logic into guided blocks,
6-48
preserving through-routes, 6-15, 6-20,
6-34, 6-44, 6-65
printing summary of net locations,
6-56, 6-64
printing summary of symbol locations,
6-57, 6-64
purpose, 6-1
renaming log file, 6-28, 6-48, 6-61
Development Sytem Reference Guide, Volume 2 xiii

Development System Reference Guide, Volume 2
renaming RPT and LCA files, 6-28,
6-49, 6-61
reports formatting

left margin width, 6-52
reports, formatting

linelength, 6-53
page length, 6-52

routing design, 6-32, 6-53, 6-62
routing through global buffers, 6-32,
6-54, 6-63
RPT file, 6-2
running in XMake, 6-26
saving temporary files, 6-57, 6-61
specifying default clock-to-pad time,
6-35, 6-38, 6-63
specifying default clock-to-setup time,
6-35, 6-39, 6-63
specifying default pad-to-pad time,
6-35, 6-40, 6-63
specifying default pad-to-setup time,
6-41, 6-63
specifying maximum delay target, 6-37,
6-40, 6-62
specifying options in parameter file,
6-49, 6-61
specifying search path, 6-60
specifying seed, 6-58, 6-63
specifying target LCA device, 6-50, 6-61
specifying timing information for rout-
er, 6-59, 6-63
specifying whether design is complete,
6-29, 6-37, 6-61
suspending routing, 6-26
using faster C2S specification, 6-36,
6-59, 6-64
xactinit.dat files, 6-27
XACT-Performance specifications, 6-2

ppr.log file, 6-10
primitive symbols, 1-7, 1-11
Profile menu, 8-6
prohibit block constraint, 5-25

prohibit location constraint, 5-26
PROM formats

EXORMAX, 8-1, 8-3, 8-5, 8-10, 8-14
MCS–86, 8-1, 8-3, 8-5, 8-7, 8-10, 8-11,
8-14
TEKHEX, 8-1, 8-3, 8-5, 8-10, 8-14

PROM image file, 8-2
Prom menu, 8-6
PROMs, 4-1, 8-1
PRP file, 2-5, 2-14
PRX file, 2-5, 2-14
pullup resistors, 1-11, 4-23

R
RAMs, 6-6
rawbits file, 7-3
RBT file, 7-4

MakeBits, 7-3
readback

capture flip-flops, 7-27
enable/disable abort capability, 7-27

readback clock source, 7-27
readback enable/disable

XC3000, 7-25
register ordering

OrCAD/SDT, 3-12
XNFMAP, 3-10

Relationally Placed Macros, 1-11, 1-12
report option, 2-9, 2-14
report_leftmargin option, 6-52
report_pagelength option, 6-52
report_textwidth option, 6-53
reports

APR, 5-30
RESET timing

XC3000, 7-25
RLOC constraints, 6-22, 6-30, 6-46, 6-62

ignoring in XNFPrep, 2-11
RLOC parameters, 1-12
ROMs, 6-6
route option, 6-62
route_thru_blks option, 6-32, 6-53, 6-62
xiv Xilinx Development System

Index
route_thru_bufg option, 6-32, 6-54, 6-63
routed_only setting, 6-19, 6-43

guide_blks option, 6-23
router_effort option, 6-31, 6-55, 6-63
RPF file

output by PPR, 6-2
RPT file

APR, 5-29
output by PPR, 6-2, 6-10

rpt_net_loc option, 6-56, 6-64
rpt_sym_loc option, 6-57, 6-64

S
S flag, 1-9
save_files option, 6-57, 6-61
savesig option, 2-7, 2-15, 6-29
SCP file

APR, 5-15, 5-17
Map2LCA, 4-2

search path, 6-60
seed, 6-58, 6-63
seed option, 6-58, 6-63
Setconfigset command

MakeBits, 7-48
signal binding, 1-2, 1-3, 1-8

by signal name, 1-8
signals

guided routing, 6-19
sourceless signals, 2-15
SPD file

APR, 5-16
speeds.xct file, 4-24
Split, 2-15
split_report option, 2-15
startup clock source, 7-28
stop_on_miss option, 6-36, 6-58, 6-64
symbol locations, 6-57, 6-64
synthesized logic, 6-12

T
TBUF enable net, 5-25
TBUF output net, 5-25

TBUFs, 1-7, 1-11, 3-27, 4-22
TDO pin pullup, 7-26
TEKHEX format, 8-1, 8-3, 8-5, 8-10, 8-14
Tektronix TEXHEX PROM format, 8-1, 8-3,
8-5, 8-10, 8-14
through-routes, 6-20, 6-32, 6-34, 6-44, 6-53,
6-62, 6-65
TIMEGRP statements, 2-8, 2-10
TIMESPEC statements, 2-8, 2-10
timing option, 6-31, 6-59, 6-63
top-level files, 1-2

U
unguided signals, 6-19
use_faster_c2s option, 6-36, 6-59, 6-64
user_search_path option, 6-60

V
Verify menu, 8-5

W
weight net constraint, 5-26
when_routable setting, 6-59
whole_sigs setting

guide_routing option, 6-44
guide_thru_routes option, 6-15, 6-21,
6-45
lock_routing option, 6-15, 6-20, 6-48

X
xactinit.dat files, 6-27
XACT-Performance

guided design, 6-21
specifying requirements in PPR, 6-35

XACT-Performance parameters, 2-1, 2-5,
2-8, 2-10, 2-12
X-BLOX, 6-22

in XNFPrep design flow, 2-2, 2-3
inputs and outputs, 2-4, 2-6
symbols, 2-5, 2-9, 2-13, 2-14
XC3000A/L PPR design flow, 6-7
XC3100A PPR design flow, 6-7
XC4000 PPR design flow, 6-6
Development Sytem Reference Guide, Volume 2 xv

Development System Reference Guide, Volume 2
XC3000A/L designs
constraints in guided design, 6-22
guided design, 6-13, 6-22
PPR design flow, 6-4
PPR design flow with X-BLOX, 6-7

XC3100A designs
constraints in guided design, 6-22
guided design, 6-13, 6-22
PPR design flow with X-BLOX, 6-7

XC4000 designs
constraints in guided design, 6-21
guided design, 6-13
ignoring FMAP and HMAP symbols,
6-45, 6-62
PPR design flow, 6-3
PPR design flow with X-BLOX, 6-6

XDE, 6-13, 6-19, 6-35, 7-2
accessing MakePROM, 8-1, 8-5
guided design, 6-11, 6-17
representing internal CLB nodes, 6-12

XDM
invoking PPR, 6-24
invoking XNFPrep, 2-6
Verify menu, 8-5
XNFMAP, 3-2

XFF file, 2-4, 2-9
output by XNFMerge, 6-3, 6-4, 6-6, 6-7

XG file, 2-4
output by X-BLOX, 6-6, 6-8

Xilinx Design Editor, 6-11
XMake, 7-2

executing XNFPrep, 2-2, 2-3, 2-7
running PPR, 6-26

XNF file, 6-3, 6-4, 6-6, 6-7, 6-23
corrupt, 1-19
hierarchy in, 1-12
input to XNFPrep, 2-1, 2-4, 2-6
output of XNFPrep, 2-6, 2-9
signal binding, 1-8
symbols, 1-8
XNFMerge, 1-2, 1-3, 1-4, 1-7

XNFDRC, 7-1, 7-16
XNFMAP

-a option, 3-4
AKA file, 3-16
BLKNM parameter, 3-23
-c option, 3-4
CLB mapping, 3-9
CLBMAP symbols, 3-2, 3-19

closed, 3-19
locked pins, 3-20
MAP parameters, 3-19
open, 3-20
unlocked pins, 3-20
XC3000 design, 3-20

command–line syntax, 3-2
controlling partitioning, 3-23
CRF file, 3-2, 3-3, 3-10, 3-17, 3-29

sample output, 3-32
-e option, 3-4
error messages, 3-46
-f option, 3-5
FILE= attribute, 3-7
-g option, 3-5
guided design, 3-6

AKA file, 3-16
CLBMAP symbols, 3-13
LCA file, 3-16
output, 3-14
PBK file, 3-14
PGF file, 3-13

-h option, 3-5
HBLKNM parameter, 3-23, 3-24
-i option, 3-6
input files, 3-3, 3-9

XTF file, 3-3
introduction, 3-1
-j option, 3-6
-k option, 3-6, 3-17
LCA file, 3-16
xvi Xilinx Development System

Index
LOC parameters, 3-23, 3-24, 3-25, 3-26
logic mapping, 3-10
logic placement, 3-24

IOBs, 3-26
multiple–block LOC, 3-26
pull-ups, 3-27
single–block CLB, 3-25
TBUFs, 3-27

-m option, 3-6
MAP file, 3-1, 3-3, 3-10

for MAP2LCA and APR, 3-32
for PPR, 3-34
output, 3-36

maximize signal sharing within CLBs,
3-5
-n option, 3-7
-o option, 3-7
options, 3-4

change LCA part type, 3-7
ease requirements for combining

logic, 3-4
estimate LCA resources, 3-4
force dense partitioning of logic,

3-5
guide previous design iteration,

3-6
ignore CLBMAP symbols, 3-6
ignore IO location constraints, 3-6
ignore location constraints, 3-7
limit gates in CLB, 3-5
read guide file, 3-5
reduce number of CLBs, 3-8
relax signal–combining require-

ments, 3-8
respect guide file hierarchy, 3-8
respect hierarchy boundaries, 3-4
suppress registered signal order-

ing, 3-7
use direct flip–flop input pins, 3-6

output files, 3-3, 3-10, 3-28
CRF file, 3-3, 3-29
MAP file, 3-3, 3-32, 3-34
PBK file, 3-3

-p option, 3-7
pairing flip–flops, 3-10
partitioning flip–flops, 3-10
partitioning guide file, 3-12
partitioning logic on schematic, 3-19
PBK file, 3-3
PGF file, 3-2, 3-3, 3-6, 3-10, 3-12, 3-17
processing, 3-9
-q option, 3-7
-r option, 3-8
register ordering, 3-10

naming conventions, 3-11
OrCAD/SDT, 3-12

respect macro boundaries, 3-7
-s option, 3-8
swapping CLB pins, 3-20
syntax, 3-2
-u option, 3-8
use with XDM, 3-2
warning messages, 3-36
XTF file, 3-3

XNFMap
explicit (X) attributes, 3-22
guided design, 6-13
input files

PGF file, 3-3
options

-k, 6-14
-m, 6-22

output files
PGF file, 3-3

outputs, 3-29, 6-1
Development Sytem Reference Guide, Volume 2 xvii

Development System Reference Guide, Volume 2
partitioning gates into function genera-
tors, 6-2
XC3000A/L PPR design flow, 6-4
XC3000A/L PPR design flow with X-
BLOX, 6-8

XNFMerge, 6-12
binding by signal name, 1-8
binding signals between levels, 1-8
error messages, 1-19
flattened files, 1-2
hierarchical files, 1-2
inputs

MAP file, 1-4
XNF file, 1-4

location parameter propagation, 1-11
lower-level files, 1-2
non–primitive symbols, 1-7
options, 1-5

abbreviating messages, 1-5
accepting unknown symbols into

design, 1-6
changing merge report file name,

1-6
searching directory for XNF/MAP

files, 1-5
specifying LCA device type, 1-6

outputs
MRG file, 1-4
XNF file, 1-4

primitive symbols, 1-7
renaming signals and symbols, 1-10
searching for MAP and XNF files, 1-7
signal binding, 1-2
symbol resolution, 1-2
syntax, 1-3
top-level files, 1-2
XC3000A/L PPR design flow, 6-4
XC3000A/L PPR design flow with X-
BLOX, 6-7

XC4000 PPR design flow, 6-3
XC4000 PPR design flow with X-BLOX,
6-6

XNFPrep
CY4 symbols, 2-15
design flow, 2-2

XC2000, 2-4
XC2000L, 2-4
XC3000, 2-4
XC3100, 2-4

design flow with X-BLOX
XC3000A, 2-3
XC3000L, 2-3
XC3100A, 2-3
XC4000, 2-3

design flow without X-BLOX
XC3000A, 2-2
XC3000L, 2-2
XC3100A, 2-2
XC4000, 2-2

examples of use, 2-9
families supported, 2-1
generating multiple reports, 2-15
ignoring LOC constraints, 2-8, 2-11
ignoring RLOC constraints, 2-8, 2-11
ignoring XACT-Performance parame-
ters, 2-8, 2-12
inputs

XFF file, 2-4
XG file, 2-4

invoking
command line, 2-6
XDM, 2-6

loadless signals, 2-15
log file, 2-5, 2-13
obtaining help, 2-7, 2-10
options

cstfile, 2-8, 2-10
xviii Xilinx Development System

Index
helpall, 2-7, 2-10
ignore_rlocs, 2-8, 2-11
ignore_timespec, 2-8, 2-12
ignore_xnf_locs, 2-8, 2-11
logfile, 2-5, 2-13
outfile, 2-5, 2-9, 2-13
paramfile, 2-13
parttype, 2-9, 2-14
report, 2-5, 2-9, 2-14
savesig, 2-7, 2-15, 6-29
split_report, 2-15

outputs, 6-1
PRP file, 2-4, 2-14
PRX file, 2-5, 2-14
XTF file, 2-5, 2-13
XTG file, 2-5, 2-13

purpose, 2-1
renaming log file, 2-5, 2-13
running in XMake, 2-7
sourceless signals, 2-15
specifying options in parameter file,
2-13
specifying output file name, 2-9, 2-13
specifying part type, 2-9, 2-14
specifying report file name, 2-8, 2-14
submitting constraints file, 2-8, 2-10
trimming signals, 2-7, 2-15
X-BLOX design flow, 2-2
XC2000 design flow, 2-4

XC2000L design flow, 2-4
XC3000 design flow, 2-4
XC3000A design flow with X-BLOX, 2-3
XC3000A design flow without X-BLOX,
2-2
XC3000A/L PPR design flow, 6-4
XC3000A/L PPR design flow with X-
BLOX, 6-8
XC3000L design flow with X-BLOX, 2-3
XC3000L design flow without X-BLOX,
2-2
XC3100 design flow, 2-4
XC3100A design flow with X-BLOX, 2-3
XC3100A design flow without X-BLOX,
2-2
XC4000 design flow with X-BLOX, 2-3
XC4000 design flow without X-BLOX,
2-2
XC4000 PPR design flow, 6-3
XC4000 PPR design flow with X-BLOX,
6-6

xnfprep.log file, 2-5, 2-13
XTF file, 2-5, 2-13, 3-3

input to PPR, 6-1, 6-9
output by XNFPrep, 6-3, 6-4, 6-6, 6-8,
6-9
partitioning into function generators,
6-2

XTG file, 2-5, 2-13
output by XNFPrep, 6-6, 6-8
Development Sytem Reference Guide, Volume 2 xix

Development System Reference Guide, Volume 2
xx Xilinx Development System

Trademark Information
Development System Reference Guide, Volume 2 — 0401406 01

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of
Xilinx. All XC-prefix product designations, XACT-Floorplanner, XACT-Performance,
XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell,
LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock,
VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are
trademarks of International Business Machines Corporation. DASH, Data I/O and
FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-PLA are
trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-
Silos and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered
trademark and MS-DOS is a trademark of Microsoft Corporation. Centronics is a
registered trademark of Centronics Data Computer Corporation. PAL and PALASM are
registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices,
Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard Corporation.
Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim,
QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of
Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation.
Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne
Electronic Design Automation Group. DECstation is a trademark of Digital Equipment
Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product
described or shown herein; nor does it convey any license under its patents, copyrights, or
maskwork rights or any rights of others. Xilinx reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product
possible. Xilinx will not assume responsibility for the use of any circuitry described herein
other than circuitry entirely embodied in its products. Xilinx devices and products are
protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216;
4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626;

R

Trademark Information
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821;
5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248;
5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125;
5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; RE
34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does
not represent that devices shown or products described herein are free from patent
infringement or from any other third party right. Xilinx assumes no obligation to correct
any errors contained herein or to advise any user of this text of any correction if such be
made. Xilinx will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems.
Use of a Xilinx product in such applications without the written consent of the
appropriate Xilinx officer is prohibited.
Xilinx Development System

	COVER PAGE
	TRADEMARK INFORMATION
	BOOK CONVENTIONS
	TABLE OF CONTENTS
	INDEX
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	GO TO OTHER BOOKS
	Chapter 1 The XNFMerge Program
	Terms
	Hierarchical File
	Flattened File
	Top-Level File
	Lower-Level File
	Signal Binding
	Resolving a Symbol

	Syntax
	File Name Extensions on Design Names

	Files
	Input Files
	input_name.xnf

	Output Files
	output_name.xff
	output_name.mrg

	Options
	Determining Which Files are Symbol References
	Searching for XNF Files
	Binding Signals Between Levels
	Binding by Signal Name

	Renaming Signals and Symbols
	Propagating Location Parameters
	Expressing Hierarchy in an XNF File
	Relationally Placed Macros
	XACT-Performance Parameter Manipulation in XNFMerge
	Warnings and Error Messages
	Warnings and Recovery Techniques

	Error Messages and Recovery Techniques

	Chapter 2 XNFPrep
	Design Flow
	Files
	Input Files
	Output Files

	How to Use XNFPrep
	Invoking XNFPrep
	From the Command Line
	From XDM

	Running XNFPrep in XMake
	Obtaining Help
	Trimming Signals
	Ignoring Parameters
	Submitting a Constraints File
	Naming Files
	Specifying Part Type

	Examples
	Options
	Cstfile
	-Helpall
	Ignore_xnf_locs
	Ignore_rlocs
	Ignore_timespec
	Logfile
	Outfile
	Paramfile
	Parttype
	Report
	Savesig
	Split_report

	Chapter 3 The XNFMAP Program
	Syntax
	Using XACT Design Manager (XDM)
	Files
	Input Files
	Output Files

	Options
	The XNFMAP Process
	Input Design and Design Guide Files
	CLB Mapping
	Logic Mapping into FPGA Resources
	Output Files

	Register Ordering
	Naming Conventions
	Register Ordering for OrCAD/SDT Designs

	Using a Partitioning Guide File
	Guide by PGF
	Guide by LCA File
	Creating a Guide File from an LCA File
	Using the Guide File to Partition Your Design
	Preserving Original Partitioning

	Partitioning Logic on a Schematic
	Opened and Closed CLBMAPs
	Locked or Unlocked CLBMAP Pins
	Using a CLBMAP in a XC3000 Design

	Using Explicit (X) Attributes
	Using the BLKNM, HBLKNM, and LOC Parameters to Partition and Place Logic
	BLKNM Assignments
	HBLKNM Assignments
	LOC= and LOC<�> Constraints
	Single-Block CLB Placement
	Multiple-Block LOC Placement
	IOB Placement Examples
	TBUF and Pull-up Placement

	Files
	Output File
	Header
	Status Messages
	Design Summary

	Cross-Reference File
	File Header
	Guide Symbol Summary
	Check of Mapped Logic Blocks
	Design Summary
	CLB Cross-reference
	IOB Cross-reference

	MAP File for MAP2LCA and APR
	File Header
	IOB Symbol and Model Records
	CLB Symbol and Model Records

	MAP File for PPR
	File Header
	IO Symbols
	Combinatorial Symbols
	DFF Symbols
	Function Generator Symbols

	Warning Messages and Recovery Techniques
	Error Messages and Recovery Techniques

	Chapter 4 The MAP2LCA Program
	Syntax
	Files
	Input Files
	design.map

	Output Files
	design.lca
	design.scp
	design.aka

	Options
	MAP2LCA Example
	design.aka

	Warning Messages and Recovery Techniques
	Error Messages and Recovery Techniques

	Chapter 5 APR
	Using XACT Design Manager
	Syntax
	Options
	Positioning Options on the Command Line
	Incremental Design
	Block, Pin, and Net Matching

	Command-Line Options Summary

	Useful Option Combinations
	Using a Batch File for Multiple Runs
	Running APR as a Background Process
	Interrupting APR During Processing
	Annealing and Quenching Phases
	Routing Phase

	Design File Names
	File Name Extensions
	Leading Path Specifiers
	PC
	Sun Workstation, HP700, and RS6000
	Apollo

	Input Files
	Input Design File
	Schematic Constraints File
	User Constraints File
	Guide Design File
	Device, Package, and Speed Information Files

	APR Constraints
	SCP Files
	CST Files
	Case Sensitivity in Constraints Files
	Definitions
	Constraints
	Allow Block
	Flag IOB
	Flag Net
	Include
	Lock Block
	Lock IOBs
	Lock Net
	Lock Pin
	Place Block
	Place Net
	Prohibit Block
	Prohibit Location
	Weight Net

	Improving APR Results

	Output Files
	Output Design File
	Report File
	Message File

	APR Reports
	Header Information
	Final Results Summary
	Unrouted Nets Listing
	Net Routing Order
	Block Placement and Pin Swapping Table
	Net, Block, and Location Flags Tables
	Net Delay Table
	Net Status
	Net Name
	Source Pins
	Delay
	Load Pins

	APR Annealing Progress Messages
	Placing and Routing Larger Designs
	Running APR Iteratively on the Same Design
	Differentiating Between Iterations
	Redirecting the Output

	Chapter 6 PPR
	Design Flow
	Default PPR Flow
	XC4000 and XC5200 Designs
	XC3000A/L and XC3100A Designs
	XC4000 and XC5200 Designs with X-BLOX
	XC3000A/L and XC3100A Designs with X-BLOX

	Files
	Input Files
	Output Files

	Guided Design
	Types of Guided Design
	Obtaining the Best Results from Guided Design
	Guided Design Flow for XC4000 and XC5200 Designs
	Guided Design Flow for XC3000A/L and XC3100A Designs
	PPR Options for Guided Design
	Iterative Design
	Locking Partial Routes
	Incremental Design
	Placement and Routing in XDE
	Lock_routing and Guide_thru_routes Options

	Guided Design and XACT-Performance
	Guided Design and Constraints
	XC3000A/L and XC3100A Guided Design with PPR

	Constraints
	How to Use PPR
	Invoking PPR
	From XDM
	From the Command Line

	Running PPR in XMake
	Suspending PPR Operation
	Using xactinit.dat Files
	Setting General Processing Options
	Changing Output LCA and RPT File Names
	Changing Log File Name
	Determining Device Utilization
	Placing and Routing a Partial Design

	Controlling Constraints
	Specifying an Alternate CST File
	Ignoring MAP Symbols
	Ignoring Absolute Location Constraints
	Ignoring Relative Location Constraints

	Controlling Placement and Routing
	Setting Level of Placement Effort
	Setting Level of Router Effort
	Controlling the Timing-Insensitive Quick Route
	Controlling Through-Routes
	Routing Through Global Buffers

	Controlling Guided Design
	Specifying a Guide File
	Guiding Placement of Routed Blocks
	Guiding Routing of Unchanged Signals Only
	Locking Routing from Guide File
	Copying Guide File Without Finishing Routing

	Using XACT-Performance Specifications
	Specifying Default Path Delays
	Controlling Delay When C2S Specifications Differ
	Controlling PPR if Specifications Cannot Be Met
	Ignoring Path Delays in Place and Route
	Ignoring Specified Timing Requirements
	Controlling Delays on Incomplete Paths

	Options
	Complete
	Cstfile
	Dc2p
	Dc2s
	Dflt_sig_dly
	Dp2p
	Dp2s
	Estimate
	Guide
	Guide_blks
	Guide_only
	Guide_routing
	 Helpall
	Ignore_maps
	Ignore_rlocs
	Ignore_timespec
	Ignore_xnf_locs
	Lock_routing
	Logfile
	Open_guide_blocks
	Outfile
	Paramfile
	Parttype
	Path_timing
	Placer_effort
	Report_pagelength
	Report_leftmargin
	Report_textwidth
	Route
	Route_thru_blks
	Route_thru_bufg
	Router_effort
	Rpt_net_loc
	Rpt_net_loc
	Rpt_sym_loc
	Save_files
	Seed
	Stop_on_miss
	Timing
	Use_faster_c2s
	User_search_path

	Options Summary
	Constraints File Syntax
	Attributes, Constraints, and Carry Logic

	Chapter 7 The MakeBits Program
	Syntax
	Files
	Input Files
	design.lca

	Output Files
	design.bit
	design.ll
	design.mbo
	design.rbt
	design.msk
	_design.lca

	Options (Stand-Alone Version)
	Startup Sequences (-f option)
	Cclk_Nosync
	Cclk_Sync
	Uclk_Nosync
	Uclk_Sync

	Startup Sequence Options
	CRC
	ConfigRate
	DonePin
	TdoPin (XC4000 Only)
	M1Pin (XC4000 Only)
	BSReconfig (XC5200 Only)
	OscClk (XC5200 Only)
	ReadCapture
	ReadAbort
	ReadClk
	StartupClk
	SyncToDone
	DoneActive
	OutputsActive
	GSRInactive

	Stand-Alone Command Line Examples
	Running MakeBits from XDE
	The MakeBits Screen
	Configure — Change Configuration Options
	XC2000 Configuration
	Input
	DonePad
	Read

	XC3000 Configuration
	DonePad
	DoneTime
	Input
	Read
	ResetTime
	XTALOSC

	XC4000 and XC5200 Configuration
	CRC
	ConfigRate
	DonePin
	TdoPin
	M1Pin
	BSReconfig (XC5200 Only)
	OscClk (XC5200 Only)
	ReadCapture
	ReadAbort
	ReadClk
	StartupClk
	SyncToDone
	DoneActive
	OutputsActive
	GSRInactive

	Defaults — Select From Four Startup Defaults
	Cclk_Nosync
	Cclk_Sync
	Uclk_Nosync
	Uclk_Sync

	DOS — Enter Temporary DOS Shell (PC Only)
	Download — Transfer the Current Bitstream to an FPGA
	DRC — Invoke the Design Rules Checker
	Net
	Nonet
	Block
	Noblock
	Noroute
	Verbose
	Informational

	Execute — Perform Commands from a Command File
	Exit — Return to the XACT Executive
	Keydef — Define a Function Key
	Norestore
	Verbose
	IgnoreCriticalNetFlags
	UseCriticalNetsLast
	Makell

	Makeconfigset — Create a Configuration Set
	Makemask — Write a Bitstream Mask to a File
	Mouse — Change the Mouse Configuration
	Select
	Done
	Menu
	Switch

	Port — Specify the XChecker/Download Cable Port
	Print — Create a Printable File of Display Informa...
	Printer — Set the Printer Type for the Print Comma...
	Queryconfigset — Display Configuration Sets
	Querynet — Display Net Information for the Design
	Rawbits — Create an ASCII Configuration File
	Readbits — Read the Specified Bitstream File
	Readprofile — Update Profile
	Report — Create a Report
	Restore — Restore Design to Untied State
	Saveprofile — Save Current Profile
	Selftest — Test Download Cable (PC Only)
	Setconfigset — Apply Configuration Set to MakeBits...
	Settings — Change Current Profile

	Chapter 8 The MakePROM Program
	Stand-Alone MakePROM
	Syntax
	Options
	Examples

	Using MakePROM in the XACT Design Editor
	MakePROM Screen
	MakePROM Menus

	Command Descriptions
	Clear — Clear PROM
	Delete — Remove File at Address from PROM
	DOS — Temporarily Suspend MakePROM and Enter Operating System (PC Only)
	Directory — Change Working Directory
	Execute — Perform Commands in Command File
	Exit — Quit MakePROM
	Format — Select the PROM File Format
	Keydef — Define a Function Key
	Load — Load a Bitstream File into PROM Memory at Specified Address
	Mouse — Change the Mouse Configuration
	Print — Print the Current PROM Memory Image Screen
	Query — Display the Current Setting for the PROM Size
	Readprofile — Set MakePROM Options to Settings in makeprom.pro File
	Save — Save Currently Specified, Formatted Data into File
	Saveprofile — Save Current MakePROM Options Settings to makeprom.pro File
	Set (PROMSize) — Specify PROM Size
	Set (Endclocks) — Modify Daisy-Chain Length
	Settings — Display Current Values of MakePROM Settings

