
X-BLOX

 ™

REFERENCE/USER
GUIDE

ONLINER

0401315

TABLE OF CONTENTS

INDEX

GO TO OTHER BOOKS

Contents

Copyright 1991-1994 Xilinx Inc. All Rights Reserved
Chapter 1 Introduction
X-BLOX Features... 1-1
X-BLOX Design Examples Directory ... 1-2

Chapter 2 Creating an X-BLOX Design
Adding an X-BLOX Module to Your Schematic 2-1
Customizing an X-BLOX Module ... 2-3

Implementation Styles and Operating Modes......................... 2-4
Operating Modes ... 2-6

Data Values .. 2-6
Synchronous and Asynchronous Control 2-8

Power-up Reset and Initialization 2-9
Inverting and Decoding Masks for Bused Gate Functions...... 2-9

INVMASK and DECODEMASK Attributes......................... 2-9
Single-Input Bused Modules.. 2-10
Double-Input Bused Modules .. 2-10
Single-Bus Gated Modules.. 2-11
INVBUS Module .. 2-11

Pull-up and Pull-down Resistors for I/O Pads......................... 2-12
FLOAT_VAL Attribute.. 2-12

Out-of-Range Indicators ... 2-13
Representing X-BLOX Buses .. 2-14

Specifying Buses and Bus Labels .. 2-15
Bus Data Types .. 2-16

ENCODING ... 2-16
BOUNDS ... 2-17
Big-Endian vs. Little-Endian .. 2-18

Data Type Propagation... 2-19
Creating a Hierarchical Symbol .. 2-21

Bus Sizes... 2-21
Data Types .. 2-21
Data Type Propagation.. 2-21

Signal Aliasing .. 2-22
Bus Manipulation .. 2-25
X-BLOX Reference/User Guide— 0401315 01 i

X-BLOX Reference/User Guide
CAST Symbol .. 2-25
ELEMENT Symbol... 2-26
FORCE Symbol ... 2-26
SLICE Symbol ... 2-26
MUXBUS Symbol .. 2-27

Location Attributes .. 2-27
Using BUS_IFxx to Connect X-BLOX Buses to
non-X-BLOX Logic .. 2-28

Creating a Custom BUS_IFxx Macro................................. 2-29
Using XACT-Performance Attributes ... 2-30

TSidentifier Attribute ... 2-31
TNM Attribute.. 2-31

Chapter 3 Processing Your Design
Step 1: Creating and Modifying Your Design 3-3
Step 2: Performing Functional Simulation.................................... 3-8
Step 3: Implementing a Partial Design... 3-10
Step 4: Performing Timing Simulation.. 3-12
Step 5: Implementing the Complete Design................................. 3-14
Step 6: Downloading Your Design ... 3-14
X-BLOX Design Example... 3-15

Design Procedure ... 3-17

Chapter 4 Module Definitions
Bused Gate Functions.. 4-2

ANDBUS Module .. 4-3
ACCUM — Accumulator .. 4-8

Inputs .. 4-9
Outputs ... 4-11
Attributes... 4-11

ADD_SUB — Adder/Subtracter ... 4-14
Inputs .. 4-14
Outputs ... 4-15
Attributes... 4-15

BIDIR_IO — Bidirectional I/O Pads with Buffers.......................... 4-18
Inputs .. 4-19
Outputs ... 4-19
Attributes... 4-19
Constraints File ... 4-21

BUS_DEF — Bus Data-Type Definition 4-22
Bus Connection... 4-22
ii Xilinx Development System

Contents
Attributes... 4-22
Example... 4-23

CAST — Data Type Symbol .. 4-24
Usage ... 4-24
Inputs .. 4-27
Attributes... 4-27

CLK_DIV — Clock or Frequency Divider 4-28
Inputs .. 4-29
Outputs ... 4-29
Attributes... 4-30

COMPARE — Comparators .. 4-32
Inputs .. 4-32
Outputs ... 4-33
Attributes... 4-34

 RLOC_RANGE... 4-34
COUNTER — Universal Counter... 4-36

Inputs .. 4-37
Outputs ... 4-38
Attributes... 4-39
Counter Style Features and Selection Criteria 4-42

LFSR ... 4-43
ONE_HOT ... 4-44

DATA_REG — Data Register .. 4-48
Inputs .. 4-49
Outputs ... 4-50
Attributes... 4-50
STYLE Attribute .. 4-52
Conditions for Implementation in an IOB 4-53

DECODE — 1-of-n Decoder/Demultiplexer 4-58
Inputs .. 4-58
Outputs ... 4-59

ELEMENT — Element of a Bus ... 4-60
Connections.. 4-60
Attributes... 4-60

FORCE — Force Value onto a Bus ... 4-62
Outputs ... 4-62
Attributes... 4-62

INC_DEC — Increment Decrement Symbol 4-64
Inputs .. 4-64
Outputs ... 4-65
Attributes... 4-65
X-BLOX Reference/User Guide iii

X-BLOX Reference/User Guide
INPUTS — Input Pads with Buffers ... 4-68
Inputs .. 4-68
Outputs ... 4-68
Attributes... 4-69
Constraints File ... 4-70

MUXBUS — General n-to-1 Bus Multiplexer 4-72
Inputs .. 4-72
Outputs ... 4-73

MUXBUS2 — 2-to-1 Bus Multiplexer ... 4-74
Inputs .. 4-74
Outputs ... 4-75

MUXBUS4 — 4-to-1 Bus Multiplexer ... 4-76
Inputs .. 4-76
Outputs ... 4-77

MUXBUS8 — 8-to-1 Bus Multiplexer ... 4-78
Inputs .. 4-78
Outputs ... 4-79

OUTPUTS — Output Pads with Buffers....................................... 4-80
Inputs .. 4-80
Outputs ... 4-80
Attributes... 4-81
Constraints File ... 4-82

PROM — Programmable Read-Only Memories 4-84
Inputs .. 4-84
Outputs ... 4-84
Attributes... 4-85
MEMFILE Syntax .. 4-86
MEMFILE Header ... 4-87

Comments ... 4-88
Example... 4-88

MEMFILE Data Section .. 4-89
Addressing... 4-89
ASCII Data... 4-89

PROM Definition Procedure.. 4-90
SHIFT — Universal Shift Register.. 4-92

Inputs .. 4-94
Outputs ... 4-96
Attributes... 4-97

SLICE — SLICE of a Bus... 4-102
Connections .. 4-102
Attributes... 4-103
iv Xilinx Development System

Contents
SRAM — Static Random-Access Memory................................... 4-106
Inputs .. 4-106
Outputs ... 4-107
Attributes... 4-107
CLB Utilization .. 4-109

TRISTATE — 3-State Buffer.. 4-110
Inputs .. 4-110
Outputs ... 4-110
Attributes (Optional).. 4-111

Chapter 5 X-BLOX-Generated Relationally Placed Macros
Implementation Styles for Arithmetic Modules............................. 5-1

STYLE=ALIGNED... 5-2
STYLE=UNALIGNED ... 5-2
FAST3KA and RIPPLE (XC3000A/L and XC3100A).............. 5-3

Controlling the Placement of RPMs ... 5-3
USE_RLOC={TRUE|FALSE}.. 5-3
RLOC_ORIGIN=value .. 5-3
RLOC_RANGE=value .. 5-4

Chapter 6 Understanding X-BLOX Operations
X-BLOX Implementation Flow.. 6-1
Data Type Propagation .. 6-4
Architectural Synthesis and Optimization 6-4

Merging Flip-Flops into the I/O Blocks.................................... 6-4
Global Buffers ... 6-5
Global Set-Reset .. 6-6
Relationally Placed Macros .. 6-6

Computing the Required Number of CLBs 6-7
Computing the Number of Rows... 6-7

Example... 6-8
Computing the Number of Columns 6-9

Example 1.. 6-10
Example 2.. 6-10

RLOC_ORIGIN Restrictions ... 6-10
RLOC_RANGE Restrictions ... 6-10

Example... 6-11
Synthesizing Your Design for Simulation..................................... 6-11

Synthesizing Simulation Models ... 6-11
Functional Simulation Models for Schematic Entry 6-12
Timing Simulation Models ... 6-13
X-BLOX Reference/User Guide v

X-BLOX Reference/User Guide
Appendix A Command and Option Syntax
Usage... A-1
Command-line and Xactinit.dat Settings A-1

Options.. A-1
Xactinit.dat Settings ... A-3

Index ... Index-1

Trademark Information
vi Xilinx Development System

Chapter 1
X-BLOX Reference/User Guide — 0401315 01 1-1

Introduction

The X-BLOX (Blocks of Logic Optimized for Xilinx) synthesis tool
consists of a library of modules that you can use to describe a system
by means of high-level functions instead of gate-level primitives.

The complex functions provided by the X-BLOX Library complement
the macro and gate-level cells that are provided with the Xilinx
design entry interfaces. X-BLOX supports the XC4000, XC4000A,
XC4000D, XC4000H, XC3000A, XC3000L, and XC3100A FPGA
families.

Because X-BLOX modules are customizable, each module can
describe thousands of unique functions. You can customize these
modules using attributes and by connecting buses and nets to the
appropriate pins on the modules.

X-BLOX Features
X-BLOX offers the following features that simplify and speed up
design entry and design modification.

Block diagram design entry: X-BLOX allows you to complete the
major part of the system design at the block-diagram level using
Medium Scale Integration (MSI) and Large Scale Integration (LSI)
logic functions, such as adders, counters, comparators, clock
dividers, decoders, universal shift-registers, SRAMs, and PROMs.

Generic data path sizes and encoding: X-BLOX simplifies design
entry and design modification through its unique method of defining
bus structures and data formats. In fact, the bus structure of each data
path needs to be defined only once, even though the data path might
contain many X-BLOX logic modules. The width (precision) of the
bus and type of data carried on it are defined as part of one module
and automatically propagated throughout the design and through

X-BLOX Reference/User Guide
levels of hierarchy. This enables you to modify the bus size of an
entire design by changing just a few fields on the schematic.

Optimized implementations: Logic functions are configured by the
X-BLOX synthesis tool to fit the desired bus width and target chip
family. The X-BLOX module generator tailors the logic
implementation to the specific needs of each module and to the
specific Xilinx device family. For example, the implementation style
of a comparator depends on the size of the data fed to the comparator
and on whether the comparison — greater than, less than, or a
combination of these output functions, is needed.

The X-BLOX design system uses Xilinx-specific optimization
techniques to boost the performance and density of the synthesized
design implementation. The X-BLOX software uses expert
knowledge of the chip resources coupled with smart logic
implementation techniques to produce fast and efficient circuit
designs. Thus, the X-BLOX module generators not only save valuable
design time, but also produce optimum circuit implementations.

Compatibility: X-BLOX supports popular schematic editors, such as
Viewlogic, Mentor, OrCAD, and Cadence. It can also be used with
Synopsys’ FPGA compiler and other third-party synthesis tools that
support X-BLOX.

X-BLOX Design Examples Directory
For your convenience, we have provided a directory for X-BLOX
design examples and a directory for the files you should use to run
the tutorial. The path for the design examples directory is
$XACT/examples/interface/design. This directory contains a
README file that documents the example designs in that directory.
The path for the tutorial files is $XACT/tutorial/interface/design. This
directory contains a README file that documents the tutorials in that
directory.
1-2 Xilinx Development System

Chapter 2
X-BLOX Reference/User Guide — 0401315 01 2-1

Creating an X-BLOX Design

Designing with X-BLOX entails adding a module to your schematic
using your third-party design tool (Viewlogic, OrCAD, Mentor, or
other X-BLOX compatible design tool); customizing the module by
adding attributes to the module when the default modes are not
desired; specifying X-BLOX buses and connecting them to
X-BLOX modules; creating hierarchical symbols to simplify the
top level of your design; and interfacing X-BLOX buses with non-
X-BLOX buses.

This chapter is structured as follows:

● Adding an X-BLOX Module to Your Schematic provides a list of
available modules and their functions along with an explanation
of what you should know to add an X-BLOX module to your
schematic.

● Customizing an X-BLOX Module details the different methods of
customizing your modules using attributes.

● Representing X-BLOX Buses outlines the steps used to specify
X-BLOX buses using attributes and the concepts necessary to
understand bus manipulation and connection to X-BLOX
modules and user-defined hierarchy.

● Entering XACT-Performance Attributes summarizes the usage of the
TNM and TSidentifier attributes for specifying timing constraints
to PPR.

Adding an X-BLOX Module to Your Schematic
X-BLOX modules are represented by schematic symbols. The
X-BLOX symbols are grouped into a library provided with your
schematic capture interface. The X-BLOX library must be in your

X-BLOX Reference/User Guide
schematic capture package’s library search path for you to access it.

Each X-BLOX module can be considered as a template with a
function. This section lists these modules by function.

Counters, Registers, and Arithmetic Modules

ACCUM Universal accumulator.
ADD_SUB Adder and/or subtracter.
BUS_IFxx Bus interface; used to connect X-BLOX mod-

ules to non-X-BLOX components.
COMPARE Compares the magnitude and/or equality of

two values.
COUNTER Universal counter.
DATA_REG Universal register.
DECODE Translates data from any encoding to the one-

hot encoding.
INC_DEC Increments and/or decrements by a constant.
SHIFT Register that loads and/or shifts data in paral-

lel or serially, and shifts data out.

Buses and Connectivity

BIDIR_IO Defines one or more bidirectional I/O pads and
buffers.

BUS_DEF Specify the precision and encoding of a bus.
CAST Enables multiple interpretations of bus data

types (precision and encoding).
ELEMENT Extracts one net (bit) from a bus.
FORCE Sets a bus to a constant value.
INPUTS Defines one or more input pads and input buff-

ers.
MUXBUS Selects one signal of the input bus.
MUXBUS2 Selects one of two input buses.
MUXBUS4 Selects one of four input buses.
MUXBUS8 Selects one of eight input buses.
OUTPUTS Defines one or more output pads and output

buffers.
SLICE Extracts a subset of nets from a bus.
2-2 Xilinx Development System

Creating an X-BLOX Design
Customizing an X-BLOX Module
Part of the power of X-BLOX is its ability to customize each module
to represent many functions. This is done by connecting only the
X-BLOX module control pins that are needed and by specifying
module attributes when default modes are not the desired ones. You
can customize modules by using attributes some of which are
described in this section and by assigning data values to some of
these attributes. The pages describing the individual X-BLOX
modules, in the chapter “Module Definitions,” list the attributes that
are appropriate for each module. This section is structured as follows:

● Implementation Styles and Operating Modes describes the different
ways that a module can be implemented in the target technology

Gate-Level Logic

ANDBUS ANDs all the input nets of the bus yielding a
single-bit result.

ANDBUS1 ANDs each of the bits of a bus with a single bit.
ANDBUS2 ANDs two buses together to yield a bus output.
INVBUS Inverts the value of selected bits on an input

bus.
ORBUS ORs all the input bits of the bus, yielding a sin-

gle-bit result.
ORBUS1 ORs each of the bits of a bus with a single bit,

yielding a bus.
ORBUS2 ORs two buses together to set a bus output.
TRISTATE Bus-wide 3-state.
XORBUS XORs all the input nets of the bus.
XORBUS1 XORs each of the bits of a bus with a single bit.
XORBUS2 XORs two buses together to set a bus output.

Memory

PROM Generic programmable read-only memory.
SRAM Generic static random-access memory.

Clock Divider

CLK_DIV Clock divider.
X-BLOX Reference/User Guide 2-3

X-BLOX Reference/User Guide
and the different modes in which a module can operate.

● Data Values explains the syntax for specifying the data values for
attributes that allow a data value.

● Synchronous/Asynchronous Control Attributes explains how to use
the ASYNC_VAL and SYNC_VAL attributes to initialize, set, or
reset a module synchronously and asynchronously. These
attributes are associated with modules that include a register.

● Inverting and Decoding Masks for Bused Gate Functions provides
information on the inversion mask (INVMASK attribute) and
decode mask (DECODEMASK), which you can use to specify the
individually inverted or masked inputs (active High or active Low
inputs) on bused logic modules.

● Pull-up and Pull-down Resistors for I/O Pads explains how to use the
FLOAT_VAL attribute to specify whether a pull-up or pull-down
resistor is used on I/O and TRISTATE modules.

● Out-of-Range Indicators addresses the ADDR_ERROR and
SEL_ERROR outputs which indicate how some X-BLOX modules
can be used to detect out-of-range inputs.

Implementation Styles and Operating Modes
There are several ways to implement some of the X-BLOX modules
within the Xilinx architectures. We call these implementation
methods “styles.” Some styles use fewer CLBs at the expense of speed
while other styles use more CLBs to achieve faster performance. You
can specify styles on specific modules. By default, X-BLOX uses the
fastest style when you do not specify a style. A STYLE attribute can
be assigned to the following X-BLOX modules:
2-4 Xilinx Development System

Creating an X-BLOX Design
Table 2-1 Style Specification for Modules

For descriptions of these styles, please refer to the description of these
modules in the “Module Definitions” chapter.

Note: If you do not assign a style, X-BLOX chooses the appropriate
style for you. We recommend that you do not specify a style and that
you let X-BLOX select the appropriate implementation style, as it will
choose the best possible one.

Module Possible Style

ACCUM ADD_SUB
INC_DEC

ALIGNED
UNALIGNED
RIPPLE
FAST3KA (3000A only)
or none

ANDBUS WAND
DECODE
or none

COMPARE ARITH
RIPPLE
WIRED
TREE
or none

COUNTER BINARY
JOHNSON
LFSR
ONE_HOT
or none

DATA_REG CLB
IOB
ILD
IFD
OFD
or none

SHIFT LOGICAL
CIRCULAR
ARITH
or none
X-BLOX Reference/User Guide 2-5

X-BLOX Reference/User Guide
Operating Modes

Some of the modules use the STYLE attribute to specify the operating
mode for the module. For instance, the operating mode of the SHIFT
module can be specified with the attribute STYLE=ARITH,
STYLE=CIRCULAR, or STYLE=LOGICAL to get an arithmetic,
circular, or logical shift operation.

Data Values
Some module attributes are assigned as numeric values. Data values
consist of the arithmetical base, or radix, followed by a representation
of the numeric data value in the specified base. The base is a decimal
number between 2 and 36 inclusive. Decimal is the default and does
not need to be specified. The format is as follows:

base#value# -or- decimal_value

16#11# -or- 17

As an example, the decimal value 17 can be expressed in several
radices as shown below:

Binary 2#10001#
Octal 8#21#
Decimal 17
Hexadecimal 16#11#
Octadecimal 18#H#

The module attributes for which you can specify data values are
listed in the following table along with the modules to which they
pertain.
2-6 Xilinx Development System

Creating an X-BLOX Design
Table 2-2 Attributes That Can Be Specified As a Data Value

Numeric data values must contain only characters valid for the
specific radix. A don’t care digit (?) can be used with radices 2, 4, 8, 16
and 32 and represents the number of don’t care bits normally
associated with each digit (for example, 4#?2# = 2#??10#).

Negative data values are handled as two’s-complement and are
represented by a minus sign in front of the data value (for example,
–2#0011# = 2#1101# = –3), but don’t care digits are not allowed in
data values specified in the two‘s complement base.

To represent fractional data, a radix point (period) can be used. For
example, 2#100.11# represents 4.75.

You can use the underscore character to increase the readability of
numbers. The underscore characters have no value and are ignored
by the software. For example, the value:

2#00010010011100100110011101101001#

Module
Attribute Requiring a Data

Value

ACCUM, SHIFT, DATA_REG ASYNC_VAL, SYNC_VAL
COUNTER ASYNC_VAL, SYNC_VAL,

COUNT_TO
CLK_DIV DIVIDE_BY, DUTY_CYCLE
FORCE VALUE
ANDBUS, ANDBUS1,
ANDBUS2,
ORBUS, ORBUS1, ORBUS2,
XORBUS, XORBUS1, XORBUS2,
INVBUS

INVMASK
DECODEMASK

SHIFT, COUNTER, OUTPUTS,
INPUTS, CAST, FORCE,
BIDIR_IO

BOUNDS

TRISTATE, BIDIR_IO,
OUTPUTS, INPUTS

FLOAT_VAL

PROM DEPTH, MEMFILE
SRAM DEPTH
X-BLOX Reference/User Guide 2-7

X-BLOX Reference/User Guide
is more legible when it is formatted as follows:

2#0001_0010_0111_0010_0110_0111_0110_1001#

The following table shows the valid characters for several radices:

Table 2-3 Valid Characters Using Various Base Values

Synchronous and Asynchronous Control
The synchronous/asynchronous control pins and attributes
determine how to initialize, set, or reset modules containing flip-
flops. When synchronous control is established, flip-flops are set or
reset on the rising edge of the clock. When asynchronous control is
established, the flip-flops are set or reset independently of the clock.

X-BLOX modules allow both types of control to be specified on the
same module with different values for each type of control. This
means that X-BLOX allows you to set asynchronously an entire
register to one value and set synchronously the register to a different
value. These values are constants specified by the ASYNC_VAL and
SYNC_VAL attributes on the X-BLOX modules and are independent
of each other.

The modules that have synchronous (SYNC_CTRL) and
asynchronous (ASYNC_CTRL) control pins include:

● ACCUM

● CLK_DIV

● COUNTER

● DATA_REG

● SHIFT

Base Type Base Valid Data Value Characters

Binary 2 0 1 _ . ?

Octal 8 0-7 _ . ?

Decimal 10 0-9 _ .

Hexadecimal 16 0-9 A-F a-f _ . ?

36 36 0-9 A-Z a-z _ .
2-8 Xilinx Development System

Creating an X-BLOX Design
You can specify the SYNC_VAL or ASYNC_VAL attribute values on
all the above modules, except the CLK_DIV module.

The values are loaded into the registers and counters under the
control of the ASYNC_CTRL and SYNC_CTRL inputs of the module.

An ASYNC_VAL attribute value is loaded on the rising edge of the
ASYNC_CTRL port on the X-BLOX module and during power-up of
the chip. This load has priority over any clock-activated load. The
ASYNC_VAL attribute value overrides all other inputs and is loaded
independently of the clock enable and the synchronous control
values.

The SYNC_VAL constant is loaded into the register if the
SYNC_CTRL input on the X-BLOX module is High during the rising
edge of the clock and the clock is enabled. SYNC_CTRL normally has
priority over other synchronous functions on the same module. If the
ASYNC_CTRL and SYNC_CTRL inputs are not connected, these
functions are not synthesized.

Power-up Reset and Initialization

You can also use the ASYNC_VAL attribute to define a constant that
is loaded at power-up. If you do not specify an ASYNC_VAL, all
registers and counters except Linear-Feedback-Shift-Register
counters (LFSR) are set to zero at power-up. LFSR counters are set to
their initial count state at power-up.

Inverting and Decoding Masks for Bused Gate
Functions

The INVMASK and DECODEMASK attributes specify individually
inverted or masked inputs (active High or active Low) for certain
X-BLOX modules with bused inputs.

INVMASK and DECODEMASK Attributes

The INVMASK and DECODEMASK attributes are available on
X-BLOX modules that perform bused gate functions. These modules
include:

● ANDBUS, ANDBUS1, ANDBUS2

● ORBUS, ORBUS1, ORBUS2
X-BLOX Reference/User Guide 2-9

X-BLOX Reference/User Guide
● XORBUS, XORBUS1, XORBUS2

● INVBUS

The inputs for which the INVMASK = 1 or DECODEMASK=0 will be
active Low, and those for which the INVMASK=0 or
DECODEMASK=1 will be active High. You can specify the inversion
mask or the decode mask using any of the radices specified in the
section “Data Values” in this chapter.

Note: The default value is chosen to be intuitive and is therefore
different for some of the modules. On the bused AND, XOR, and OR
modules, the default is INVMASK=0 or DECODEMASK=1, so no
inversion is performed on the inputs. On the INVBUS module, the
INVMASK indicates which bits in the bus will be inverted. The
default is to invert all the bits in the bus, which is what one would
expect from a bus-wide inverter.

Single-Input Bused Modules

As an example, on a 5-bit ANDBUS with INVMASK = 2#10010#, Bits
1 and 4 are inverted (bit 4 is the most significant bit). The same is true
of DECODEMASK. If DECODEMASK=2#01101#, Bits 1 and 4 are
inverted.

Figure 2-1 5-Input ANDBUS Using INVMASK

Double-Input Bused Modules

When you add the INVMASK or DECODEMASK attribute to a
symbol, this property is applied to all bus inputs on that symbol. For
example, for a 2-input module, the same INVMASK is applied to
both inputs (A and B). This rule applies to ANDBUS2, ORBUS2, and
XORBUS2. See Figure 2-2.

X2018

OUT

A [4]

A [0]

A [3]
A [2]

A [1]

A
OUT

INVMASK= 2#10010#

ANDBUS

ENCODING=UBIN

BOUNDS= 4:0

BUS_DEF
2-10 Xilinx Development System

Creating an X-BLOX Design
Note: Mathematically, applying one of these masks to both inputs of
an XORBUS2 is the same as not applying it to either. If you want the
INVMASK or DECODEMASK to apply to only one of the two bused
inputs, use an INVBUS symbol in front of the appropriate input.

Figure 2-2 ANDBUS2 Using DECODEMASK

Note: If you need any unique masks for either input, combine the
INVMASK of the bus symbol with an INVBUS and its own mask.

Single-Bus Gated Modules

On an ANDBUS1, only the input bus is affected by the INVMASK.
See the following figure.

Figure 2-3 ANDBUS1 Using INVMASK

INVBUS Module

The X-BLOX INVBUS module has the opposite default for the
INVMASK attribute. When you do not define INVMASK, all signals
connected to the INVBUS module are inverted. If you specify
INVMASK, the INVBUS outputs are determined by the bit pattern of
INVMASK. For each bit in the INVMASK that is 0, the corresponding
bit in the bus is not inverted. (See Figure 2-4.) For each bit in the
INVMASK that is 1, the corresponding bit in the bus is inverted.

X4528

A
A [2] O[2]

O[1]

B [2]

A [1]

B [1]

B
O

INVMASK=

DECODEMASK=2#1010#

ENCODING=UBIN

BOUNDS=3:0

A [0] O[0]
B [0]

O[3]A [3]

B [3]

X4519

A

A

A

A

O[2]

O[1]

B [2]

B [1]
B

O

INVMASK=2#101#

ENCODING=UBIN

BOUNDS=2:0

O[0]
B [0]
X-BLOX Reference/User Guide 2-11

X-BLOX Reference/User Guide
You can specify the value of the INVMASK in any base. (Refer to the
“Data Values” section.)

Figure 2-4 5-Input INVBUS Using INVMASK

Pull-up and Pull-down Resistors for I/O Pads
The FLOAT_VAL attribute determines whether a pull-up or pull-
down resistor is used on I/O and TRISTATE modules.

FLOAT_VAL Attribute

You can connect pull-up or pull-down resistors to pads of the
X-BLOX INPUTS, BIDIR_IO modules, and to the TBUFs generated by
the TRISTATE module. You can specify this value in any of the
allowed radices mentioned in the section “Data Values” in this
chapter. The value can contain don’t care digits. For example, a
module with ENCODING = UBIN, BOUNDS = 7:0, and FLOAT_VAL
= 16#?3# specifies that pads 7 through 4 are not connected to resistors,
that pads 3 and 2 have pull-down resistors, and that pads 1 and 0
have pull-up resistors.

Alternately, you can tie all the pads of a symbol to pull-up or pull-
down resistors by specifying one pull-up resistor (FLOAT_VAL=
PULLUP), two pull-up resistors (FLOAT_VAL=PULLUP_D), or one
pull-down resistor (FLOAT_VAL=PULLDOWN) respectively. The
double pull-up resistor draws more power than a single resistor but
supports faster transition times. (See the XC4000 Data Sheet for
timing details in The Programmable Logic Data Book.)

X2016

O I

INVMASK= 2#10010#

O [4]I [4]

O [3]I [3]

O [2]I [2]

O [1]I [1]

O [0]I [0]

INVBUS

ENCODING=UBIN

BOUNDS= 4:0

BUS_DEF
2-12 Xilinx Development System

Creating an X-BLOX Design
Out-of-Range Indicators
The modules that select or address logic synthesized by X-BLOX are
the DECODE module, the MUXBUS modules, and the PROM and
SRAM modules. These modules have out-of-range indicators built
into their symbols.

On the DECODE and all MUXBUS modules, this output is called
SEL_ERROR. On the PROM and SRAM symbols, it is called
ADDR_ERROR. The following tables describe how these indicators
behave. X-BLOX also considers cases wherein the SEL inputs might
index unconnected MUXBUS inputs or DECODE outputs.

Table 2-4 DECODE Out-of-Range Indicators

Table 2-5 MUXBUS Out-of-Range Indicators

a. SELth represents an ordinal number (1st, 2nd, 3rd, etc.)
b. If EN (enable) is High

a. SELth represents an ordinal number (1st, 2nd, 3rd, etc.)

DECODE: Bounds on D_OUT[n:m]

SEL input value SEL_ERROR D_OUT

Value is not between n and m high zero

Value indexes an uncon-
nected D_OUT element

high zero

Value represents all other
cases

low high on SELth a

bitb

MUXBUS: Bounds on MUX_IN [n:m]

SEL input value SEL_ERROR MUX_OUT

Value is not between n and m high zero

Value indexes an unconnected
MUX_IN element

high zero

Value represents all other
cases

low SELth a of MUX_IN
X-BLOX Reference/User Guide 2-13

X-BLOX Reference/User Guide
Table 2-6 MUXBUSn Out-of-Range Indicators

Table 2-7 PROM, SRAM Out-of-Range Indicators

Representing X-BLOX Buses
Another powerful aspect of X-BLOX is how it handles buses. X-BLOX
buses include the following special features discussed in the
following sections:

● Specifying Buses and Bus Labels explains how to define and use
generic X-BLOX buses in your design.

● Bus Data Types discusses the width and encoding of buses.

● Data Type Propagation explains how after specifying bus data types
in one location, the data types are propagated along your data
path by X-BLOX, thus easing the specification and modification of
bused designs.

● Creating a Hierarchical Symbol outlines the steps to be followed
when creating hierarchical designs with X-BLOX.

a. SELth represents an ordinal number (1st, 2nd, 3rd, etc.)

MUXBUSn: n=2, 4, or 8

SEL input value SEL_ERROR MUX_OUT

Value is greater than n–1,
or <0

high zero

Value indexes an unconnected
D_OUT element

high zero

Value represents all other
cases

low SELth a of Mx
inputs

PROM, SRAM: DEPTH=n

ADDR input value ADDR_ERROR D_OUT

Value is greater than n–1 high zero

Value represents all other
cases

low contents of ADDR
2-14 Xilinx Development System

Creating an X-BLOX Design
● Signal Aliasing explains how X-BLOX assigns aliases to signals
and buses.

● Bus Manipulation is an overview on how to use the SLICE,
ELEMENT, FORCE, MUXBUS, and CAST modules to manipulate
buses.

● Location Attributes documents how to specify locations for a
module.

● Using BUS_IFxx to Connect X-BLOX Buses to non-X-BLOX Logic
tells you how to connect X-BLOX buses to non-X-BLOX portions
of your design.

Specifying Buses and Bus Labels
All X-BLOX modules and buses are generic in size. X-BLOX
represents all bus sizes and encodings with either a bus with no
range or a single-bit net, depending on the schematic capture
package. For instance, Viewlogic and Mentor use rangeless buses,
and OrCAD uses nets.

To label an X-BLOX bus connected to X-BLOX modules, use a label to
name the bus without specifying the bus range on the label. Contrast
the following specifications for X-BLOX and non-X-BLOX buses.

● Specify an X-BLOX bus as follows:

DATA

● Specify a non-X-BLOX bus as follows:

DATA[15:0]

After labeling your X-BLOX bus, specify the bounds and encoding
for the bus anywhere on the same data path. Refer to the section “Bus
Data Types,” which follows, for information on how to specify bus
bounds and encoding.

When you run X-BLOX, it synthesizes the buses expanding them to
the proper sizes as it generates the simulation models and performs
chip-level implementation. Generic-sized buses allow the schematic
to be resized quickly because the BOUNDS attribute of a bus needs to
be specified only once on each data path. The proper implementation
of the modules is achieved using the encoding for the bus. If you
X-BLOX Reference/User Guide 2-15

X-BLOX Reference/User Guide
need to change the encoding of a secondary bus, use the CAST
module to connect the two buses.

Bus Data Types
In X-BLOX, a bus is not just a collection of wires: a bus defines the
kind of data that travels through the bus. As in structured computer
languages, this data has a data type. A bus data type is defined by an
encoding scheme and a bus precision. You must assign both
attributes, BOUNDS and ENCODING, to establish a data type. The
ENCODING attribute defines the data encoding schemes supported
by X-BLOX, and the BOUNDS attribute defines the left and right
indices of the bits on the bus. For example, an 8-bit unsigned binary
bus has eight bits that can be indexed from seven down to zero. In
this case, specify the BOUNDS attribute as BOUNDS=7:0.

You must specify the data type of at least one Input, Output, or
BUS_DEF component along each X-BLOX data path to propagate the
data type to the other modules on that data path.

ENCODING

The encoding scheme for a bus is specified with an attribute called
ENCODING. The encoding enables X-BLOX to treat unsigned
numbers differently from two’s-complement or one-hot encoded
numbers according to the encoding used. The X-BLOX software uses
this information to be sure that functional modules such as adders,
comparators, multiplexers, and decoders are synthesized correctly for
the data type used.

X-BLOX currently supports three encoding schemes with
ENCODING attributes as shown in the following table.
2-16 Xilinx Development System

Creating an X-BLOX Design
Table 2-8 X-BLOX Encoding Schemes

Note: X-BLOX does not check the validity of ONE_HOT data coming
from outside the X-BLOX bus environment. X-BLOX modules
generate valid ONE_HOT values when requested unless the module
is disabled. For example, the DECODE module is disabled when the
Enable is Low, in which case, the output is zero, which is not a valid
one-hot value.

Note: With encodings of UBIN, ONE_HOT, or TWO_COMP, the
BOUNDS attribute must be specified; there is no default value for
BOUNDS. However, for an encoding of BIT, the attribute BOUNDS is
optional. If BOUNDS is specified with an encoding of BIT, it is
equivalent to the UBIN encoding. If the attribute BOUNDS is not
specified with an encoding of BIT, the result is a scalar net. If
BOUNDS are specified but ENCODING is not, it is equivalent to
specifying ENCODING=BIT.

BOUNDS

To specify the precision (bus bounds) of the data types, use the
BOUNDS attribute. The bounds are a pair of integers separated by a
colon. The first number is the left bound and represents the most-
significant bit (MSB) of a number. The second number is the right
bound and represents the least-significant bit (LSB) of a number. An
8-bit port usually has BOUNDS=7:0, indicating that the left-most bit
has index 7 and that the right-most bit has index 0. Refer to
Figure 2-5.

Note: You can use any combination of integers, as long as the
difference of the indices, plus one, equals the width of the bus; for
example, (7–0)+1=8. If both bounds are the same, the bus is one bit
wide with the index of that bounds number. Note that for big-endian
buses, the values of these indices are significant — the indices
represent the place-values of the corresponding bits.

Encoding Description

BIT or UBIN Unsigned binary
ONE_HOT 1-of-n encoding — only one wire at a time is

set to logical 1
TWO_COMP Two’s-complement
X-BLOX Reference/User Guide 2-17

X-BLOX Reference/User Guide
A big-endian bus can represent fractional (scaled, not floating point)
numbers that require negative bounds or positions to describe the
bus. For example, a 13-bit bus with five fractional bits has the bounds
7 down to –5. As shown in Figure 2-5, the binary point is between the
bit with index 0 and the bit with index –1 (that is, BOUNDS=7:–5).

Note: Please verify the status of support of negative indices by
X-BLOX in the Release Notes.

Figure 2-5 Example of BOUNDS and ENCODING Representation

Big-Endian vs. Little-Endian

When the MSB index of a bus is greater than the LSB index, for
example, BOUNDS=9:0, this is called “big-endian”, because the big
end (largest bit index) is on the left. When the MSB is less than the
LSB, for example, BOUNDS=0:9, this is called “little-endian” because
the little end is on the left. See Figure 2-6. Note that the MSB is always
on the left and the LSB is always on the right.

Figure 2-6 Big-Endian vs. Little-Endian

Note: The bounds have an important role in the interpretation of the
values on a bus. On a big-endian bus, the indices of the bits specify
the weight of the bit. For example, bit 4 has weight 24=16, and the 0

X2046

ENCODING= UBIN
BOUNDS= 7:0

ENCODING= UBIN
BOUNDS= 15:8

ENCODING= TWO_COMP
BOUNDS= 7:-5

7 0

MSB LSB

15 8

MSB LSB

7 0

MSB

Binary Point

-5

LSB

X4530

Big-endian

Little-endian

7 0

MSB LSB

0 7

MSB LSB
2-18 Xilinx Development System

Creating an X-BLOX Design
bit (weight 20=1) is just to the left of the binary point. Also, bit –3 has
weight 2 –3 =1/8=0.125. In a little-endian bus, there is no standard
place for the binary point, so X-BLOX places the binary point to the
right of the right-most bit in a little-endian bus. The value of the
number on the bus used as the selector determines the action of the
SEL ports on the X-BLOX multiplexers and decoders. The value of
the selector depends on the encoding and bounds of the selector.

One-bit arrays are treated as big-endian, that is, BIT 0:0 has the
weighting 20=1, BIT 4:4 has the weighting 24=16,BIT –3:–3 has the
weighting 2–3=1/8=0.125. If you wish a single bit with weighting 1,
either leave the BOUNDS field empty or set it to 0:0.

Big-endian and little-endian ONE_HOT data always has the
weighting of the corresponding bit index. For example, the
ONE_HOT (3:–1) bit value 10000=3 and the ONE_HOT (–1:3) bit
value 00001=3.

Data Type Propagation
X-BLOX uses data type propagation to minimize the number of times
and locations that the encoding schemes and precision must be
specified in a design. X-BLOX propagates the ENCODING and
BOUNDS attributes assigned to one module on the bus to all the
other connected modules and buses in the data path. This guarantees
consistency of bus sizes and encoding schemes, making global
modifications much easier. For example, consider Figure 2-7 in which
an 8-bit unsigned-binary bus connects to an adder, the output of the
adder goes to another 8-bit bus, and that bus goes to an 8-bit register.
If you had to specify the data type in eight places — three ports on
the adder, two ports on the register, and the sizes of the three buses —
changing one of these data types without changing the others might
lead to errors. The same design completed with X-BLOX modules
requires you to specify the ENCODING=UBIN and the BOUNDS=7:0
attributes just once on the data path.
X-BLOX Reference/User Guide 2-19

X-BLOX Reference/User Guide
Figure 2-7 Simple X-BLOX Data Path Definition

Note: Specify the ENCODING and BOUNDS attributes in the
X-BLOX design system at the periphery of the chip or function; both
attributes propagate to the other modules and buses. The X-BLOX
modules that use the ENCODING and BOUNDS attributes are as
follows.

● INPUTS

● OUTPUTS

● BIDIR_IO

● BUS_DEF

● FORCE

● CAST

● DATA_REG

● COUNTER

● PROM

● SHIFT

● SRAM

The INPUTS, OUTPUTS, and BIDIR_IO modules connect the circuit
to the pads of the device. The most appropriate place to assign the
ENCODING and BOUNDS attributes is at the point where the buses

X4627

A

B

FUNC

ENCODING= UBIN

BOUNDS= 7:0

XBLOX_BUS

DATA_REG

BUS_DEF

ADD_SUB

ADD_SUB

C_IN

OVFL

C_OUT

STYLE=

D_IN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

Q_OUT

ASYNC_VAL=
SYNC_VAL=

• • •

• • •

• • •

• • •
2-20 Xilinx Development System

Creating an X-BLOX Design
interface to other chips. The BUS_DEF module is used to define the
data type of internal buses and module ports that are not connected
to the I/O network.

Creating a Hierarchical Symbol
This section explains how to create a hierarchical symbol that
includes one or more pins connected to X-BLOX buses.

Bus Sizes

Just as you specify X-BLOX bus labels without specifying a range,
specify X-BLOX bus pins without a range when you create a
hierarchical symbol. Thus, all bus pins will be one-bit wide.

Note: With the Viewlogic editor, to help you visually recognize that
these are generic buses, you can draw these interface pins as wide as
a bus interface pin by following the instructions below:

1. Add an X-BLOX pin to the current symbol.

2. Draw a box around the pin.

3. Fill the box solid, referring to any X-BLOX symbol as an example.

Data Types

Within a single schematic sheet, you must specify the data type at
least once per data path using the BOUNDS and ENCODING
attributes. The same is true of hierarchical designs: specify the data
type at least once per data path, whether or not the data path crosses
hierarchical boundaries.

Note: If the bus size for the underlying schematic will not change,
you can define the data path bounds and encoding at the subcircuit
level. However, if you do not specify the data type in the underlying
schematic, this schematic becomes generic and can be resized by the
data type definitions specified in the main schematic.

Data Type Propagation

When you define the data type of an X-BLOX bus at a level other than
the subcircuit level, any changes to the bounds or encoding of that
X-BLOX bus propagate throughout the entire data path, including
the subcircuit.
X-BLOX Reference/User Guide 2-21

X-BLOX Reference/User Guide
Signal Aliasing
In an X-BLOX design, all signal lines and buses have unique labels or
names. Most of the buses represent unique data paths, but when one
or more wires are equated with a CAST symbol or extracted from a
bus by means of an ELEMENT or SLICE module, there will be
different names assigned to the same logical wire:

● For the two differently named buses connected to the CAST
module, each of the corresponding signals in the buses are
equivalent to one another.

● The single line extracted from a bus by the ELEMENT module will
have multiple names — one is the single line and the other is the
equivalent net in the bus.

● Each of the wires included in the slice, or subset of wires selected
by the SLICE module from a larger bus will also have multiple
names — one from the main bus, the other from the sub-bus.

An alias is the name of a net used to refer to all equivalent nets in
your design. Aliases are used because the XNF file supports only one
name for any given net in your design. The SLICE, ELEMENT, and
CAST modules are implemented merely as buses and nets connected
without any logic or buffers. The software combines the net names
obtained from these components and retains only the name supplied
on the largest containing bus unless the KN attribute (KEEPNAME)
is attached to the net or bus. All the other names will not be in the
XNF file but will have signal aliases.

X-BLOX determines the signal aliases by assigning the label of the
largest bus containing the signal to the lesser bus or signal, whenever
possible, removing the original labels assigned to these buses. The
signal names that are not kept are aliased by the “signal aliases.” The
original labels and aliases of the lesser buses are reported in the .blx
file. The example in Figure 2-8 shows several interrelated buses.
Table 2-9 shows the resulting signal definitions and aliases

Nets that have not been aliased or that are aliases of other nets, can be
referenced directly during simulation.

Some schematic capture packages can make use of the signal alias
information. Refer to your Interface User Guide and check whether
this feature is supported. If it is supported, all of the net names in
2-22 Xilinx Development System

Creating an X-BLOX Design
your original design that have not been absorbed into CLBs or IOBs
will be accessible during timing simulation.

If this feature is not supported in your interface, you must reference
an aliased net by its “signal alias.” All the nets and their aliases are
listed in the .blx file. Thus, if you cannot reference your X-BLOX bus
during timing simulation, it is because you are not referencing an
alias or because the net has been absorbed into a CLB. Refer to the
.blx file to determine the alias name to use in your simulation
stimulus files. The example in Table 2-9 shows a .blx file alias report.

Note: To retain a name other than the one chosen by the software,
specify the optional KN (KEEPNAME) attribute on the desired bus or
signal.

Warning: Simulation command files should reference the label of the
largest equivalent X-BLOX bus. Otherwise, the command file will not
work for timing simulation.

Figure 2-8 Example of Signal Aliasing

In the circuit displayed in Figure 2-8, a new bus called SWAP_OUT is
created by re-arranging the bits in the OUT bus with SLICE modules.
The first two SLICE modules (on the left) combine the two MSBs and
the two LSBs of the OUT bus into SUB buses called HNIB and LNIB,
respectively. The next two SLICE modules reassemble the bits into
the bus called SWAP_OUT with the indices relabeled. The X-BLOX
software labels the outputs on the pads as P_OUT/
SWAP_OUT<1,0,3,2>, which reflects the swapped pin sequence. The
X-BLOX software reports the aliasing assignments as follows in the
Data Type Propagation and Signal Aliasing chapter of the .blx file:

X4628

SLICE

SLICE=3:2

SUB=1:0

SLICE

SLICE=1:0

SUB=1:0

SLICE

SLICE=1:0

SUB=1:0

SLICE

SLICE=3:2

SUB=1:0

ENCODING=UBIN

BOUNDS=3:0

P_IN P_OUT

ENCODING=UBIN

BOUNDS=3:0

ENCODING=

BOUNDS=

HNIB

LNIB

SWAP_OUTOUTININPUTS

P_CLK
INPUTS

OUTPUTS

DATA_REG

D_IN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

Q_OUT

ASYNC_VAL=
SYNC_VAL=
X-BLOX Reference/User Guide 2-23

X-BLOX Reference/User Guide
Table 2-9 Sample BLX Report File

This report indicates the data type and status of every signal in the
design. For example, the bus IN has data type ubin(3:0), and is made
up of the signals IN<3>, IN<2>, IN<1>, IN<0> (from MSB to LSB).
The bus OUT is made up of the signals OUT<3>, OUT<2>, OUT<1>,

Signal Data Type

CLK : BIT

GND : GND power: GND

HNIB : ubin(1:0) bus: OUT<3>, OUT<2>

HNIB<0> : BIT aliased by: OUT<2>

HNIB<1> : BIT aliased by: OUT<3>

IN : ubin(3:0) bus: IN<3>, IN<2>, IN<1>, IN<0>

IN<0> : BIT

IN<1> : BIT

IN<2> : BIT

IN<3> : BIT

LNIB : ubin(1:0) bus: OUT<1>, OUT<0>

LNIB<0> : BIT aliased by: OUT<0>

LNIB<1> : BIT aliased by: OUT<1>

OUT : ubin(3:0) bus: OUT<3>, OUT<2>, OUT<1>, OUT<0>

OUT<0> : BIT alias of: LNIB<0>, SWAP_OUT<2>

OUT<1> : BIT alias of: LNIB<1>, SWAP_OUT<3>

OUT<2> : BIT alias of: HNIB<0>, SWAP_OUT<0>

OUT<3> : BIT alias of: HNIB<1>, SWAP_OUT<1>

SWAP_OUT : ubin(3:0) bus: OUT<1>, OUT<0>, OUT<3>, OUT<2>

SWAP_OUT<0> : BIT aliased by: OUT<2>

SWAP_OUT<1> : BIT aliased by: OUT<3>

SWAP_OUT<2> : BIT aliased by: OUT<0>

SWAP_OUT<3> : BIT aliased by: OUT<1>

VCC : VCC power: VCC
2-24 Xilinx Development System

Creating an X-BLOX Design
OUT<0> (MSB to LSB). The bus SWAP_OUT has the same data type
but is made up of the signals OUT<1>, OUT<0>, OUT<3>, OUT<2>
(MSB to LSB). These signals are also in the OUT bus.

By looking at the entry for signal OUT<0>, you can see that this bit is
the alias or name chosen for signals LNIB<0> and SWAP_OUT<2>.

Note: Only the bus name OUT will be known during timing
simulation.

Bus Manipulation
The following sections explain how to use special modules to
manipulate buses.

CAST Symbol

Use the CAST module to connect buses that have:

● the same size but different encodings

● the same size but different bounds (ranges)

● the same size but different encodings and bounds

The following table gives examples of how to specify the BOUNDS
and ENCODING attributes for pin A and pin B depending on the
task you want to do.

Table 2-10 Specifying the BOUNDS and ENCODING Attributes

In addition, you can use the CAST module in three different ways by

Action Bounds and Encoding

A Pin B Pin

Change the bounds

Connect big-endian
and little-endian buses

7:0
7:0

7:0
7:0

11:4
4:11

0:7
2:9

Change the encoding
(No conversion is per-
formed)

BIT, UBIN,
TWO_COMP, or

ONE-HOT

BIT, UBIN,
TWO_COMP, or

ONE-HOT
X-BLOX Reference/User Guide 2-25

X-BLOX Reference/User Guide
specifying the data types for both pins on the module (A and B), for
one pin only (A or B), or by not specifying the attributes for either of
the two pins. Refer to the CAST module description in the chapter
“Module Definitions” for more details.

ELEMENT Symbol

The ELEMENT symbol is used to extract a single wire from a bus or
connect a single wire to a bus. To use it, specify the index of the wire
to be connected or extracted from the bus using the ELEM attribute.

Figure 2-9 ELEMENT Symbol

FORCE Symbol

The FORCE symbol forces a data value on a bus. Use it to specify a
constant input value on the parallel D_IN of a counter module or to
set an input of a comparator module to a constant value. As this value
is always present on the bus, you can use a TRISTATE module to
control part-time access to the FORCE value. This symbol can also be
used to define the data type of the value and the bus to which the
FORCE symbol is attached. See the chapter “Module Definitions” for
more details.

Figure 2-10 FORCE Symbol

SLICE Symbol

The SLICE module extracts a portion of a larger bus or collects
smaller buses together into a larger bus. It relabels groups of lines for
your convenience. Note that both MAIN and SUB represent X-BLOX
buses. The attributes on this symbol are complementary and need not

X1859

XBLOX_BUS ELEM

ELEM=

ELEMENT

X1861

VALUE=

ENCODING=

BOUNDS=

FORCE
2-26 Xilinx Development System

Creating an X-BLOX Design
all be used at the same time. See the chapter “Module Definitions” for
more details.

Figure 2-11 SLICE Symbol

MUXBUS Symbol

The MUXBUS symbols are multiplexers used to route one of the n
inputs to the output under the control of the Select input port. See the
chapter “Module Definitions” for more details.

Figure 2-12 MUXBUS2 2-to-1 Bus Multiplexer

Location Attributes
You can specify the placement of logic synthesized by X-BLOX by
placing the LOC or LOC[i] attributes on X-BLOX modules. A LOC
attribute applies to all of the logic synthesized for an X-BLOX
module. A LOC[i] attribute applies to the ith element of the X-BLOX
module only, and can be used only when the data type on the module
is an array (not BIT). The values assigned to the LOC and LOC[i]
attributes are the locations of a CLB, TBUF, IOB, or edge decoder on
the FPGA.

The LOC attribute can specify the location of a module with data
type BIT (no bounds), for example, LOC=AA (CLB location AA),
LOC=TL (Top Left edge for I/O, decode logic, or global buffer).

X1858

MAIN SUB

SLICE=

SUB=

SUB_STARTS_AT=

SLICE

X1853

MUX_OUT

SEL

M1

M0

SEL_
ERROR

MUXBUS2
X-BLOX Reference/User Guide 2-27

X-BLOX Reference/User Guide
A LOC attribute can also be placed on an X-BLOX module whose
data type includes BOUNDS. In this case, the attribute must specify a
range of locations. For example, LOC=TBUF_R*CO.1 (a TBUF in any
row in Column 0).

The LOC[i] attribute associates a LOC value with the logic
synthesized for the ith bit of an X-BLOX module. The
ENCODING=BIT with no BOUNDS does not have an index i, so
LOC[i] is inappropriate. Several LOC[i] attributes can be placed on an
X-BLOX module, each for a different i.

For example, LOC[1]=AA, LOC[– 1]=AC specifies that Bit 1 goes in
CLB location AA and Bit –1 goes in CLB location AC.

Using BUS_IFxx to Connect X-BLOX Buses to
non-X-BLOX Logic

At times, you might want to connect X-BLOX circuitry to non-
X-BLOX circuitry. The problem is that, contrary to X-BLOX buses,
which can be resized by modifying the ENCODING and BOUNDS
attributes, buses in non-X-BLOX circuitry have a specific size and
cannot be connected directly to the generic X-BLOX buses. For this
reason, you must use one of the Bus Interface macros (BUS_IFxx
macros) provided in the X-BLOX library to connect the X-BLOX bus
and the schematic editor bus. (See Figure 2-13.) These schematic
symbols behave like wires with no logic or direction control.

Figure 2-13 X-BLOX Bus to Schematic-Editor Bus Interface

Xilinx provides bus interface symbols for bus sizes between two and
thirty-two bits wide, named BUS_IF02 through BUS_IF32. As the
encoding and bounds are not specified for these macros, a separate
X-BLOX BUS_DEF symbol must be connected to the X-BLOX bus side
of the BUS_IFxx symbol.

You must use these symbols and connect them during the design
phase to enable X-BLOX to complete its data type propagation during
the synthesis process.

X4624

BUS_IF16XBLOX_BUS

X

SC_ED_BUS[15:0]
2-28 Xilinx Development System

Creating an X-BLOX Design
Warning: Ensure you have specified the data type (encoding and
bounds) for the bus connected to the XBLOX_BUS, either through
data type propagation from other modules or with a BUS_DEF
module.

Creating a Custom BUS_IFxx Macro

If you need a bus interface for a size or bounds combination that is
not provided, simply copy one of the existing BUS_IFxx macros and
edit it to suit your needs.

The following example explains how to connect a ubin (4:1) X-BLOX
bus to a bus whose bits are numbered from 4 down to 1.

1. Copy the BUS_IF04 symbol and schematic to a new name, for
instance BI_04_01.

2. Edit the symbol, changing its name and the declaration for the bus
pin. You do not need to change the X-BLOX bus pin.

3. Edit the schematic for BI_04_01.

The schematic for the BUS_IF04 is shown below. It contains four
X-BLOX ELEMENT symbols, one for each of the four bits (3 down
to 0) in the bus.

4. The ELEMENT for bit 0 is no longer needed, but one is needed for
bit 4. Change the index attribute, ELEM=0, to ELEM=4 on this
ELEMENT symbol.

5. Change the name of the signal attached to this ELEMENT from B0
to B4.

6. Change the name of the B bus from B[3:0] to B[4:1].

7. Save the result and you are ready to use your BI_04_01 macro by
connecting it to an X-BLOX bus with Bounds 4:1.

If you need to connect to a bus that has more than 32 bits, copy the
BUS_IF32 macro. Then, add more ELEMENT symbols to the new
signals and add the appropriate ELEM indices.
X-BLOX Reference/User Guide 2-29

X-BLOX Reference/User Guide
Figure 2-14 BUS_IF04

Using XACT-Performance Attributes
XACT-PerformanceTM enables you to specify precise timing
requirements for your Xilinx FPGA designs. Use XACT-Performance
to specify the maximum allowable delay for a set of paths in your
design. You identify a set of paths by identifying a group of start and
end points. The start and end points can be flip-flops, I/O pads, IOB
latches, or XC4000 RAMs. You can control the worst-case timing on
the set of paths by specifying a single delay requirement for all paths
in the set.

The primary method of specifying timing requirements involves
entering them on the schematic. However, you can also specify
source timing requirements via the constraints file as well as PPR
command-line options. These options do not provide as much control
and flexibility as entering timing information directly on the
schematic. See the “PPR” chapter in the XACT Reference Guide, Volume
2 for more information about PPR command-line and constraints
options.

Once you define timing specifications, PPR can then map, place, and
route your design based on these requirements.
2-30 Xilinx Development System

Creating an X-BLOX Design
To analyze the results of your timing specifications, you can use the
XDelay program. Refer to “The XDelay Timing Analysis Program” in
the XACT Reference Guide, Volume 3 for more information.

Note: Please refer to the XACT-Performance Utility section of the
XACT Reference Guide for details on how to use XACT-Performance.
You should be familiar with XACT-Performance concepts before
continuing with this section. The concepts particular to X-BLOX are
described in the present section.

TSidentifier Attribute
Use the TSidentifier attribute as part of a TIMESPEC symbol. This
attribute is used to convey timing constraints to PPR. You can also
specify a TSidentifier attribute on nets connected to the modules;
however, it is not recommended that you do so. Instead, you are
encouraged to use the TNM syntax described below, which provides
for more flexibility.

TNM Attribute
Use TNM attributes to provide timing constraint information to the
place and route program (PPR).

When you place them on X-BLOX modules, TNM attributes behave
as they do when placed on macros from the Xilinx Unified Libraries:
they name groups of XNF primitives in the XNF file output by
X-BLOX. When you define them on input signals, TNM and
TSidentifier attributes are passed to the signals driving the
underlying logic. X-BLOX places the TNM attribute you provided on
the appropriate primitives as it translates the design into an XNF file.

Note: XACT-Performance attributes are not propagated through the
ELEMENT and SLICE modules in this release. Place TNM attributes
on the nets or on X-BLOX modules that contain registers, I/Os, or
RAMs
X-BLOX Reference/User Guide 2-31

X-BLOX Reference/User Guide
Figure 2-15 Specifying TIMESPEC Statements

A TNM attribute placed on an X-BLOX symbol might contain
“unqualified” TNMs, that is TNMs with none of the qualifiers listed
in Table 2-11. However, it is recommended that you use valid
qualifiers. Refer to the documentation on XACT-Performance for the
definition of these terms. The following table indicates the X-BLOX
modules on which you can place a TNM attribute. It also shows the
valid combinations of qualifiers and X-BLOX symbols. There are
several classes of primitives that TNM attributes can be associated
with. For each X-BLOX symbol type, the TNM attribute is propagated
to the appropriate class of logic primitives.

A TNM with a qualifier on an X-BLOX symbol in violation of the
table below is reported as an error.

TNM=FFS:reg

D_IN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

REGCLK

CNTCLK

Q_OUT

ASYNC_VAL=
SYNC_VAL=

TNM=FFS:cnt

DATA_REGDATA_REG

D_IN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

Q_OUT

ASYNC_VAL=
SYNC_VAL=

Logic

X4637

TS01=FROM:cnt:TO:cnt=20MHz

TIMESPEC

TS02=FROM:reg:TO:reg=100ns

TS03=FROM:cnt:TO:reg=10MHz
2-32 Xilinx Development System

Creating an X-BLOX Design
Table 2-11 Valid Combinations of Modules and Qualifiers

a. On the DATA_REG module, TNM propagates to flip-flops or latches
depending on the STYLE attribute. See the documentation on the
DATA_REG module for more details.

 X-BLOX Symbol Type TNM Class of Primitives

ACCUM, SHIFT, COUNTER,
DATA_REG, CLK_DIV

FFS

 INPUTS, OUTPUTS, BIDI-
R_IO, TRISTATE

PADS

SRAM, PROM RAMS
DATA_REGa LATCHES
X-BLOX Reference/User Guide 2-33

X-BLOX Reference/User Guide
2-34 Xilinx Development System

Chapter 3
X-BLOX Reference/User Guide — 0401315 01 3-1

Processing Your Design

This chapter describes the overall flow you should use to create and
process an X-BLOX design. Refer to it whenever you need to verify
the sequence of tasks you need to enter and process your design.

The flow used to enter and simulate X-BLOX designs is shown in
Figure 3-1. The different tasks you must perform are addressed in the
following sections:

● Creating and Modifying Your Design, outlines the steps used to
create a design with your particular interface.

● Performing Functional Simulation, explains how to invoke the
interface program shell that automatically generates simulation
models.

● Implementing an Incremental Design guides you through the
procedure for running XMake incrementally and processing a
partial design.

● Performing Timing Simulation includes a procedure for invoking
the interface program shell that automatically generates a timing
model for your design.

● Implementing the Complete Design tells you how to run XMake to
produce the bitstream for configuring a Xilinx FPGA.

● Downloading Your Design tells you what program to run to
download your design into a Xilinx FPGA.

● X-BLOX Design Example provides a design example and
instructions on how to implement the design.

X-BLOX Reference/User Guide
.

Figure 3-1 Incremental Design Flow

*

*

*

X4588

Create/edit/add to your design

Implement your design using XMake

1

2

3

4

5

6

Simulate functionality
using XSimMake

No

Yes

Implement your design
using XMake Incremental

Simulate timing
using XSimMake

Design
functionally

correct?

No

Yes

Design
timing

correct?

No

Yes

Download your design to an FPGA

Design
Complete?

Simulate timing
using XSimMake

No

Yes

Design
timing

correct?

*

*

*

3-2 Xilinx Development System

Processing Your Design
* If you are using the Mentor Graphics design tool, substitute for the
XSimMake program mentioned in the preceding illustration the
design interface program names used by that design tool: pld_fncsim8
for functional simulation and pld_timsim8 for timing simulation.

Step 1: Creating and Modifying Your Design
In this step, you enter your design and specify all the attributes you
need to customize the X-BLOX modules.

To create an X-BLOX design, follow the steps outlined in the list and
tables below.

1. Configure the environment of your third-party schematic tools.

2. Load the X-BLOX library and other Xilinx libraries as appropriate.

3. Use modules from the X-BLOX library in your schematics.

4. Specify attributes to customize your X-BLOX modules.

5. Attach nets and X-BLOX buses, add bus definition modules where
appropriate.

For more details, please refer to your interface user guide.
X-BLOX Reference/User Guide 3-3

X-BLOX Reference/User Guide
Table 3-1 Configuring the Environment

Mentor Viewlogic OrCAD

1. Go to the working direc-
tory.

2. Set $MGC_WD to the
working directory using the
setenv command.

3. Invoke PLD_DMGR by
typing pld_dmgr .

1.When you create a project,
Workview copies a generic
viewdraw.ini file from the
“workview/standard”
directory to your project
directory. At this time, edit
your viewdraw.ini file to
configure your environ-
ment.

2. Select Window ➝ Open
➝ Viewfile . Then select
Project ➝ Create to
create a new project direc-
tory.

3. Specify a directory for
your project. Enter /work-
view /projectname at the
Project Directory prompt.

4. Select Set ➝ Project .

5. Confirm the selection
with the middle mouse-but-
ton.

Note: If you are using View-
logic on a PC, use a
 backslash (\) instead of a
slash (/) when entering path
names.

1. Create a design directory
and make it your current
directory.

2. Configure your design
directory by running
XDraft on the specific
FPGA family. For example,
to configure an XC4000
design, execute the com-
mand as follows:
xdraft 4 [options]
3-4 Xilinx Development System

Processing Your Design
Table 3-2 Loading a Library

Mentor Viewlogic OrCAD

1. Select pld_da by double
clicking with the left mouse-
button on the pld_da icon.

2. Select Open Sheet from
the session palette with the
left mouse-button.

3. Use the Navigator button
to select your design, or
specify the path of your
design. Then, click OK with
the left mouse-button.

4. Select the Libraries menu
and choose XACT_LIB .
From the XACT libs menu,
in Design Architect, select
UNIFIED LIB , and from
the Unified Libraries menu,
select X-BLOX LIB.

1. Edit viewdraw.ini or use
Project ➝ Search ➝
Viewdraw in the project
directory.

2. Ensure that the path to the
X-BLOX library is included
in the viewdraw.ini file.

XDraft automatically adds
the X-BLOX libraries to your
config.sys file.
X-BLOX Reference/User Guide 3-5

X-BLOX Reference/User Guide
Table 3-3 Bringing Up a Symbol

Mentor Viewlogic OrCAD

1. Select an X-BLOX mod-
ule from the displayed
library menu with the left
mouse-button.

2. Place the symbol on your
schematic using the left
mouse-button.

1. Open a schematic sheet
for editing by selecting
Window ➝ Open ➝
Viewdraw ➝ Schematic
from the menu or by typing
sch ↵.
Press the middle mouse-
button to get a prompt and
enter a design name.

2. Use the Add ➝ Comp
command to add X-BLOX
symbols to your schematic.
Press the middle mouse-
button to get a prompt.
At the Symbol Name
prompt, type a component
name.

3. Place the component on
the worksheet by pressing
the middle mouse-button.

1. Invoke the Draft editor
and bring up a schematic on
your screen.

2. Use the Get command
from the Draft menu and
type the name of the symbol
you need at the Get?
prompt. For example, MUX-
BUS.

3. Place the symbol on your
schematic using the Place
command.
3-6 Xilinx Development System

Processing Your Design
Table 3-4 Specifying the Module Attributes

Mentor Viewlogic OrCAD

1. Select the component, for
example, the X-BLOX
BUS_DEF symbol, by click-
ing the left mouse-button on
the symbol.
Invoke the properties menu
by pressing the right mouse-
button on Properties ➝
Modify .
Select Encoding from the
Properties menu by clicking
on the left mouse-button
and then clicking on OK.

2. Enter a valid property
value, for example, ubin for
the Encoding property, then
click on OK.

1.Select the component
using the left mouse-button.

2. Use the command
Change ➝ Attr ➝
Dialog ➝ All to specify
attribute values for your
component or type ca↵.

3. Move the cursor to the
appropriate value field and
press the left mouse-button
to start entering a value in
the field.

4. Press enter to submit the
value to the system. Then
select accept.

1. Use the Edit ➝ Edit
➝ Options ➝ Name
command.

2. Enter the attribute name
followed by the equal sign
and a valid value at the
prompt.
X-BLOX Reference/User Guide 3-7

X-BLOX Reference/User Guide
Step 2: Performing Functional Simulation
After entering a meaningful part of your schematic, you can simulate
the functionality of your design as explained below. There are two
main steps. First generate a functional simulation netlist. Then, run
the simulation program supported by your third-party design
package and simulate your design. The table below summarizes the
procedure to follow when performing a functional simulation. Refer
to your interface user guide for the complete procedure.

When the Viewlogic program XSimMake or the Mentor program
pld_fncsim8 processes designs that contain X-BLOX modules, it
generates a special set of schematics that allow users to back-annotate
simulation values to their schematics.

With Viewlogic, if your original schematic was called design,
XSimMake creates a schematic called sdesign. In the sdesign
schematic, the X-BLOX modules have been expanded to their specific
bus widths. This feature enables the Viewsim simulator to back-
annotate values to the sdesign schematic. This schematic should be
used for both functional and timing simulation; however, you cannot
use it for FPGA implementation and you must not run XMake on this
design.

Similarly, for Mentor users, special schematics are created and placed
in the directory called “simdir” to support schematic value back-
annotation when using the –o or “use original” option.

Since Orcad does not support this feature, no special OrCAD
schematics are created by XSimMake. XSimMake creates a directory
called “otherxnf, “ which contains all the simulation files.

Note: If you are using a PC, make sure your design name does not
exceed 7 characters. If your design name exceeds 7 characters,
XSimMake generates an error.
3-8 Xilinx Development System

Processing Your Design
Table 3-5 Functional Simulation

a. simdir refers to the name of the simulation directory automatically created by the Mentor Graphics
pld_fncsim8 program when the -o or “use original” option is selected.
b. sdesign refers to the name of the simulation directory automatically generated by XSimMake when it
creates a simulation netlist file for a Viewlogic design.

Mentor Viewlogic OrCAD

1. Invoke pld_fncsim8
from within pld_dmgr
(Mentor’s Design Manager
that contains Xilinx’s pro-
gram icons) by double-click-
ing on the icon in the tool
window with the left
mouse-button.

2. Enter the design name
and the part type in the
form. Fill in the options,
select Use Original and
click on the OK button.

3. Run the Mentor Graphic
QuickSimII program on
the simdira directory to sim-
ulate your design.

1. Run XSimMake from the
XDMTM Verify menu.

2. Choose option -F.

3. Select Viewlogic_
fpga_func from the list of
flows.

4. Run the Viewlogic simula-
tion program, ViewSim , to
simulate your design. Your
design is located in the sde-
signb simulation directory.
The simulation netlist is
called sdesign.vsm.

1. Run XSimMake from the
XDM Verify menu.

2. Choose option -F .

3. Select OrCAD_fpga_
func from the list of flows.

4. Run ASCTOVST from the
Verify menu.

5. Run the OrCAD Simu-
late program to simulate
your design.
X-BLOX Reference/User Guide 3-9

X-BLOX Reference/User Guide
Step 3: Implementing a Partial Design
The next step is to implement your partial design to verify the timing
of this portion (the actual delays) and the size of the design (number
of CLBs). If your design is complete, run XMake as explained in
step 5.

After you have successfully tested the functionality of your design,
you can implement it using XMake in “incremental” mode. Running
XMake incrementally means that you use special settings for the core
tools automatically invoked by XMake. These settings ensure that the
programs do not trim the incomplete logic from your design. They
also prevent the program from issuing error and warning messages
about this incomplete logic.

Once you feel you have entered a meaningful part of your schematic,
follow the instructions below to run XMake from XDM and
implement your design. Repeat this step as necessary using the guide
file options listed in Table 3-1 for the incremental design flow.

1. Select the Target from the XMake pop-up menu. Target refers to
the last action you wish to perform. In this case, choose Placed
and Routed Design as the target.

2. Attach the Save-Signal attribute to all dangling nets and buses.

3. Specify the settings for the programs XMake will run as shown in
Table 3-6. These setting are used for a partial design. They prevent
the XACT software (XNFPrep, X-BLOX, and PPR) from removing
incomplete logic from your design. They also prevent error or
warning messages from appearing in your report file (.out file).

Note: If you are using the Mentor interface, you need to invoke
PLD_XDM to modify the XMake program settings.
3-10 Xilinx Development System

Processing Your Design
Table 3-6 Program Settings

Note: On a PC, specify these settings from the Options selection of
the Profile menu. Page down to the appropriate program
(XNFPrep, X-BLOX, or PPR), select the program, and highlight the
required settings.

4. Save your profile. When you run XMake, the program uses the
options you specified.

5. Run XMake.

Program Setting Function

XNFPrep savesig=true Saves open signals.

X-BLOX archopt=false
mergeio=false

Turns off optimization.

PPR no complete

if guide, guide=filename

Prevents logic from being
removed.

If you are using a guide
file, specify its name.
X-BLOX Reference/User Guide 3-11

X-BLOX Reference/User Guide
Step 4: Performing Timing Simulation
Once you are satisfied with your partial design, you can test the
timing of your design. There are two steps in this process. First,
generate the appropriate simulation files. Then, simulate your design
using the simulation program supported by your third-party design
package.

X-BLOX supports signal aliasing for your simulation files. Please
refer to the section “Signal Aliasing” in the chapter “Creating an
X-BLOX Design.”

When the Xilinx XSimMake program operates on Viewlogic designs
that contain X-BLOX modules, it generates a special set of schematics
that allow Viewlogic users to back-annotate simulation values to their
schematics. If your original schematic was called design, XSimMake
creates a schematic called sdesign. In the sdesign schematic, the
X-BLOX modules have been expanded to their specific bus widths.
This enables the Viewsim simulator to back-annotate values to the
sdesign schematic. This schematic should be used for both functional
and timing simulation; however, you cannot use it for FPGA
implementation.

Similarly, for Mentor users, special schematics are created and placed
in the directory called design_tim to support schematic value back-
annotation when using the –g or “autogenerate” option.

Since Orcad does not support design back-annotation, no special
OrCAD schematics are created by XSimMake. XSimMake creates a
directory called “otherxnf,” which contains all the simulation files.

Note: If you are using a PC, make sure your design name does not
exceed 7 characters. If your design name exceeds 7 characters,
XSimMake generates an error.
3-12 Xilinx Development System

Processing Your Design
Table 3-7 Timing Simulation

a. design_tim refers to the name of the simulation directory automatically created by the Mentor Graph-
ics pld_timsim8 program when the -g or “auto generate” option is selected.
b. sdesign refers to the name of the simulation directory automatically generated by XSimMake when
it creates a simulation netlist file for a Viewlogic design.

Mentor Viewlogic OrCAD

1. Invoke pld_timsim8
from within pld_dmgr
(Mentor’s Design Manager
that contains Xilinx’s pro-
gram icons) by double-click-
ing on the
pld_timsim8 icon in the
tool window with the left
mouse-button.

2. Enter the design name in
the form and fill in the
options. Use the “auto-gen-
erate” option and click on
the OK button. Your design
is located in the design_tima

simulation directory.

3. Run QuickSimII on
design_tim.

1. Run XSimMake from the
XDM Verify menu.

2. Choose option -F .

3. Select Viewlogic_
fpga_timing from the list
of flows. Your design is
located in the sdesignb simu-
lation directory. The simula-
tion netlist is called
sdesign.vsm.

4. Run Viewsim .

1. Run XSimMake from the
XDM Verify menu.

2. Choose option -F .

3. Select OrCAD_fpga_
timing from the list of
flows.

4. Run ASCTOVST from the
Verify menu.

5. Run Simulate .
X-BLOX Reference/User Guide 3-13

X-BLOX Reference/User Guide
Step 5: Implementing the Complete Design
When your design is complete and has passed simulation tests
successfully, run XMake again to produce a bitstream for chip
programming.

1. Select the target from the XMake pop-up menu. Choose Placed
and Routed Design as the target.

2. Make sure you do not select the MAK file as the file on which you
run XMake. MAK is the summary report file generated by XMake.

3. Remove the settings set in step 3 (Implementing a Partial Design)
by unselecting them. X-BLOX optimizes the design by merging
flip-flops into the IOBs; this might change the timing of the data
paths through the optimized IOBs. X-BLOX also tries to optimize
high fanout clock nets. Refer to the chapter “Understanding
X-BLOX Operations” for information on design optimization.

4. Save your Profile.

5. Run XMake.

At this point, you should run the timing simulation program again as
explained in step 4.

Step 6: Downloading Your Design
Once your design is complete, you can download your design into an
FPGA device using the BIT file generated by XMake. For instructions
on how to download your design, refer to the XACT Reference Guide.
3-14 Xilinx Development System

Processing Your Design
X-BLOX Design Example
This section provides a design example to demonstrate the use of
X-BLOX in a design using XMake from within the Xilinx Design
Manager (XDM). The design example uses components taken from
the X-BLOX library and the XC4000 library.

Figure 3-2 Sample Design — Fibonacci Sequence Generator
Using the X-BLOX Design Tool

The proposed example is a design of a Fibonacci Sequence Generator.
A Fibonacci sequence is a sequence in which every value is the sum
of the previous two values. The following is a Fibonacci sequence:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...
(0, 1, 0+1=1, 1+1=2, 1+2=3, 2+3=5, etc.)

X-BLOX Modules Used in This Design

● ADD_SUB (Adder-Subtracter)

● COMPARE (Comparator)

● DATA_REG (Data Register)

Part=4003PC84

OSC4

DATA_REG

DATA_REG

DATA_REG

D_IN
D_IN
SYNC_CTRL
CLK_EN
CLOCK

Q_OUT

INVBUS
I O FIB_INV FIB_OUT

LEDS

FLOAT_VAL=
BOUNDS=3.0

ASYNC_VAL=

SYNC_VAL=

OVFL

C_OUT

FUNC

ADD_SUB

ADD_SUB

C_IN

A

B

STYLE=

D_IN
ASYNC_CTRL
SYNC_CTRL
CLK_EN
CLOCK

Q_OUTD_IN
ASYNC_CTRL
SYNC_CTRL
CLK_EN
CLOCK

Q_OUT

ASYNC_VAL=

SYNC_VAL=

ASYNC_VAL=

SYNC_VAL=

INVMASK=

Q0
Q1
Q2

Q3
CEO

TC
CE

CLR

CLR
C

CB4CE

F8M
F500K

F16K
F490

F15

A_GE_B
A_LE_B
A_GT_B
A_LT_B
A_NE_B
A_EQ_B

B

A

COMPARE

COMPARE_ASTYLE=

A_GE_B
A_LE_B
A_GT_B
A_LT_B
A_NE_B
A_EQ_B

EN

B

A

STYLE=

FORCE

FORCE_A

B_ZERO

ZERO_A

COMPARE

A_IS_0

AND2

VALUE=16#00#

VALUE= 0

TWO_HZ-ISH

A_N_B_R_0

X4432

COMPARE_B

B_IS_0

DELAY_1

DELAY_2

FORCE

A_N_B

CLOCK_IN

FIB

ENCODING= UBIN

LOC [2]= P58

LOC [2]= P57

OUTPUTS

REG_A
REG_B
X-BLOX Reference/User Guide 3-15

X-BLOX Reference/User Guide
● FORCE (Forces a value)

● OUTPUTS (Output)

● INVBUS (Bus Invertor)

XC4000 Library Modules Used in This Design

● OSC4 (OSCILLATOR)

● CB4CE (COUNTER)

● AND2 (AND gate)

Description

The output of the ADDER is delayed by two clock cycles. An X-BLOX
DATA_REG module, REG_A, contains the sum delayed by one clock
cycle; REG_B contains the sum delayed by two clock cycles. The sum
of the two is the Fibonacci sum.

All the X-BLOX registers are initialized to zero at power-up;
therefore, the Fibonacci sequence is 0, 0, 0, . . . unless a one is
introduced into the sequence.

If a one is introduced into the sequence, the outputs of REG_A and
REG_B are compared with zero. The FORCE modules supply the zero
values to one input of the COMPARE modules, and the other inputs
of the COMPARE modules are connected to the register outputs.

To show the flexibility of X-BLOX, the two FORCE values are defined
with different radices. FORCE_A uses VALUE=0, which is decimal
(X-BLOX default radix), and FORCE_B uses VALUE=16#00#, which is
hexadecimal. When the inputs to the comparators are equal (that is,
all are zeros), their High A=B outputs are ANDed and fed to the
carry-in of the ADD_SUB module. The carry-in inserts a one into the
system and changes the sequence from 0, 0, 0, . . . to 0, 1, 1, 2, . . . etc.

To provide a visible display of the Fibonacci sequence, the outputs of
the OUT_REG are fed to a set of four LEDs. As the LEDs are active
Low, an X-BLOX INVBUS module is used to invert the data into the
OUT_REG. Also, to make the output intelligible, some library
symbols (OSC4 and CB4CE) are used to divide the clock down to
about 2 Hz.
3-16 Xilinx Development System

Processing Your Design
Design Procedure
Complete the design shown in Figure 3-2 by following the steps
outlined below.

1. Place the X-BLOX components and other components from the
XC4000 library on your schematic and connect them as shown in
Figure 3-2.

Notice that the size and encoding of the design are generic at this
point. You can specify the data type and encoding on the data
path of any one of the following X-BLOX modules: INPUTS,
OUTPUTS, BIDIR_IO, or BUS_DEF.

2. Attach the BOUNDS and ENCODING attributes to the OUTPUTS
module, specifying the following values:

● BOUNDS = 3:0

● ENCODING = UBIN

The first attribute sets the port size, which is the bus size, to four
bits wide. The second attribute sets the data encoding to unsigned
binary.

As the design has only one data path, you have just defined the
data type for the entire design by specifying the attributes on a
single module.

3. Label all buses and nets in your design. The messages X-BLOX
generates as it processes the design are more meaningful to you
when they refer to a bus, a net, or a module by a label you have
chosen rather than the label generated by the design entry tool.

4. Save the file.

5. You can run all the steps described in the “Design Flow” section
by selecting XMake from the Translate menu in XDM.

X-BLOX processes the design and writes out an XG file, an
xblox.log file, and a report file (BLX file).

When X-BLOX processes the design, it reports some interesting
things:

1. The sizes of the FIB_OUT, FIB, FIB_INV, DELAY_1 and DELAY_2
buses are all four bits wide and contain unsigned-binary data
(that is, BOUNDS=3:0 and ENCODING=UBIN).
X-BLOX Reference/User Guide 3-17

X-BLOX Reference/User Guide
2. The nets B_IS_0, A_IS_0, A_N_B_R_0, TWO_HZ_ISH, and
CLOCK_IN are one bit wide.

3. The ADD_SUB module is implemented as an RPM that includes
the REG_A module.

4. The OUT_REG module is placed in the IOBs (not in the CLBs).
The TWO_HZ_ISH line is a medium fan-out (12) clock line, so it is
placed on a longline. Note that if this design needed a higher fan-
out signal, it would have been placed on one of the high-speed,
low-skew global buffers.

5. The modules are expanded to the desired widths, using the proper
arithmetic (unsigned binary) for the ADD_SUB module.

Two of the IOB placement constraints are specified on the OUTPUTS
module labeled LEDS. The attributes LOC[2]=P58 and LOC[3]=P57
specify that bit2 is to be placed on package pin P58, and bit 3 is to be
placed on package pin P57. To illustrate the flexibility of the
X-BLOX software, the placement of the other two output pins is
specified in a constraints file fibgen.cst:

place instance LEDS/FIB_OUT<0>: p60;
place instance LEDS/FIB_OUT<1>: p59;

PPR produces a routed LCA file for this design, which is intended for
an XC4000 FPGA device.
3-18 Xilinx Development System

Chapter 4
X-BLOX Reference/User Guide — 0401315 01 4-1

Module Definitions

Each module represents a common logic function and is described in
detail in the following pages presented in alphabetical order. The
size, or width of a port on a module, is determined in one of four
ways.

● By the size of the bus attached to the port of the module. (See
“Data Type Propagation” in the previous chapter.)

● By the size of a bus attached to a different port of the same
module (converting binary 2n to n lines).

● By a data type specification on the INPUTS, OUTPUTS,
BIDIR_IO, BUS_DEF, SHIFT, COUNTER, SRAM, or PROM
modules. (See the description of the individual modules.)

● By an attribute, such as COUNT_TO on a counter without
parallel_out connected.

The following table lists the different categories of X-BLOX modules.

Note: In this chapter, optional attributes appear in blue below the
modules to which they apply.

Bused Gate Functions
Table 4-1 X-BLOX Modules Listed by Functional Category

The SHIFT and COUNTER modules are shown in more than one category.

Bused Gate Functions
This section describes the generic bused gate functions of X-BLOX.
Bused gate functions are defined as generalizations of the common
logic primitives. These functions act on all the members of a bus in
three different ways. For example, the following functions are de-
scribed for AND but the same bus expansion criteria apply for OR
and XOR. You can use the inversions of these logic functions by
connecting an INVBUS module to the outputs. You can also invert
individual inputs (active Low) by using the INVMASK attribute
associated with each module or specify which individual inputs
will be active High with the DECODEMASK attribute.

● The ANDBUS module logically ANDs all the individual members
of an input bus together to produce a single logic signal.

Arithmetic Bus Logic I/O Sequential Storage

ACCUM BUS_DEF ANDBUS BIDIR_IO CLK_DIV DATA_REG

ADD_SUB CAST ANDBUS1 INPUTS COUNTER SHIFT

COMPARE ELEMENT ANDBUS2 OUTPUTS SHIFT PROM

COUNTER FORCE INVBUS SRAM

INC_DEC SLICE ORBUS

ORBUS1

ORBUS2

XORBUS

XORBUS1

XORBUS2

DECODE

MUXBUS

MUXBUS2

MUXBUS4

MUXBUS8

TRISTATE
4-2 Xilinx Development System

Bused Gate Functions
● The ANDBUS1 module logically ANDs all the individual
members of a bus with a single logic signal. The data type on the
bused input and output buses must be the same.

● The ANDBUS2 module logically ANDs the corresponding two
n-input buses to produce an n-output bus. The data type on all the
input and output buses must be the same.

ANDBUS Module
The ANDBUS module supports the following optional attributes on
the XC4000 in addition to the INVMASK and DECODEMASK
attributes:

STYLE=WAND

The ANDBUS is synthesized with TBUFs configured as a wired-AND
with a pull-up resistor.

STYLE=DECODE

The ANDBUS is synthesized with the wide edge-decoders.

With either of these implementation styles, you can use the following
location attributes:

LOC=edge-location or TBUF-location

where edge-location is the edge for the wide edge-decoder and can be
any of the edge-locations listed below.

● T — top edge

● B — bottom

● L — left

● R — right

● TL — top left

● TR — top right

● BL — bottom left

● BR — bottom right
X-BLOX Reference/User Guide 4-3

Bused Gate Functions
LOC[i]= TBUF-location

The TBUF location of the individual TBUFs, for instance
LOC[1]=TBUF_R1C1.1. For a definition of location parameters, please
refer to the section “Location Attributes” in the chapter “Creating an
X-BLOX Design.

Figure 4-1 X-BLOX Gate-Level Functions

Name Symbol Logic Diagram

ANDBUS
O = A0 • A1 •
… • A(n-1)

ANDBUS1
On = A • Bn

X1864

A
O

INVMASK=

DECODEMASK=
X1942

A [0]

O
A [1]

A [n-1]

•
•
•

X1865

A

B
O

INVMASK=

DECODEMASK=

X1947

A O [0]

B [0]

B [1]

B [n-1]

O [1]

O [n-1]

•
•
•

4-4 Xilinx Development System

Bused Gate Functions
ANDBUS2
On = An • Bn

INVBUS

On = I

ORBUS
O = A0 + A1
+… + A(n-1)

Name Symbol Logic Diagram

X1866

A

B
O

INVMASK=

DECODEMASK=

X1946

O [n-1]A [n-1]

B [n-1]

O [1]A [1]

B [1]

O [0]A [0]

B [0]

•
•
•

X1863

OI

INVMASK=

DECODEMASK=

X2044

O [n-1]I [n-1]

O [1]I [1]

O [0]I [0]

•
•
•

X1867

A
O

INVMASK=

DECODEMASK=
X1945

A [0]

O
A [1]

A [n-1]

•
•
•

n

X-BLOX Reference/User Guide 4-5

Bused Gate Functions
ORBUS1
On = A + Bn

ORBUS2
On = An + Bn

XORBUS
O = A0⊕ A1 ⊕
... ⊕ A(n-1)

Name Symbol Logic Diagram

X1868

A

B
O

INVMASK=

DECODEMASK=

X1944

A O [0]

B [0]

B [1]

B [n-1]

O [1]

O [n-1]

•
•
•

X1869

A

B
O

INVMASK=

DECODEMASK=

X1943

O [n-1]A [n-1]

B [n-1]

O [1]A [1]

B [1]

O [0]A [0]

B [0]

•
•
•

X1870

A O

INVMASK=

X1948

A [0]

O
A [1]

A [n-1]

•
•
•

4-6 Xilinx Development System

Bused Gate Functions
XORBUS1
On = A ⊕ Bn

XORBUS2
On = An ⊕ Bn

Name Symbol Logic Diagram

X1871

A

B
O

INVMASK=

X1953

O [n-1]

B [n-1]

O [1]

B [1]

A O [0]

B [0]

•
•
•

X1872

A

B
O

INVMASK=

DECODEMASK=

X1954

A [n-1] O [n-1]

B [n-1]

A [1] O [1]

B [1]

A [0] O [0]

B [0]

•
•
•

X-BLOX Reference/User Guide 4-7

ACCUM — Accumulator
ACCUM — Accumulator
The Accumulator adds or subtracts the data on the B input port and
the Carry-in/Borrow-in port to or from the current value stored in
the accumulator register, then loads the result back into the register.
The Carry-out/Borrow-out and Overflow outputs are provided by
the Adder/Subtracter to indicate the status of the present operation
(these outputs are not latched by this module). Also, you can load
separate predefined values synchronously or asynchronously into the
register.

Figure 4-2 The Accumulator Module Symbol

X1841

ADD_SUB
ACCUM

C_IN

A

B

LOAD

CLK_EN

CLOCK

ASYNC_CTRL

SYNC_CTRL

OVFL

C_OUT

Q_OUTD

CE

CLOCK

Q
FUNC

ASYNC_VAL=

SYNC_VAL=

STYLE=

USE_RLOC=

RLOC_ORIGIN=

RLOC_RANGE=

TNM=
4-8 Xilinx Development System

ACCUM — Accumulator
Table 4-2 Accumulator Register Truth Table

Inputs

ADD_SUB

The Add/Subtract control input determines the arithmetic operation:
High = add, and Low = subtract. If you do not connect this input, the
module is synthesized as an Adder.

C_IN

The Carry-in/Borrow-in input port, together with the data on the B
input port, is added to or subtracted from the current accumulator
value. The Borrow-in function is active Low. If C_IN is unconnected,
the defaults are Carry-in = 0 for Add, and Borrow-in = 1 for Subtract.

B

The data on the B input port, along with the Carry-in/Borrow-in, is
added to or subtracted from the present accumulator value. When
Load Enable is High, the data on the B port is loaded directly into the
register during the next active Clock transition. You must connect
this input. The data type of this port is the same as the Q_OUT output
port.

LOAD

When the Load Enable input is High, the B input data is loaded
directly into the accumulator register during the active Clock

a. Q_OUT prev denotes the previous contents of the register.

LOAD SYNC_CTRL CLK_EN CLOCK ASYNC_CTRL Q_OUT

X X X X H ASYNC_VAL

X X L ↑ L Q_OUTprev
a

X H H ↑ L SYNC_VAL

L L H ↑ L FUNC=
Q_OUTprev ± B

H L H ↑ L FUNC=B
X-BLOX Reference/User Guide 4-9

ACCUM — Accumulator
transition. When the Load Enable input is Low, the output of the
adder/subtracter is loaded into the accumulator register during the
active Clock transition. If you do not connect the Load Enable input,
the FUNC output of the adder/subtracter is always selected. (See the
definition of SYNC_CTRL input.)

CLK_EN

When the Clock Enable input is High, either the data on the B input
port, the output of the adder/subtracter, or the SYNC_VAL attribute
is loaded into the accumulator register during the next active Clock
transition. When the Clock Enable input is Low, the register contents
are unaffected by the active Clock transition (hold). CLK_EN does not
affect asynchronous loading of the register via ASYNC_CTRL. Hold
indicates that the register holds its current value. If you do not
connect the Clock Enable input, the Clock is always enabled.

CLOCK

When you enable the Clock input, it loads the selected data into the
register on the rising (positive) edge. An active falling (negative) edge
can be synthesized by connecting an inverter to the Clock input. The
Clock must be connected.

ASYNC_CTRL

The Asynchronous Control input, when High, loads the value of the
ASYNC_VAL attribute into the accumulator register independently
of the Clock and Clock Enable. It is a level-sensitive input. If you do
not connect the ASYNC_CTRL, this function is not synthesized;
however, the ASYNC value will be loaded into the accumulator
register on power-up.

SYNC_CTRL

When the Synchronous Control Enable and CLK_EN inputs are High,
the value of the SYNC_VAL attribute is loaded into the accumulator
register during the next active Clock transition. This input has
priority over the LOAD input.
4-10 Xilinx Development System

ACCUM — Accumulator
Outputs

Q_OUT

Q_OUT is the output (sum or difference) port of the accumulator
register. The data type of this port is the same as the B input port.

C_OUT

C_OUT is the Carry-out/Borrow-out port from the most significant
bit of the adder/subtracter.

OVFL

OVFL is the Overflow (Underflow) output from the adder/
subtracter. The OVFL output is High when the result of the operation
exceeds the precision of the adder/subtracter.

Attributes

ASYNC_VAL

ASYNC_VAL is the predefined value that is loaded into the
accumulator register when the ASYNC_CTRL input is High. This
value will also be loaded into the counter at “power up”, whether the
ASYNC_CTRL is connected or not. If not specified, the default value
is “zero.”

SYNC_VAL

SYNC_VAL is the predefined value that is loaded into the
accumulator register when the SYNC_CTRL and CLK_EN inputs are
High during the active Clock transition. If no SYNC_VAL was
specified, the default value is “zero.”

STYLE

The default implementation style is ALIGNED for the XC4000. The
default implementation style for the XC3000A/L and XC3100A is
FAST3KA. Available options include the following:
X-BLOX Reference/User Guide 4-11

ACCUM — Accumulator
Table 4-3 ACCUM — Implementation Styles

Note: The default style for both X-BLOX and RPMs is ALIGNED.
Exercise care when mixing ALIGNED and UNALIGNED macros as
these two implementation styles are not compatible when you place
and route with PPR.

USE_RLOC={TRUE|FALSE}

If this attribute is set to false, RLOCs are not generated. It is
redundant to set this attribute to TRUE.

RLOC_ORIGIN

Position the upper left corner of the RPM at a particular FPGA
location. Do not specify a location that does not allow enough room
for the ACCUM. Refer to the section “Computing the Number of
CLBs” in the chapter “Understanding X-BLOX Operations” for more
information.

RLOC_RANGE

Use this attribute to specify the range (rectangular area) of FPGA
locations that are allowed for the generated RPM. Refer to the chapter
“X-BLOX Generated Relationally Placed Macros” for more
information.

TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=FFS:identifier

Style Description

ALIGNED Aligned RPM (XC4000 only)
UNALIGNED Unaligned RPM (XC4000 only)
FAST3KA Gate-level, 1-bit look ahead, fast adder

(XC3000A/L and 3100A only)
RIPPLE Gate-level ripple carry, area-efficient adder
4-12 Xilinx Development System

ACCUM — Accumulator
where FFS is the type of primitives to which X-BLOX propagates the
TNM attribute in the XNF file and where identifier is a user-defined
name. Refer to the section”Using XACT-Performance Attributes” in
the chapter “Creating an X-BLOX Design” for more information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.
X-BLOX Reference/User Guide 4-13

ADD_SUB — Adder/Subtracter
ADD_SUB — Adder/Subtracter
The Adder/Subtracter module adds or subtracts two data inputs and
a carry/borrow input. Use this module as an adder or a subtracter, or
switch it between these two modes. The Adder/Subtracter provides
the Carry-out/Borrow-out and Overflow ports to indicate the status
of the current operation.

Figure 4-3 The Adder/Subtracter Module Symbol

Inputs

ADD_SUB

The Add/Subtract control input determines the arithmetic operation:
High = add, and Low = subtract. If you do not connect this input, the
module is synthesized as an Adder.

C_IN

The Carry-in/Borrow-in input port, along with the data on the B
input port, is added to or subtracted from the data on the A input
port. The Borrow-in function is synthesized as active Low. If you do
not connect C_IN, the Carry-in = 0 for Add, and Borrow-in = 1 for
Subtract.

X1842

ADD_SUB
ADD_SUB

C_IN

A

B

FUNC

OVFL

C_OUT

STYLE=

USE_RLOC=

RLOC_ORIGIN=

RLOC_RANGE=
4-14 Xilinx Development System

ADD_SUB — Adder/Subtracter
A

The data on the B input port, along with Carry-in/Borrow-in, is
added to or subtracted from the data on the A input port (A+B or
A–B). This input must be connected. The data type of this port must
be the same as the B input and FUNC output ports.

B

The data on the B input port, along with Carry-in/Borrow-in, is
added to or subtracted from the data on the A input port (A+B or
A–B). You must connect this input. The data type of this port must be
the same as the A input and FUNC output ports.

Outputs

FUNC

FUNC is the Functional output (sum or difference) port from the
adder/subtracter. The data type of this port is the same as the A and
B input ports.

OVFL

OVFL is the Overflow (Underflow) output from the adder/
subtracter. The OVFL output is High when the result of the operation
exceeds the precision of the adder/subtracter.

Note: OVFL=C_OUT if the encoding of the connected buses is UBIN.

C_OUT

C_OUT is the Carry-output/Borrow-out port from the most
significant bit(s) of the adder/subtracter.

Attributes

STYLE

The default implementation style is ALIGNED for the XC4000. The
default implementation style for the XC3000A/L and 3100A is
FAST3KA. Available options include the ones shown in the following
table.
X-BLOX Reference/User Guide 4-15

ADD_SUB — Adder/Subtracter
Table 4-4 ADD_SUB — Implementation Styles

Note: The default style for both X-BLOX RPMs and the Xilinx Unified
Libraries macros is ALIGNED. Exercise care when mixing ALIGNED
and UNALIGNED macros as designs that use both styles might be
hard to route.

USE_RLOC={TRUE|FALSE}

If this attribute is set to false, the RLOCs are not generated. It is
redundant to set this attribute to TRUE.

RLOC_ORIGIN

Position the upper left corner of the RPM at a particular FPGA
location. Do not specify a location that does not allow enough room
for the ADD_SUB. Refer to the section “Computing the Number of
CLBs” in the chapter “Understanding X-BLOX Operations” for more
information.

RLOC_RANGE

Use this attribute to specify the range (rectangular area) of FPGA
locations that are allowed for the generated RPM. Refer to the chapter
“X-BLOX Generated Relationally Placed Macros” for more
information.

Style Description

ALIGNED Aligned RPM (XC4000 only)
UNALIGNED Unaligned RPM (XC4000 only)
FAST3KA Gate-level, 1-bit look ahead, fast adder

(XC3000A/L and 3100A only)
RIPPLE Gate-level ripple carry, area-efficient adder
4-16 Xilinx Development System

ADD_SUB — Adder/Subtracter
X-BLOX Reference/User Guide 4-17

BIDIR_IO — Bidirectional I/O Pads with Buffers
BIDIR_IO — Bidirectional I/O Pads with Buffers
The BIDIR_IO module is a bidirectional chip Input/Output module
that connects both input and output buffers from common pads to
internal input and output wires or buses. The BIDIR_IO module
expands into one or more bidirectional I/O pads, input and output
data and control signals, plus 3-state input/output buffers. You can
define the pad locations for a given package in the following ways:

● By adding a LOC attribute on the symbol for a single-bit port

● By adding one or more LOC[i] attributes on the symbol for a
multibit port

● By using a Place and Route Constraints file. (See the subsection
“Attributes,” which is included in this module’s description.)

Figure 4-4 The Bidirectional I/O Module Symbol

You can connect this module to an on-chip bidirectional bus by tying
the Input and Output ports together, and using the Input Enable and
Output Enable signals to control direction. You can connect a single
enable signal to both IE (Input Enable) and OE (Output Enable) to
switch between input and output modes.

You can use this module as a 3-stated OUTPUTS module by not
connecting the INPUTS and IE pins.

X1851

BIDIR_IO
OE

ACTIVE
LOW

ENCODING=

BOUNDS=

OUTPUTS

INPUTS

IE

FLOAT_VAL=

LOC=

PADNAME=

LOC [i]=

TNM=
4-18 Xilinx Development System

BIDIR_IO — Bidirectional I/O Pads with Buffers
Inputs

OE

OE is the active-Low Output Enable for the module. When OE is
Low, the data on the OUTPUTS port is available at the I/O pads. If
OE is left unconnected, the data on the OUTPUTS port is always
available at the pads.

OUTPUTS

The data on the OUTPUTS bus is available at the I/O pads when OE
is Low. This port is connected to a single internal wire or a bus
defined by the ENCODING and BOUNDS attributes.

IE

IE is the active-High Input Enable for the module. When IE is High,
the data on the I/O pads is available at the INPUTS port. If you do
not connect IE, the data on the pads is always available at the
INPUTS port.

Outputs

INPUTS

The data on the I/O pads is available on the INPUTS bus when IE is
High. This port is connected to a single internal wire or a bus defined
by the ENCODING and BOUNDS attributes.

Attributes

ENCODING

The available encodings are defined in the “Bus Data Types” section
of the chapter “Creating an X-BLOX Design.” All the encodings used
on each data path must be the same.

BOUNDS

The BOUNDS attribute defines the width of the INPUTS and
OUTPUTS buses by specifying the MSB and LSB of each bus. Any
X-BLOX Reference/User Guide 4-19

BIDIR_IO — Bidirectional I/O Pads with Buffers
pair of numbers can be used, as long as the difference of the indices,
plus one, equals the width of the bus. See the “Bus Data Types”
section of the chapter “Creating an X-BLOX Design” for more details.

FLOAT_VAL

Use the FLOAT_VAL attribute to connect pull-up or pull-down
resistors to the input/output pads defined by this module. You can
specify this value in any of the allowed radices and use don’t care
digits. The bits of the FLOAT_VAL number specify which I/O pads
are connected to pull-up resistors, pull-down resistors or neither (that
is, 1 = pull-up resistor, 0 = pull-down resistor, ? = none). Alternately,
you can tie all the pads of a symbol to pull-up or pull-down resistors
by specifying FLOAT_VAL=PULLUP or FLOAT_VAL=PULLDOWN
respectively. By default, no resistor is connected. See the section
“Pull-up and Pull-down Resistors for I/O Pads” in the chapter
“Creating an X-BLOX Design” for examples.

PADNAME

Use this atribute to specify the base name of the I/O pad. With this
attribute set to PADNAME=foo, the names of the pads will be SYM/
FOO<0>, SYM/FOO<1>, …, SYM/FOO<n>, corresponding to the
BOUNDS associated with the attached buses and the BOUNDS
attribute. Without this attribute, the names of the I/O pads will be
SYM/PAD<0>, SYM/PAD<1>, …, SYM/PAD<n>, where SYM is the
name of the BIDIR_IO symbol.

LOC

The LOC attribute specifies the pin location for a single input/output
pad-buffer pair, for example: LOC=A1, or the attribute specifies the
placement of all IOBs on a specific edge or corner of the chip, for
instance, LOC=TL for the top-left corner of the chip.

LOC[i]

The LOC[i] attribute specifies the pin locations for multiple input/
output pad-buffer pair locations, for example: LOC[6]=A11,
LOC[7]=P9.
4-20 Xilinx Development System

BIDIR_IO — Bidirectional I/O Pads with Buffers
TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=PADS:identifier

where PADS is the type of primitives to which X-BLOX propagates
the TNM attribute in the XNF file and where identifier is a user-
defined name. Refer to the section”Using XACT-Performance
Attributes” in the chapter “Creating an X-BLOX Design” for more
information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.

Constraints File
The BIDIR_IO module is synthesized into an array of I/O pads with
names of the form: SYM/SIG<0>, SYM/SIG<1> . . . SYM/SIG<N-1>.
SYM is the schematic-editor label or instance for the BIDIR_IO
symbol, and is the name of the attached OUTPUTS bus, if it is
attached; otherwise, it is the name of the INPUTS bus. The names of
these I/O pads can be used in a Constraints File as an alternate
method of specifying I/O pad locations. Refer to the section on PPR
in the XACT Reference Guide for more details on writing a constraints
file.
X-BLOX Reference/User Guide 4-21

BUS_DEF — Bus Data-Type Definition
BUS_DEF — Bus Data-Type Definition
Use the BUS_DEF symbol to specify the data type (encoding and
bounds) of a bus that is otherwise undefined. Use this symbol only
for data paths that do not originate from an X-BLOX INPUTS,
BIDIR_IO, FORCE, COUNTER, SHIFT, SRAM, or PROM module, or
terminate in an X-BLOX OUTPUTS module. It is used primarily to
define the encoding and precision for documentation of your
schematic and defining a data type for a data path in a subcircuit.

Figure 4-5 The BUS_DEF Module Symbol

Bus Connection

XBLOX_BUS

XBLOX_BUS is the connection from the BUS_DEF module to the
system bus that is being defined.

Attributes

ENCODING

The available ENCODING options are described in the “Bus Data
Types” section of the chapter “Creating an X-BLOX Design.” Any
restrictions placed on the data type are dependent on the X-BLOX
module(s) to which this BUS_DEF module is connected.

BOUNDS

Use the BOUNDS attribute to define the width of the XBLOX_BUS
bus by specifying the MSB and LSB of the bus. You can use any pair
of integers, as long as the difference of the indices, plus one, equals
the width of the bus. See the “Bus Data Types” section of the chapter
“Creating an X-BLOX Design” for details.

X1860

ENCODING=

BOUNDS=

XBLOX_BUS

BUS_DEF
4-22 Xilinx Development System

BUS_DEF — Bus Data-Type Definition
Example

If you use a serial-in/serial-out Shift register, the Parallel-Input and
Parallel-Output ports are not used. Because you must specify the
width of the Shift register, a dummy bus is connected to the PAR_IN
or PAR_OUT port, and the BUS_DEF symbol is used to specify the
ENCODING and BOUNDS attributes for the Shift register. (See the
figure below.)

Figure 4-6 Serial-in/Serial-out Shift Register Using a BUS_DEF
Module to Define Its Data Type

PAR_IN

LOAD

MS_IN

LS_IN

RIGHT_LEFT

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

PAR_OUT

LS_OUT

MS_OUT

ASYNC_VAL= 16#10#

X4654
SYNC_VAL= 16#20#

STYLE= LOGICAL

OUTPUTS

ENCODING=

BOUNDS=

SHIFT

SERIAL_DATA_IN

ASYNC_CONTROL

SYNC_CONTROL

INPUTS

ENCODING=

BOUNDS=

SERIAL_DATA_OUT

ENCODING=UBIN
BOUNDS= 5:0

XBLOX_BUS

BUS_SIZE

BUS_DEF

CLOCK
X-BLOX Reference/User Guide 4-23

CAST — Data Type Symbol
CAST — Data Type Symbol
The CAST module is used to connect two buses that have:

● the same size but different encodings

● the same size but different bounds (ranges)

● the same size but different encodings and bounds

This feature allows for different interpretations of the same data bits
in different parts of your circuit. For example, you might choose to
interpret data as unsigned binary for some part of the design and as
two’s complement or one-hot in another part of the design.

Warning: No conversions or data checks are performed on the data
carried by the buses.

Figure 4-7 CAST Module

A CAST module can connect two buses that have different bounds, as
long as the number of bits in each bus is the same. Because the final
routed design has only one name for each net in the design, X-BLOX
creates aliases for the names of the corresponding nets that are
connected by a CAST symbol.

The original names and their aliases appear in the Data Type
Propagation and Signal Alias section in the .blx file once X-BLOX has
run.

The CAST module has two permutable pins, A and B. As neither of
these pins is an electrical driver, data can flow in either direction in
the final synthesized circuit.

Usage
Use the CAST module to connect big-endian and little-endian buses,
or to change the bounds or the encoding of your buses.

X4335

BA

A_ENCODING=
A_BOUNDS=
B_ENCODING=
B_BOUNDS=

CAST
4-24 Xilinx Development System

CAST — Data Type Symbol
The following table gives examples of how to specify the BOUNDS
and ENCODING attributes for pin A and pin B depending on the
task you want to do.

Table 4-5 Specifying the BOUNDS and ENCODING Attributes

In addition, you can use the CAST module in three different ways by
specifying the data types for both pins (A and B), for one pin only (A
or B), or by not specifying the attributes for either of the two pins.

● Define the data types of the buses connected to both pins.

In this case you must define all the attributes (A_ENCODING,
B_ENCODING, A_BOUNDS, and B_BOUNDS). Thus, the
A_ENCODING and A_BOUNDS attributes define the encoding
and bounds of the bus connected to the A input pin, and the
B_ENCODING and B_BOUNDS attributes define the encoding
and bounds of the bus connected to the B pin. The A_BOUNDS
and B_BOUNDS must have the same number of bits.

If you define the data type of either of the two data paths
connected to the A or B pin by means of a BUS_DEF, X-BLOX I/O,
or other CAST symbol, then this data type must match the
corresponding pin. For example, the data type on the data path
connected to the A pin must match the A_ENCODING and
A_BOUNDS, and the data type on the data path connected to the
B pin must match the B_ENCODING and B_BOUNDS.

Action Bounds and Encoding

A Pin B Pin

Change the bounds

Connect big-endian
and little-endian buses

7:0
7:0

7:0
7:0

11:4
4:11

0:7
2:9

Change the encoding
(No conversion is per-
formed)

BIT, UBIN,
TWO_COMP, or

ONE-HOT

BIT, UBIN,
TWO_COMP, or

ONE-HOT
X-BLOX Reference/User Guide 4-25

CAST — Data Type Symbol
Note: Although it is possible to specify the bus attributes as
A_ENCODING=B_ENCODING=BIT with both BOUNDS fields
empty, this method makes the symbol redundant.

Figure 4-8 Defining the CAST Data Type on Both Buses

● Define the data type for one side of the CAST, but not the other.

The data type on the second pin must be determined by the data
path connected to that second pin. Partially-specified data types
are not allowed. The size of the data path must be the same as the
A_BOUNDS or B_BOUNDS defined on the CAST symbol.

Figure 4-9 Defining the CAST Data Type on One Bus

● Define no data types on the CAST symbol.

When you do not specify a data type, CAST acts as a firewall for
data type propagation, allowing two data paths, whose data types
are defined elsewhere on their data paths, to be connected even
though the data types are different. The sizes of the two data
paths must be the same.

Figure 4-10 Defining No Data Type for the CAST Module

X4585

ENCODING=

BOUNDS=

FLOAT_VAL=

A_ENCODING=UBIN

A_BUS B_BUS

A_BOUNDS=3:0

B_ENCODING=BIT

B_BOUNDS=15:12

ENCODING=

BOUNDS=

FLOAT_VAL=

B

CASTINPUTS OUTPUTS

A

X4586

ENCODING=

BOUNDS=

FLOAT_VAL=

A_ENCODING=UBIN

A_BUS B_BUS

A_BOUNDS=7:0

B_ENCODING=

B_BOUNDS=

ENCODING=BIT

BOUNDS=0:7

FLOAT_VAL=

B

CASTINPUTS OUTPUTS

A

X4587

ENCODING=TWO_COMP

BOUNDS=15:3

FLOAT_VAL=

A_ENCODING=

A_BUS B_BUS

A_BOUNDS=

B_ENCODING=

B_BOUNDS=

ENCODING=TWO_COMP

BOUNDS=12:0

FLOAT_VAL=

B

CASTINPUTS OUTPUTS

A

4-26 Xilinx Development System

CAST — Data Type Symbol
Inputs

A One pin of the CAST symbol

If you define the A_ENCODING and A_BOUNDS attributes, they
define the encoding and bounds for this pin. The X-BLOX bus
connected to this pin must be the same size as the X-BLOX bus
connected to the B pin.

B Other pin of the CAST symbol

If the B_ENCODING and B_BOUNDS attributes are defined, they
define the encoding and bounds for this pin. The X-BLOX bus
connected to this pin must be the same size as the X-BLOX bus
connected to the A pin.

Attributes

A_ENCODING

This attribute represents the encoding for the A pin.

A_BOUNDS

This attribute represents the bounds for the A pin.

B_ENCODING

This attribute represents the encoding for the B pin.

B_BOUNDS

This attribute represents the bounds for the B pin.
X-BLOX Reference/User Guide 4-27

CLK_DIV — Clock or Frequency Divider
CLK_DIV — Clock or Frequency Divider
The CLK_DIV module uses a Linear-Feedback-Shift-Register (LFSR)
counter and decoder to generate an output pulse train that is a
function of the Clock input and the control attributes. The Clock-
Output period is a multiple of the Clock period specified by the
DIVIDE_BY attribute. Even multiples of the Clock period produce a
50 percent duty cycle on the Clock-Output, but odd multiples
produce a Low Output for one extra Clock period. You can modify
the duty cycle by setting the High pulse width with the
DUTY_CYCLE attribute.

Figure 4-11 The Clock Divider Module Symbol

Figure 4-12 Simple Clock Divider Example

ASYNC_CTRL

SYNC_CTRL

EN

CLOCK CLK_OUT

X1862

CLK_DIV

DIVIDE_BY=
DUTY_CYCLE=
TNM=

1 2 3 4 5 6 7 1

CLOCK

EXAMPLE 1

2 3 4 5 6 7 1

X4625

CLK_OUT

ASYNC_CTRL

CLK_DIV

SYNC_CTRL

EN

CLOCK CLK_OUT

DIVIDE_BY=7

DUTY_CYCLE=2
4-28 Xilinx Development System

CLK_DIV — Clock or Frequency Divider
Inputs

EN

When the Clock Enable input is High, the Clock Divider is
incremented on the next active Clock transition. When EN is Low, the
Clock Divider is unaffected by the active Clock transition (hold). If
you do not connect EN, the Clock is always enabled.

CLOCK

The Clock input, when enabled, increments the Divider on the rising
(positive) edge. An active falling (negative) edge can be used by
connecting an inverter to the Clock input. You must connect the
Clock.

ASYNC_CTRL

No ASYNC_VAL can be defined. When the ASYNC_CTRL input is
High, the Clock Divider is reset to the beginning of the duty cycle.

SYNC_CTRL

No SYNC_VAL can be defined so when the SYNC_CTRL input is
High, the Clock Divider is reset to the beginning of the duty cycle.

Outputs

CLK_OUT

The Clock Output produces a pulse train that is the multiple of the
input Clock period specified by the DIVIDE_BY attribute. The Clock
Output has a 50 percent duty cycle unless:

1. the divide sequence is an odd number (the Clock Output is Low
for an extra Clock period)

2. the DUTY_CYCLE attribute defines a different High pulse width
X-BLOX Reference/User Guide 4-29

CLK_DIV — Clock or Frequency Divider
Attributes

DIVIDE_BY

The DIVIDE_BY attribute specifies the number of Clock cycles for
each Output period. This value must be a positive integer. You must
specify this attribute to synthesize the Clock-Divider module; if you
do not specify it, an error is issued.

DUTY_CYCLE

The DUTY_CYCLE attribute sets the output High for a specified
number of clock cycles. This value is an integer that is less than the
DIVIDE_BY value. If DUTY_CYCLE is not specified, a value of one-
half the DIVIDE_BY value is used (but an odd number for the
DIVIDE_BY value produces a Low Output for one extra Clock
period).

TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=FFS:identifier

where FFS is the type of primitives to which X-BLOX propagates the
TNM attribute in the XNF file and where identifier is a user-defined
name. Refer to the section”Using XACT-Performance Attributes” in
the chapter “Creating an X-BLOX Design” for more information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.
4-30 Xilinx Development System

CLK_DIV — Clock or Frequency Divider
X-BLOX Reference/User Guide 4-31

COMPARE — Comparators
COMPARE — Comparators
The Comparator module compares two input data values A and B.
Both magnitude and equality comparators can be synthesized.

Figure 4-13 The Comparator Module Symbol

 The following comparisons are available and can be used in any
combination:

Table 4-6 COMPARE — Available Comparisons

Inputs

A

The data on the A input port is compared to the data on the B input
port. The data type of this port must the same as the B input port.

B

The data on the B input port is compared to the data on the A input
port. The data type of this port must be the same as the A input port.

Equality Magnitude

A=B A<B A>B

A≠B A≥B A≤B

X1843

COMPARE

A_EQ_B

A_NE_B

A_LT_B

A_GT_B

A_LE_B

A_GE_B

A

B

STYLE=

RLOC_RANGE=
4-32 Xilinx Development System

COMPARE — Comparators
Note: If the data types of the A and B buses do not match, X-BLOX
issues an error message.

Outputs

A_EQ_B

Active High output when the data on the A input port equals the
data on the B input port (A=B).

A_NE_B

Active High output when the data on the A input port does not equal
the data on the B input port (A≠B).

A_LT_B

Active High output when the value on the A input port is less than
the value on the B input port (A<B).

A_GT_B

Active High output when the value on the A input port is greater
than the value on the B input port (A>B).

A_LE_B

Active High output when the value on the A input port is less than or
equal to the value on the B input port (A≤B).

A_GE_B

Active High output when the value on the A input port is greater
than or equal to the value on the B input port (A≥B).

Note: If the encoding of the buses attached to the Compare module is
ONE_HOT, then only the A_EQ_B and the A_NE_B outputs can be
connected.
X-BLOX Reference/User Guide 4-33

COMPARE — Comparators
Attributes

STYLE

You can choose the implementation style. However, it is recommend-
ed that you use the X-BLOX default style (that is, do not specify the
STYLE attribute). The X-BLOX tools are optimized to automatically
choose the fastest version possible with the existing chip resources. If
the style that you have chosen does not match the intended usage, the
X-BLOX software issues a Warning message, and halts.

Note: If the encoding of the buses attached to the Compare module
is specified as two‘s complement, only the STYLE=ARITH is allowed.

Table 4-7 COMPARE — Implementation Styles

 RLOC_RANGE

Use this attribute to specify the range (rectangular area) of FPGA
locations that are allowed for the generated RPM. Refer to the chapter
“X-BLOX Generated Relationally Placed Macros” for more
information.

Style Output
Connections

Description

ARITH Any or All Uses XC4000 fast carry logic in an
RPM.

TREE Any or All Implements magnitude and equality
comparisons in a tree structure. Pro-
vides less troublesome placement on
the XC4000 than the ARITH style.

RIPPLE A=B, A≠B Uses the fewest CLBs for equality
comparisons. The results of the com-
parisons are rippled from MSB to
LSB. (3000A/L and 3100A only)

WIRED A=B, A≠B Uses a wired-AND to do comparison.
Uses the same number of CLBs as
RIPPLE, but also uses a horizontal
longline. This style is not allowed for
the XC3000A/L and 3100A families.
4-34 Xilinx Development System

COMPARE — Comparators
X-BLOX Reference/User Guide 4-35

COUNTER — Universal Counter
COUNTER — Universal Counter
The Universal-Counter module generates a sequence of count values
defined by the selected style of the Universal-Counter module and
the status of the control inputs. The Universal-Counter module can be
an up counter, down counter, or up/down counter with predefined
asynchronous or synchronous pre-load, and dynamic synchronous
parallel load.

Figure 4-14 The Counter Module Symbol

X1844

COUNTER

D_IN

LOAD

UP_DN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

Q_OUT

TERM_CNT

ASYNC_VAL=

SYNC_VAL=

STYLE=

COUNT_TO=

ENCODING=

BOUNDS=

USE_RLOC=

RLOC_ORIGIN=

RLOC_RANGE=

TNM=
4-36 Xilinx Development System

COUNTER — Universal Counter
Table 4-8 Universal Counter Truth Table (for BINARY STYLE)

Inputs

D_IN

Parallel Data from the D_IN input port is loaded into the counter
when the Parallel Load Enable is High during the active Clock
transition. The data type of this port is the same as that of the Counter
Output port. To use the D_IN port, you must connect the LOAD
input.

LOAD

When this Parallel Load Enable input is High, the data on the D_IN
input port is loaded into the counter on the next active Clock
transition. When the Parallel Load Enable is Low, the counter
responds to the Up/Down control input. If Parallel Load Enable is
unconnected, the D_IN port is not synthesized.

UP_DN

The Up/Down control input controls the direction of the count on
the next active Clock transition. When Up/Down is High, the counter
value is incremented by one; when Up/Down is Low, the counter

a. Q is the count value before the clock.
b. The COUNT_TO value has priority over the maximum (up)-(H...H) or minimum (down)-(L...L)
count values (See COUNT_TO attribute for restrictions).

UP/DN LOAD SYNC_CTRL CLK_EN CLOCK ASYNC_CTRL Q_OUT TERM_CNT

X X X X X H ASYNC_VAL L

X X X L ↑ L Hold Hold

X X H H ↑ L SYNC_VAL L

X H L H ↑ L D_IN L

H L L H ↑ L aQ+1 L

H L L H ↑ L bCOUNT_TO H

L L L H ↑ L Q–1 L

L L L H ↑ L COUNT_TO H
X-BLOX Reference/User Guide 4-37

COUNTER — Universal Counter
value is decremented by one. If Up/Down is unconnected, an up-
counter is synthesized. The LFSR STYLE counter does not support
down counting.

CLK_EN

When the Clock Enable input is High, the enabled load and count
actions take place on the next active Clock transition. When Clock
Enable is Low, the counter contents are unaffected by the active Clock
transition (hold). If Clock Enable is left unconnected, the Clock is
always enabled.

CLOCK

The Clock input, when enabled, either loads the selected data into the
counter or increments/decrements the counter on the rising
(positive) edge. You can use an active falling (negative) edge by
connecting an inverter to the Clock input. The Clock must be
connected.

ASYNC_CTRL

The Asynchronous Control input, when High, loads the value of the
ASYNC_VAL attribute into the counter independently of the Clock. If
unconnected, this function is not synthesized.

SYNC_CTRL

When the Synchronous Control Enable input is High, the value of the
SYNC_VAL attribute is loaded into the counter during the next active
Clock transition. The SYNC_CTRL has priority over the LOAD input
if both are High at the same time. If unconnected, this function is not
synthesized.

Outputs

Q_OUT

The Counter Output pin (Q_OUT) contains the current value of the
counter. The data type of this port is the same as the D_IN input port.
4-38 Xilinx Development System

COUNTER — Universal Counter
TERM_CNT

The Terminal Count output pin goes High for one clock cycle every
COUNT_TO –1 cycles where COUNT_TO is provided by the user or
is listed in the table below.

● For an Up Counter, the Terminal Count is High during the cycle in
which the counter reaches the maximum sequence value.

● For a Down Counter, the Terminal Count is High during the cycle
in which the counter reaches the minimum sequence value.

For example, for a STYLE=BINARY Up Counter with no
COUNT_TO value and connected to a 4-bit UBIN bus, the
Term_Count is High when the counter reaches its maximum value of
1111.

The Terminal Count is not qualified with the Clock Enable (CE). To
cascade counters, AND the Terminal Count with a common CE. Refer
to Figure 4-15 at the end of this section for more information.

Attributes

ASYNC_VAL

The ASYNC_VAL is the predefined value that is loaded into the
counter when the ASYNC_CTRL input is High. This value will also
be loaded into the counter at power up, whether the ASYNC_CTRL
is connected or not. If not specified, a default value of “zero” is used.
ASYNC_VAL may not be used with an LFSR counter.

SYNC_VAL

The SYNC_VAL is the predefined value that is loaded into the
counter when the SYNC_CTRL input is High during the active Clock
transition. If not specified, a default value of “zero” is used.
SYNC_VAL may not be used with an LFSR counter.

Note: When ENCODING=ONE_HOT, the binary representation for
the SYNC_VAL and ASYNC_VAL attributes must contain only a
single “1” character. For example, 1000 and 0100 are both valid
values. On the other hand, 1100 is not a valid value, because the “1”
digit appears twice in the same data value. When
STYLE=JOHNSON, the binary representation must be a valid
X-BLOX Reference/User Guide 4-39

COUNTER — Universal Counter
 Johnson sequence value. Refer to the section “Counter Style Features
and Selection Criteria,” following, for more information.

STYLE

The STYLE attribute specifies the operating mode for the counter. The
user can specify one of the following counter modes. If not specified,
X-BLOX determines the most efficient style based on the connected
pins.

Table 4-9 COUNTER — Operating Modes

Where n is the width of the counter.

COUNT_TO

The COUNT_TO value defines the number of cycles before the
counter resets to its initial value, after which the count sequence
restarts. Thus, TERM_CNT will be High for one cycle every
COUNT_TO cycles. You should specify COUNT_TO only if the
length of the count sequence is other than the MAX Count. The
allowed values for COUNT_TO vary depending on the counter style
chosen.

● BINARY: The COUNT_TO attribute values are any number
between 2 and 2n–1 inclusive.

● JOHNSON: The only allowed COUNT_TO attribute values are 2n
or 2n–1

● LFSR: The COUNT_TO attribute can be any number between 1
and 2n–1 inclusive, where n is the width (number of bits) of the
counter.

Style Counter Configuration MAX Count

BINARY Binary Counter 2n–1

JOHNSON Johnson Counter 2n

LFSR Linear Feedback Shift Register 2n–1

ONE_HOT Generates a ONE_HOT sequence. n
4-40 Xilinx Development System

COUNTER — Universal Counter
● ONE-HOT: Not available.

When COUNT_TO is used with a BINARY counter, the following
applies. If down counting, the counter counts down to 0. On the next
cycle, Q_OUT goes to COUNT_TO –1. If up counting, the counter
counts up to COUNT_TO –1. On the next cycle, Q_OUT goes to 0.
The behavior is the same even if the counter is loaded with a value
outside the range from 0 to COUNT_TO (with PAR_IN, SYNC_VAL,
or ASYNC_VAL).

ENCODING

You can use this parameter to define the encoding of the Q_OUT
port. The available encodings are defined in the “Bus Data Types”
section of the chapter “Creating an X-BLOX Design.” All the
encodings on each data path must be the same.

BOUNDS

The BOUNDS attribute defines the precision (width) of the
XBLOX_BUS by specifying the MSB and LSB of the bus. Any pair of
numbers can be used, as long as the difference of the indices, plus
one, equals the width of the bus. See the “Bus Data Types” section of
the chapter “Creating an X-BLOX Design” for details. This parameter
is optional.

Note: The ENCODING and BOUNDS attributes do not
automatically appear on this module. Refer to your interface user
guide for information on how to add these attributes. If you do not
specify the bus data type on the COUNTER module, data type
propagation determines the bounds and encoding for the bus ports
connected to the module.

USE_RLOC={TRUE|FALSE}

If this attribute is set to false, the RLOCs are not generated. It is
redundant to set this attribute to TRUE.

RLOC_ORIGIN

Position the upper left corner of the RPM at a particular FPGA
location. Do not specify a location that does not allow enough room
for the COUNTER. Refer to the section “Computing the Number of
X-BLOX Reference/User Guide 4-41

COUNTER — Universal Counter
CLBs” in the chapter “Understanding X-BLOX Operations” for more
information.

RLOC_RANGE

Use this attribute to specify the range (rectangular area) of FPGA
locations that are allowed for the generated RPM. Refer to the chapter
“X-BLOX Generated Relationally Placed Macros” for more
information.

TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=FFS:identifier

where FFS is the type of primitives to which X-BLOX propagates the
TNM attribute in the XNF file and where identifier is a user-defined
name. Refer to the section”Using XACT-Performance Attributes” in
the chapter “Creating an X-BLOX Design” for more information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.

Counter Style Features and Selection Criteria
Each of the four counter styles has benefits and limitations that are
determined by the available chip resources. Table 4-10 gives a ranking
of the criteria that can be used to select the appropriate style for each
application. A brief description of each style follows.

BINARY

The Binary Counter produces a predictable binary output pattern and
is the recommended style for Up/Down counter applications. It is
used to produce sequences for address generation, binary arithmetic,
or related applications. Variations in count modulo are set by using
the COUNT_TO attribute or Synchronous and Parallel Load
capability. The Binary Counter is synthesized as an RPM to take
advantage of fast carry logic on the XC4000 family. When
STYLE=BINARY, the width of the signal connected to D_IN and
4-42 Xilinx Development System

COUNTER — Universal Counter
Q_OUT can be ≥ log2 COUNT_TO.

JOHNSON

The Johnson Counter is the fastest style available. It produces a
predictable output pattern. This style is used to produce very fast
state machines and glitchless decoders. It supports Asynchronous,
Synchronous, and Parallel Load, but the loaded values must
correspond to the normal count sequence to maintain predictable
output results. Valid values for the SYNC_VAL and ASYNC_VAL
attributes include:

1. All zeros

2. All ones

3. Zeros followed by ones

4. Ones followed by zeros

For example, a 3-bit Johnson up counter sequence is as follows.

0 0 0
1 0 0
1 1 0
1 1 1
0 1 1
0 0 1

One bit in the count sequence changes per clock cycle. If
COUNT_TO=2n–1, then 2 bits will change on one clock cycle of the
sequence. When STYLE=JOHNSON, the width of the signal
connected to D_IN or Q_OUT must be the greatest integer
≤ ((COUNT_TO + 1)/2).

LFSR

The LFSR counter is fast and uses chip resources efficiently. It can be
configured to support any COUNT_TO value, but the output pattern
is difficult to determine. It is used for frequency division (that is, the
CLK_DIV module), modulo x counting, and pseudo-random-pattern
generation. It does not support down counting. ASYNC_CNTL or
SYNC_CNTL can be used to reset the counter, but no ASYNC_VAL
or SYNC_VAL can be specified. The width of the LFSR counter must
be between 1 and 30 bits. If more bits are needed, several LFSR
counters can be cascaded. Refer to Figure 4-15 and Figure 4-16 for
X-BLOX Reference/User Guide 4-43

COUNTER — Universal Counter
examples of cascaded counters.

ONE_HOT

A single bit is High at any time. An up counter has the “1” in the least
index bit at reset and shifts it one bit toward the greatest index bit at
each clock cycle, returning it to the least index bit after n cycles,
TERM_CNT is High when the high bit is the highest index bit.

A down-counter has the same initial state but shifts toward the least
bit and has TERM_CNT High when the high bit is the least index bit.

The ONE_HOT style is useful for enabling a sequence of TRISTATE
modules or for sequentially accessing the individual signals of a bus
by driving the SEL port of the MUXBUS with the counter output.

The COUNT_TO attribute cannot be specified for this style.

Table 4-10 Counter Style Selection Criteria

a. Not true when COUNT_TO=2n–1.
In the table above, “1” = Best and “—” = Not Available.

Counter Application Criteria BINARY JOHNSON LFSR

Fastest clock rate (minimum Clock-to-Out-
put delay)

3 1 2

Up/Down counter 1 1 —

Glitchless type output (one bit changes per
clock period)

— 1a —

Pseudo-random-pattern generation — — 1

Frequency divider 3 2 1

Modulo x counter, where x is any number
between 1 and 2n – 1 and where n is the
width of the counter

2 — 1

Easy to Place and Route (flexible layout) 3 1 2
4-44 Xilinx Development System

COUNTER — Universal Counter
If you need to cascade X-BLOX counters to implement an LFSR
counter larger than 30 bits, exercise caution if the counter module
contains a Clock Enable control signal. The Terminal Count outputs
of all X-BLOX counters qualify onl the counter registers, not the input
Clock Enable control. As a result, the Clock Enable control signal of
the first counter in the cascade chain needs to be ANDed with the
Terminal Count of each counter. This ANDed term is then used to
enable the next counter in the chain.

Figure 4-15 Cascading Counters with Clock Enable

X4661

D_IN

LOAD

UP_DN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

CLK_EN

CLOCK

Q_OUT

TERM_CNT

ASYNC_VAL=

COUNTER

COUNTER

To Next CE

BUS_DEF

SYNC_VAL=
STYLE=
COUNT_TO=

ASYNC_VAL=
SYNC_VAL=
STYLE=
COUNT_TO=

ENCODING=UBIN
BOUNDS=27:0

XBLOX_BUS

A

B
O

INVMASK=
DECODEMASK=

D_IN

LOAD

UP_DN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

Q_OUT

TERM_CNT

BUS_DEF

ANDBUS2

ENCODING=UBIN
BOUNDS=15:0

XBLOX_BUS
X-BLOX Reference/User Guide 4-45

COUNTER — Universal Counter
X-BLOX counter chains which do not have an initial Clock Enable
control signal can be implemented simply by connecting the Terminal
Count from each stage to the subsequent stage, as shown in
Figure 4-16.

Figure 4-16 Cascading Counters without an Initial Clock Enable

SLICE=27:0
SUB=
SUB_STARTS_AT=

SLICE
MAINSUB

X4662

D_IN

LOAD

UP_DN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCKCLOCK

Q_OUT

TERM_CNT

ASYNC_VAL=

COUNTER

COUNTER

To Next CE

BUS_DEF

SYNC_VAL=
STYLE=
COUNT_TO=

ASYNC_VAL=
SYNC_VAL=
STYLE=
COUNT_TO=

SLICE=55:28
SUB=
SUB_STARTS_AT=

ENCODING=UBIN
BOUNDS=27:0

XBLOX_BUS

BUS_DEF

ENCODING=UBIN
BOUNDS=55:0

XBLOX_BUS

D_IN

LOAD

UP_DN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

Q_OUT

TERM_CNT

BUS_DEF

SLICE

ENCODING=UBIN
BOUNDS=27:0

XBLOX_BUS

MAINSUB
4-46 Xilinx Development System

COUNTER — Universal Counter
X-BLOX Reference/User Guide 4-47

DATA_REG — Data Register
DATA_REG — Data Register
The Data Register module stores the input data and passes it to the
output on the next active Clock transition. The module is synthesized
as an array of flip-flops that can be loaded with predefined
asynchronous and synchronous data.

Figure 4-17 The Data Register Module Symbol

By default, the DATA_REG module is synthesized as an ALIGNED
RPM in the XC4000 family parts. This means that the registers are
placed in a column with the LSB in the bottom-most CLB and the
MSB in the upper-most CLB of the group. PPR will then place this
column of flip-flops at an appropriate place on the die. While this
structure is appropriate for bus-oriented designs, it might not be
appropriate for all design structures. If you suspect PPR is having
trouble placing the design, you can turn off this behavior by placing
the USE_RLOC=FALSE attribute on the symbol. If the DATA_REG is
taller than the die, the column folds to the right.

D_IN

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

Q_OUT

X1847

DATA_REG

ASYNC_VAL=
SYNC_VAL=

LOC=

STYLE=
ENCODING=
BOUNDS=

LOC [i]=

RLOC_RANGE=

USE_RLOC=
RLOC_ORIGIN=

TNM=
4-48 Xilinx Development System

DATA_REG — Data Register
Table 4-11 Data Register Truth Table

Inputs

D_IN

Parallel Data from the D_IN input port is loaded into the register
when the Clock Enable is High during the active Clock transition.
The data type of this port is the same as the Q_OUT port.

CLK_EN

When the Clock Enable input is High, the D_IN input data or the
SYNC_VAL is loaded into the register on the next active Clock
transition. When the Clock Enable is Low, the register contents are
unaffected by the active Clock transition (hold). If left unconnected,
the Clock is always enabled.

CLOCK

The Clock input, when enabled, loads the selected data into the
register on the rising (positive) edge. You can use an active falling
(negative) edge by connecting an inverter to the Clock input. The
Clock must be connected.

ASYNC_CTRL

The Asynchronous Control input, when High, loads the value of the
ASYNC_VAL attribute into the register independent of the Clock.
This input, when High, takes priority over the Clock and the
SYNC_CTRL inputs. If unconnected, this function is not synthesized.

D_IN SYNC_CTRL CLK_EN CLOCK ASYNC_CTRL Q_OUT

X X X X H ASYNC_VAL

X X L ↑ L (hold)

X H H ↑ L SYNC_VAL

data L H ↑ L data
X-BLOX Reference/User Guide 4-49

DATA_REG — Data Register
SYNC_CTRL

When the Synchronous Control Enable input is High, the value of the
SYNC_VAL attribute is loaded into the register during the next active
Clock transition. The SYNC_CTRL, when High, has priority over the
parallel data inputs. If unconnected, this function is not synthesized.

Outputs

Q_OUT

Q_OUT is the output port of the Register. The data type of this port is
the same as the D_IN input port.

Attributes

ASYNC_VAL

The ASYNC_VAL is the predefined value that is loaded into the
register when the ASYNC_CTRL input is High. This value will also
be loaded into the register at power up, whether the ASYNC_CTRL is
connected or not. If not specified, a default value of “zero” is used.

SYNC_VAL

The SYNC_VAL is the predefined value that is loaded into the
register when the SYNC_CTRL input is High during the active Clock
transition. If not specified, a default value of “zero” is used.

ENCODING

You can use this parameter to define the encoding of the Q_OUT port.
The available encodings are defined in the “Bus Data Types” section
of the chapter “Creating an X-BLOX Design.” All the encodings on
each data path must be the same.

BOUNDS

The BOUNDS attribute defines the precision (width) of the
XBLOX_BUS by specifying the MSB and LSB of the bus. Any pair of
numbers can be used, as long as the difference of the indices, plus
4-50 Xilinx Development System

DATA_REG — Data Register
one, equals the width of the bus. See the “Bus Data Types” section of
the chapter “Creating an X-BLOX Design” for details.

Note: The ENCODING and BOUNDS attributes do not
automatically appear on this module. Refer to your interface user
guide for information on how to add these attributes. If you do not
specify the bus data type on the DATA_REG module, data type
propagation determines the bounds and encoding for the bus ports
connected to the module.

LOC

The LOC attribute specifies the pin location for a single input pad-
buffer pair, for example: LOC=A1, or the attribute specifies the
placement of all IOBs on a specific edge or corner of the chip, for
instance, LOC=TL for the top-left corner of the chip.

LOC[i]

The LOC[i] attribute specifies the pin locations for multiple input
pad-buffer pair locations, for example: LOC[2]=A10, LOC[3]=P15.

USE_RLOC={TRUE|FALSE}

If this attribute is set to false, the RLOCs are not generated. It is
redundant to set this attribute to TRUE.

RLOC_ORIGIN

Position the upper left corner of the RPM at a particular FPGA
location. Do not specify a location that does not allow enough room
for the DATA_REG. That is, if the DATA_REG is connected to a bus
that is 10 bits wide, then the RLOC_ORIGIN must be at least 5 CLBs
from the bottom of the die. You can always specify an
RLOC_ORIGIN at R1 (top row) of the die.

RLOC_RANGE

Use this attribute to specify the range (rectangular area) of FPGA
locations that are allowed for the generated RPM. Refer to the chapter
“X-BLOX Generated Relationally Placed Macros” for more
information.
X-BLOX Reference/User Guide 4-51

DATA_REG — Data Register
TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=FFS:identifier

or

TNM=LATCHES:identifier

where FFS and LATCHES are the types of primitives to which
X-BLOX propagates the TNM attribute in the XNF file and where
identifier is a user-defined name. Refer to the section”Using XACT-
Performance Attributes” in the chapter “Creating an X-BLOX
Design” for more information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.

STYLE Attribute
The STYLE attribute enables you to control the merging of the
DATA_REG and I/O modules.

You can specify this optional attribute on an X-BLOX DATA_REG
module to control the implementation of the module.

The following list defines all valid STYLE attributes:

● STYLE = none

● STYLE = CLB

● STYLE = IOB

● STYLE = ILD

● STYLE = IFD

● STYLE = OFD

As shown in the table below, when one of the above styles except the
CLB style is specified, the DATA_REG is implemented as specified (if
possible). If the style is not specified, X-BLOX can implement the
DATA_REG in either the CLBs or the IOBs.
4-52 Xilinx Development System

DATA_REG — Data Register
Table 4-12 Implementation Styles and Optimization

Conditions for Implementation in an IOB
Depending on the implementation style used, X-BLOX can or cannot
optimize the DATA_REG module by moving the generated flip-flops
(or latches) into the IOB. Such optimization improves the density and
performance of the synthesized design and is possible only if the
following conditions are met:

1. The DATA_REG is connected to an I/O symbol. This can be an
X-BLOX INPUTS, OUTPUTS, or BIDIR_IO, or an IBUF or OBUF
symbol.

2. The flip-flop does not use its clock-enable pin. Use of this pin
prevents the flip-flop from being implemented as an IOB flip-flop.
(This is because IOB flip-flops do not have a clock-enable pin.)

3. The IOBs have input or output flip-flops. The XC4000H
architecture has twice as many IOBs as the XC4000 architecture,
but does not have input or output flip-flops in the smaller IOBs.

4. There is no CLB External net attribute (X) on the signal between
the DATA_REG or flip-flop and the I/O symbol.

5. The SYNC_CTRL and ASYNC_CTRL pins are not connected to
the DATA_REG module.

In addition, the flip-flops and latches are created in the IOBs
provided you have specified on the DATA_REG module only
attributes that are compatible with the particular style you specified.
The table below summarizes the attribute combinations you should
be aware of.

Actions
DATA_REG Implementation Styles

none CLB IOB ILD IFD OFD

Implement
in IOB?

May No Must Must Must Must

Generated
Primitives

FF or
Latches

FF FF or
Latches

Latches FF FF
X-BLOX Reference/User Guide 4-53

DATA_REG — Data Register
Table 4-13 Impact of Attributes on Implementation Style

none

If STYLE is not defined, X-BLOX chooses an implementation style,
which might change depending on other attributes you have
specified on the module.

If the command-line option mergeio=false is specified, X-BLOX is not
allowed to perform any optimization.

Specifying the following attributes on a DATA_REG module with no
STYLE attribute changes the style in which the DATA_REG module is
implemented. Note that you can specify only one of these attributes
on the module, as each of them assigns a different style to your
module.

● NODELAY implements the module as if STYLE=IOB were
specified.

Attributes
DATA_REG Implementation Styles

none CLB IOB ILD IFD OFD

LOC=location
 or
LOC[i]=location

LOC attribute is transferred to the generated IOB or CLB FF

NODELAY STYLE=IOB invalid associated
with input
FF or
register
latch

associated
 with
input
latch

associated
with
input FF

invalid

FAST, MEDFAST,
MEDSLOW, or SLOW

STYLE=OFD invalid associated
with input
output
register

invalid invalid associated
 with
output FF

RLOC_ORIGIN,
RLOC_RANGE,
USE_RLOC=TRUE

STYLE=CLB valid invalid invalid invalid invalid

SYNC_VAL STYLE=CLB valid invalid invalid invalid invalid

TNM=FFS:identifier valid valid valid invalid valid valid

TNM=Latches:identifier STYLE=ILD invalid STYLE=ILD valid invalid invalid
4-54 Xilinx Development System

DATA_REG — Data Register
● MEDFAST, MEDSLOW, SLOW, or FAST implements the module
as if STYLE=OFD were specified. These attributes are associated
with the IOB input register/latch or output register created by
X-BLOX.

● RLOC_ORIGIN, RLOC_RANGE, or USE_RLOC=TRUE
implements the module as if STYLE=CLB were specified.

● TNM=LATCHES:identifier implements the module as if
STYLE=ILD were specified.

If the attribute LOC=location or LOC[i]=location is found on a
DATA_REG with no STYLE attribute, the LOC attribute is transferred
onto the generated IOB or CLB flip-flop. X-BLOX does not check to
ensure that the value of the LOC attribute is consistent with the type
of generated flip-flop. We recommend that you specify STYLE=IOB
when locations are IOB locations, and STYLE=CLB when locations
are internal to the FPGA.

STYLE=CLB

For STYLE=CLB, X-BLOX implements a DATA_REG module in CLBs
only.

Do not use the following attributes with this implementation style:

● NODELAY

● FAST, SLOW, MEDFAST, or MEDSLOW

● TNM=LATCHES:identifier

STYLE=IOB

For STYLE=IOB, X-BLOX implements a DATA_REG module in either
the input latches, the input flip-flops or the output flip-flops. You
might wish to use this style to control which one of several
DATA_REG modules connected to an I/O symbol is implemented in
IOBs when there is a chance that X-BLOX might automatically select
the wrong one.

When a TNM=LATCHES:identifier attribute is found on a
DATA_REG with STYLE=IOB, the DATA_REG is implemented as if
STYLE=ILD were specified.
X-BLOX Reference/User Guide 4-55

DATA_REG — Data Register
If either the NODELAY, the FAST, MEDSLOW, MEDFAST, or SLOW
attribute is found on a DATA_REG with STYLE=IOB, the attribute is
associated with the IOB input register/latch or output register
created by X-BLOX.

Do not use the following attributes with this implementation style:

● RLOC_ORIGIN, RLOC_RANGE, USE_RLOC=TRUE

● SYNC_VAL

Note: Do not connect ASYNC_CTRL or SYNC_CTRL when using
this style.

STYLE=ILD

For STYLE=ILD, X-BLOX implements a DATA_REG module with
input latches in IOBs.

If the NODELAY attribute is found on a DATA_REG with
STYLE=ILD, it is associated with the input latch created by X-BLOX.

Do not use the following attributes with this implementation style:

● FAST, SLOW, MEDFAST, or MEDSLOW

● RLOC_ORIGIN, RLOC_RANGE, or USE_RLOC=TRUE

● SYNC_VAL

● TNM=FFS:identifier

Note: Do not connect ASYNC_CTRL or SYNC_CTRL when using
this style.

STYLE=IFD

For STYLE=IFD, X-BLOX implements a DATA_REG module with
input flip-flops in IOBs.

If the NODELAY attribute is found on a DATA_REG with
STYLE=IFD, it is associated with the input flip-flop created by
X-BLOX.

Do not use the following attributes with this implementation style:

● FAST, SLOW, MEDFAST, or MEDSLOW

● RLOC_ORIGIN, RLOC_RANGE, or USE_RLOC=TRUE
4-56 Xilinx Development System

DATA_REG — Data Register
● SYNC_VAL

● TNM=LATCHES:identifier

Note: Do not connect ASYNC_CTRL or SYNC_CTRL when using
this style.

STYLE=OFD

For STYLE=OFD, X-BLOX implements a DATA_REG module with
output flip-flops in IOBs.

If the FAST, SLOW, MEDFAST, or MEDSLOW attribute is found on a
DATA_REG with STYLE=OFD, it is associated with the output flip-
flop created by X-BLOX.

Do not use the following attributes with this implementation style:

● NODELAY

● RLOC_ORIGIN, RLOC_RANGE, or USE_RLOC=TRUE

● SYNC_VAL

● TNM=LATCHES:identifier
X-BLOX Reference/User Guide 4-57

DECODE — 1-of-n Decoder/Demultiplexer
DECODE — 1-of-n Decoder/Demultiplexer
The DECODE module converts binary-encoded two’s complement,
or one-hot data on the Select port to a 1-of-n output (one-hot) on the
D_OUT port. The width (precision) of the Select and D_OUT ports is
determined by their attached buses.

Figure 4-18 The Decode Module Symbol

Inputs

SEL

The Selector is an input port with an encoding of two’s complement,
unsigned binary, or one-hot that is independent from the D_OUT
encoding. The possible values of the Selector should correspond to at
least one of the indices of the D_OUT port. Depending on the
encoding scheme, the Select input can address more lines or fewer
lines than are available on the D_OUT port. If the defined Select input
cannot address all the available Decoder outputs, a Warning message
is shown when the X-BLOX synthesis software is run. Unaddressable
decoder outputs will be tied to Ground. If an unavailable (out of
range) D_OUT line is chosen, the SEL_ERROR output is High.

EN

When the Enable Input is High, the selected Output is High. When
the Enable Input is Low, the Decoder is disabled and all bits of the
Output and the SEL_ERROR are Low. If the Enable Input is left
unconnected, the Decoder is always enabled.

Note: You must specify the data type (encoding and bounds) for
each of the buses connected to the SEL input and D_OUT ports, either
through data type propagation from other modules or with a
BUS_DEF module. The data type is not propagated between or
through these two ports.

X1856

D_OUT

SEL_
ERROREN

SEL

DECODE
4-58 Xilinx Development System

DECODE — 1-of-n Decoder/Demultiplexer
Outputs

D_OUT

When enabled, one of the n lines of the D_OUT port will be High
(one-hot encoding). The D_OUT port must have the one-hot
encoding. The bounds must be specified with indices that can be
used by the Select input to identify the desired D_OUT line. If an
unavailable (out of range) D_OUT line is selected by Select, all
D_OUT lines are Low.

SEL_ERROR

The SEL_ERROR output will be High when the value of the Selector
input exceeds the available indices of the D_OUT port. Please refer to
the section “Out-of-Range Indicators” in the chapter “Creating an
X-BLOX Design” for more information. If the Enable pin is used, it
enables the SEL_ERROR output.
X-BLOX Reference/User Guide 4-59

ELEMENT — Element of a Bus
ELEMENT — Element of a Bus
The ELEMENT module extracts a single wire (net) from a bus or
connects a single wire to a bus. Use the ELEM attribute with binary
notation to specify the index of the particular wire to be connected to
or extracted from the bus. For example, to extract the wire (net) with
the index of “4” from a bus, connect the Element module between the
bus and the wire, and set the ELEM attribute to “4”. The Element
module does not contain any active circuitry.

Figure 4-19 The Element Module Symbol

Connections
The two following ports can be connected to inputs, outputs or
bidirectional ports on other modules and components. As the
Element module has no active circuitry, there is no real Input or
Output; these labels are just used for identification.

XBLOX_BUS

The XBLOX_BUS port is the bus from which you can extract the wire.
When you specify one wire (net) of this bus with the ELEM attribute,
the wire becomes the ELEM net or ELEM bus.

ELEM

The ELEM port is a single wire (net) extracted from the XBLOX_BUS
defined by the ELEM attribute.

Attributes

ELEM

The ELEM attribute specifies the index of the wire (net) to be
extracted from or connected to the XBLOX_BUS.

X1859

XBLOX_BUS ELEM

ELEM=

ELEMENT
4-60 Xilinx Development System

ELEMENT — Element of a Bus
X-BLOX Reference/User Guide 4-61

FORCE — Force Value onto a Bus
FORCE — Force Value onto a Bus
The FORCE module forces a data value onto a bus. For example, you
can use it to specify the initialization value on the parallel D_IN input
of a Counter module, or to set one input of a Comparator module to a
constant value. This value will always be present on the bus, so a 3-
state module is necessary to control part-time access for the Force
value.

Figure 4-20 The Force Module Symbol

Outputs

FORCE

The FORCE output port has the same data type and width as the bus
to which it is attached.

Attributes

ENCODING

The available encodings are described in the “Bus Data Types”
section of the chapter “Creating an X-BLOX Design.” Any restrictions
placed on the data type are dependent on the X-BLOX module(s) to
which this module is connected.

BOUNDS

The BOUNDS attribute defines the precision (width) of the
XBLOX_BUS by specifying the MSB and LSB of the bus. You can use
any pair of numbers, as long as the difference of the indices, plus one,
equals the width of the bus. See the “Bus Data Types” section of the
chapter “Creating an X-BLOX Design” for details.

X1861

VALUE=

ENCODING=

BOUNDS=

FORCE
4-62 Xilinx Development System

FORCE — Force Value onto a Bus
Note: The ENCODING and BOUNDS attributes do not
automatically appear on this module. Refer to your interface user
guide for information on how to add these attributes. If you do not
specify the bus data type on the FORCE module, data type
propagation determines the bounds and encoding for the bus ports
connected to the module.

VALUE

Use the VALUE attribute to define the data value that is forced onto
the bus. The precision of the value might be less than the precision of
the bus; if so, it will be sign-extended on the left (toward the MSB). If
the value is greater than the precision of the bus, the higher order bits
are ignored.
X-BLOX Reference/User Guide 4-63

INC_DEC — Increment Decrement Symbol
INC_DEC — Increment Decrement Symbol
The INC_DEC symbol allows the data value on the bus to be either
incremented or decremented by a constant. The data value changes
according to the encoding on the bus. A control signal on the symbol
controls whether the value should be incremented or decremented.
If this signal is not connected, X-BLOX increments the data value on
the bus. You can use an output port, OVFL, to detect overflow or
underflow of the data.The INC_DEC module requires fewer
connections than an ADD_SUB if incrementing by 1. This module is
equivalent to an ADD-SUB and FORCE modules if INC_BY is other
than 1. Refer to the INC_BY attribute below. For a description of the
implementation styles available for X-BLOX register modules, refer
to the section “Implementation Styles” in the chapter “Creating an
X-BLOX Design.”

Figure 4-21 The INC_DEC symbol

Inputs

NC_DEC

The Increment/Decrement control input determines the arithmetic
operation: High = increment, and Low = decrement. If you do not
connect this input, the module is synthesized as an Incrementer.

X4338

INC_DEC
INC_DEC

A

INC
BY

FUNC

OVFL

C_OUT

INC_BY=

STYLE=

USE_RLOC=

RLOC_ORIGIN=

RLOC_RANGE=

±

4-64 Xilinx Development System

INC_DEC — Increment Decrement Symbol
A

The data defined by INC_BY is added to or subtracted from the data
on the A input port (A+n or A–n) depending on the value of
INC_DEC. If the INC_BY has no assigned value, ��±1 is added or
subtracted from the A port. The A input must be connected. The data
type of this port is the same as the FUNC output port.

Outputs

FUNC

FUNC is the Functional output (sum or difference) port from the
adder/subtracter. The data type of this port is the same as the A and
B input ports.

OVFL

OVFL is the Overflow (Underflow) output from the adder/
subtracter. The OVFL output is High if an overflow occurred while
adding. The OVFL output is Low if an overflow occurred while
subtracting. OVFL=C_OUT if the connected buses have
ENCODING=UBIN.

C_OUT

C_OUT is the Carry-output/Borrow-out port from the most
significant bit(s) of the INC_DEC module.

Attributes

INC_BY

This attribute refers to the value to increment/decrement the input
by. By default, it is 1. The value for this attribute should be a positive
integer value. If you set another value, the INC_DEC module is
synthesized as an ADD_SUB with one pin driven by a FORCE with
VALUE=INC_BY.
X-BLOX Reference/User Guide 4-65

INC_DEC — Increment Decrement Symbol
STYLE

The default implementation style is ALIGNED for the XC4000. The
default implementation style for the XC3000A/L and XC3100A is
FAST3KA. The available options include the ones shown in the
following table.

Table 4-14 INC_DEC — Implementation Styles

Warning: The default style for both X-BLOX and Xilinx Unified
Libraries macros is ALIGNED. Exercise care when mixing ALIGNED
and UNALIGNED macros. These two implementation styles are not
compatible when attempting to do placement and routing with PPR.

USE_RLOC={TRUE|FALSE}

If this attribute is set to false, RLOCs are not generated. It is
redundant to set this attribute to TRUE.

RLOC_ORIGIN

Position the upper left corner of the RPM at a particular FPGA
location. Do not specify a location that does not allow enough room
for the INC_DEC. Refer to the section “Computing the Number of
CLBs” in the chapter “Understanding X-BLOX Operations” for more
information.

RLOC_RANGE

Use this attribute to specify the range (rectangular area) of FPGA
locations that are allowed for the generated RPM. Refer to the chapter
“X-BLOX Generated Relationally Placed Macros” for more
information.

Style Description

ALIGNED Aligned RPM (XC4000 only)
UNALIGNED Unaligned RPM (XC4000 only)
FAST3KA Gate-level, 1-bit look ahead, fast adder

(XC3000A/L and 3100A only)
RIPPLE Gate-level ripple carry, area-efficient adder
4-66 Xilinx Development System

INC_DEC — Increment Decrement Symbol
X-BLOX Reference/User Guide 4-67

INPUTS — Input Pads with Buffers

utes
INPUTS — Input Pads with Buffers
INPUTS is a device-input module that connects one or more input
pads to an internal wire or bus. The Inputs module expands into an
array of input-pad and input-buffer pairs. The input-pad locations
can be defined for a given package in the following ways.

• Adding a LOC attribute on the symbol for a single-bit port

• Adding one or more LOC[i] attributes on the symbol for a
multibit port

• In a Place and Route Constraints file (See the subsection on attrib
below)

Figure 4-22 The Inputs Module Symbol

Inputs
The inputs are automatically connected between the device input
pad(s) and the buffer(s).

Outputs

INPUTS

The INPUTS bus represents the buffered data or control input port(s)
of the device. This port is connected to a single wire or a bus defined
by the ENCODING and BOUNDS attributes.

X1849

INPUTS

ENCODING=

BOUNDS=

FLOAT_VAL=

LOC=

PADNAME=

LOC [i]=

TNM=
4-68 Xilinx Development System

INPUTS — Input Pads with Buffers
Attributes

ENCODING

The available encodings are defined in the “Bus Data Types” section
of the chapter “Creating an X-BLOX Design.” All the encodings on
each data path must be the same.

BOUNDS

The BOUNDS attribute defines the precision (width) of the
XBLOX_BUS by specifying the MSB and LSB of the bus. Any pair of
numbers can be used, as long as the difference of the indices, plus
one, equals the width of the bus. See the “Bus Data Types” section of
the chapter “Creating an X-BLOX Design” for details. This parameter
is optional.

FLOAT_VAL

The FLOAT_VAL attribute is used to connect pull-up or pull-down
resistors to the input pads defined by this module. You can specify
this value in any of the allowed radices using don’t care digits. The
bits of the FLOAT_VAL number specify which Input pads are
connected to pull-up resistors, pull-down resistors or neither (that is,
1 = pull-up resistor, 0 = pull-down resistor, ? = none). Alternately, all
the pads of a symbol can be tied to pull-up or pull-down resistors by
specifying FLOAT_VAL=PULLUP or FLOAT_VAL=PULLDOWN,
respectively. See the “Pull-up and Pull-down Resistors for I/O Pads”
section in the chapter “Creating an X-BLOX Design” for examples.

PADNAME

Use this atribute to specify the base name of the I/O pad. With this
attribute set to PADNAME=foo, the names of the pads will be SYM/
FOO<0>, SYM/FOO<1>,..., SYM/FOO<n>, corresponding to the
BOUNDS associated with the attached buses and the BOUNDS
attribute. Without this attribute, the names of the I/O pads will be
SYM/PAD<0>, SYM/PAD<1>,…, SYM/PAD<n>, where SYM is the
name of the INPUTS symbol.
X-BLOX Reference/User Guide 4-69

INPUTS — Input Pads with Buffers
LOC

The LOC attribute specifies the pin location for a single input pad-
buffer pair, for example: LOC=A1, or the attribute specifies the
placement of all IOBs on a specific edge or corner of the chip, for
instance, LOC=TL for the top-left corner of the chip.

LOC[i]

The LOC[i] attribute specifies the pin locations for multiple input
pad-buffer pair locations, for example: LOC[2]=A10, LOC[3]=P15.

TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=PADS:identifier

where PADS is the type of primitives to which X-BLOX propagates
the TNM attribute in the XNF file and where identifier is a user-
defined name. Refer to the section”Using XACT-Performance
Attributes” in the chapter “Creating an X-BLOX Design” for more
information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.

Constraints File
The INPUTS module is synthesized into an array of input pads with
names of the form: SYM/SIG<0>, SYM/SIG<1> . . . SYM/SIG<N-1>.
SYM is the schematic-editor label or instance for the INPUTS symbol,
and SIG is the name of the attached X-BLOX bus. However, if the
PADNAME attribute has been specified, the input pads have the base
name given by this attribute. The names of these input pads can be
used in a Constraints File as an alternate method of specifying input-
pad locations.
4-70 Xilinx Development System

INPUTS — Input Pads with Buffers
X-BLOX Reference/User Guide 4-71

MUXBUS — General n-to-1 Bus Multiplexer
MUXBUS — General n-to-1 Bus Multiplexer
The MUXBUS module routes one of n Inputs to the Output under the
control of the Select input port, where n is determined by the width of
the input port.

Figure 4-23 The n-to-1 Bus-Multiplexer Module Symbol

Inputs

MUX_IN

MUX_IN is the Input-Bus data port of the Multiplexer. You can use
any data type for the Input-Bus, but you must specify the BOUNDS
attribute with indices that can be used by the Select input to identify
the desired Multiplexer Input-Bus line.

SEL

The Select input port chooses which Input-Bus line is directed to the
Multiplexer-Output line. The data type of this port can be a data type
independent from the Multiplexer Input-Bus data type. However, the
possible values of the Selector must correspond to at least one of the
indices of the Input-Bus port. Depending on the encoding scheme,
the Select input can address more lines or fewer lines than are
available on the Input-Bus port. If the defined Select input cannot
address all the available Multiplexer Inputs, a Warning message is
shown when the X-BLOX synthesis software is run. If an unavailable
(out of range) Input-Bus line is chosen, the SEL_ERROR output is
High.

Note: You must specify the data type (encoding and bounds) for each
of the buses connected to the SEL input and MUX_IN ports either
through data type propagation from other modules or with a

X1852

MUX_OUT
MUX_IN

SEL

SEL_ERROR

MUXBUS
4-72 Xilinx Development System

MUXBUS — General n-to-1 Bus Multiplexer
BUS_DEF module. The data type does not propagate between or
through these two ports.

Outputs

MUX_OUT

The Multiplexer Output line reflects the selected Input-Bus data. The
data type is BIT without an index. If the selected Input-Bus line is
out-of-range, the Multiplexer Output is Low.

SEL_ERROR

The SEL_ERROR Output is High when the selected Input-Bus line
does not exist; that is, the Selector value is out of the range of the
available input indices. Please refer to the section “Out-of-Range
Indicators” in the chapter “Creating an X-BLOX Design” for more
information.

Figure 4-24 The n-to-1 Bus-Multiplexer Logic Diagram

X1952

MUX_IN [1]

MUX_IN [0]

SEL [n-1]

SEL [0]

•
•

•
•

MUX_IN [2 -1]n

•
• SEL_ERRORERROR

LOGIC

MUX_OUT
X-BLOX Reference/User Guide 4-73

MUXBUS2 — 2-to-1 Bus Multiplexer
MUXBUS2 — 2-to-1 Bus Multiplexer
The MUXBUS2 module routes one of two Input Buses to the Output
Bus under the control of the Select input port.

Figure 4-25 The 2-to-1 Bus-Multiplexer Module Symbol

Inputs

M0, M1

M0 and M1 are the Input-Bus data ports of the Multiplexer. The Input
and Output buses must have the same encoding and bounds. The bus
width can be any size, as long as the module fits in the device being
targeted.

M0 is selected when SEL input evaluates to zero. M1 is selected when
SEL input evaluates to +1. For all other values of SEL input,
MUX_OUT bus is Low and SEL_ERROR is High.

SEL

The Select input port chooses which of the two Input-Bus ports is
directed to the Output-Bus port. The Select input port will be either
one or two bits wide, depending on the Select encoding method. The
data type of this port can be a data type independent from the
Multiplexer Input-Bus data type. Depending on the encoding
scheme, the Select input can address more or fewer ports than are
available. If the defined Select input cannot address all the available
Multiplexer Inputs, a Warning message is shown when the X-BLOX
synthesis software is run. If you choose an unavailable (out of range)
port, the SEL_ERROR output is High.

X1853

MUX_OUT

SEL

M1

M0

SEL_
ERROR

MUXBUS2
4-74 Xilinx Development System

MUXBUS2 — 2-to-1 Bus Multiplexer
Outputs

MUX_OUT

The Multiplexer Output-Bus port reflects the selected Input-Bus port
data. The Output-Bus port has the same ENCODING and BOUNDS
as the Input-Bus ports. If the selected input port is unavailable (out-
of-range), the Multiplexer Outputs are Low.

SEL_ERROR

The SEL_ERROR Output is High when the selected Input-Bus port
does not exist; that is, the Selector value is outside the range of the
available input indices. Please refer to the section “Out-of-Range
Indicators” in the chapter “Creating an X-BLOX Design” for more
information.

Figure 4-26 The 2-to-1 Bus-Multiplexer Logic Diagram

X1949

MUX_OUT [n-1]

M1 [n-1]

M0 [n-1]

•

MUX_OUT [2]

M1 [2]

M0 [2]

MUX_OUT [1]

M1 [1]

M0 [1]

MUX_OUT [0]

M1 [0]

M0 [0]

•
•

SEL_ERRORERROR
LOGIC

SEL [1]
SEL [0]SEL [0]

ONE-HOTUBIN
X-BLOX Reference/User Guide 4-75

MUXBUS4 — 4-to-1 Bus Multiplexer
MUXBUS4 — 4-to-1 Bus Multiplexer
The MUXBUS4 module routes one of four Input Buses to the Output
Bus under the control of the Select input port. The Select input
encoding can be binary or one-hot.

Figure 4-27 The 4-to-1 Bus-Multiplexer Module Symbol

Inputs

M0 to M3

M0, M1, M2 and M3 are the Input-Bus data ports of the Multiplexer.
The Input and Output buses must have the same ENCODING and
BOUNDS. The bus width can be of any size, as long as the module fits
in the device being targeted.

SEL

The Select input port chooses which of the four Input-Bus ports is
directed to the Output-Bus port. The Select input port will be either
two, three or four bits wide, depending on the Select encoding
method. The data type of this port can be a data type independent
from the Multiplexer Input-Bus data type. Depending on the
encoding scheme, the Select input can address more or fewer ports
than are available. If the defined Select input data type cannot
address all the available Input-Bus ports, a Warning message is
shown when the X-BLOX synthesis software is run. If an unavailable
(out-of-range) Input-Bus port is chosen, the SEL_ERROR output is
High.

X1854

MUX_OUT

M3

M2

M1

M0

SEL

SEL_
ERROR

MUXBUS4
4-76 Xilinx Development System

MUXBUS4 — 4-to-1 Bus Multiplexer
Outputs

MUX_OUT

The Multiplexer Output-Bus port reflects the selected Input-Bus port
data. The Output-Bus port has the same ENCODING and BOUNDS
as the Input-Bus ports. If the selected input port is unavailable (out-
of-range), the Multiplexer Outputs are Low.

SEL_ERROR

The SEL_ERROR Output is High when the selected Input-Bus port
does not exist; that is, the Selector value is outside the range of the
available input indices. Please refer to the section “Out-of-Range
Indicators” in the chapter “Creating an X-BLOX Design” for more
information.

Figure 4-28 The 4-to-1 Bus-Multiplexer Logic Diagram

X1950

M3 [n-1]

M0 [n-1]

M2 [n-1]

M1 [n-1]

M3 [1]

M0 [1]

M2 [1]

M1 [1]

M3 [0]

M0 [0]

M2 [0]

M1 [0]

SEL [3]

SEL [0]

MUX_OUT [n-1]

MUX_OUT [1]

MUX_OUT [0]

•
•
•

SEL_ERROR
ERROR
LOGIC

SEL [1]

SEL [0]

ONE-HOTUBIN
X-BLOX Reference/User Guide 4-77

MUXBUS8 — 8-to-1 Bus Multiplexer
MUXBUS8 — 8-to-1 Bus Multiplexer
The MUXBUS8 module routes one of eight Input Buses to the Output
Bus under the control of the Select input port.

Figure 4-29 The 8-to-1 Bus-Multiplexer Module Symbol

Inputs

M0 to M7

M0, M1, . . to . . M7 are the eight Input-Bus data ports of the
Multiplexer. The Input and Output buses must have the same
ENCODING and BOUNDS. The bus width can be any size, as long as
the module fits in the device being targeted.

SEL

The Select input port chooses which of the eight Input-Bus ports is
directed to the Output-Bus port. The Select input port will be from
three to eight bits wide, depending on the Select encoding method.
The data type of this port can be a data type independent from the
Multiplexer Input-Bus data type. Depending on the encoding
scheme, the Select input can address more ports or fewer ports than
are available. If the defined Select input cannot address all the
available Input-Bus ports, a Warning message is shown when the
X-BLOX synthesis software is run. If an unavailable (out of range)
Input-Bus port is chosen, the SEL_ERROR output is High.

X1855

M7

M6

M5

M4

M3

M2

M1

M0

SEL

MUX_OUT

SEL_
ERROR

MUXBUS8
4-78 Xilinx Development System

MUXBUS8 — 8-to-1 Bus Multiplexer
Outputs

MUX_OUT

The Multiplexer Output-Bus port reflects the selected Input-Bus port
data. The Output-Bus port has the same ENCODING and BOUNDS
as the Input-Bus ports. If the selected input port is unavailable (out-
of-range), the Multiplexer Outputs are Low.

SEL_ERROR

The SEL_ERROR Output is High when the selected Input-Bus port
does not exist; that is, the Selector value is outside the range of the
available input indices. Please refer to the section “Out-of-Range
Indicators” in the chapter “Creating an X-BLOX Design” for more
information.

Figure 4-30 The 8-to-1 Bus-Multiplexer Logic Diagram

X1951

MUX_OUT [n-1]

M7 [n-1]

M1 [n-1]

M0 [n-1]

MUX_OUT [1]

M7 [1]

M1 [1]

M0 [1]

MUX_OUT [0]

M7 [0]

M1 [0]

M0 [0]

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

SEL_ERRORERROR
LOGIC

SEL [7]

SEL [0]

SEL [2]

SEL [0]

ONE-HOTUBIN

SEL [1]
X-BLOX Reference/User Guide 4-79

OUTPUTS — Output Pads with Buffers
OUTPUTS — Output Pads with Buffers
OUTPUTS is a device-output module that connects an internal wire
or bus to one or more output pads. The Outputs module expands into
an array of output-pad and output-buffer pairs. The output pad
locations can be fixed for a given package in the following ways.

● Adding a LOC attribute on the symbol for a single-bit port

● Adding one or more LOC[i] attributes on the symbol for a
multibit port

● In a Place and Route Constraints file (see the section on attributes
below)

Figure 4-31 The Outputs Module Symbol

Inputs

OUTPUTS

The OUTPUTS port represents buffered data or control output port(s)
of the device. This port is connected to a single internal wire or a bus
defined by the ENCODING and BOUNDS attributes.

Outputs
The outputs are automatically connected between the device output
pad(s) and the buffer(s).

X1850

OUTPUTS

ENCODING=

BOUNDS=

FLOAT_VAL=

LOC=

PADNAME=

LOC [i]=

TNM=
4-80 Xilinx Development System

OUTPUTS — Output Pads with Buffers
Attributes

ENCODING

The available encodings are defined in the “Bus Data Types” section
of the chapter “Creating an X-BLOX Design.” All the encodings on
each data path must be the same.

BOUNDS

The BOUNDS attribute defines the precision (width) of the
XBLOX_BUS by specifying the MSB and LSB of the bus. Any pair of
numbers can be used, as long as the difference of the indices, plus
one, equals the width of the bus. See the “Bus Data Types” section of
the chapter “Creating an X-BLOX Design” for details. This parameter
is optional.

FLOAT_VAL

The FLOAT_VAL attribute is used to connect pull-up or pull-down
resistors to the output pads defined by this module. This value can be
specified in any of the allowed radices, and can contain don‘t care
digits. The bits of the FLOAT_VAL number specify which Output
pads are connected to pull-up resistors, pull-down resistors or
neither (that is, 1 = pull-up resistor, 0 = pull-down resistor, ? = none).
Alternately, all the pads of a symbol can be tied to pull-up or pull-
down resistors by specifying FLOAT_VAL=PULLUP or
FLOAT_VAL=PULLDOWN respectively. See the “Pull-up and Pull-
down Resistors for I/O Pads” section for examples.

PADNAME

Use this atribute to specify the base name of the I/O pad. With this
attribute set to PADNAME=foo, the names of the pads will be SYM/
FOO<0>, SYM/FOO<1>,..., SYM/FOO<n>, corresponding to the
BOUNDS associated with the attached buses and the BOUNDS
attribute. Without this attribute, the names of the I/O pads will be
SYM/PAD<0>, SYM/PAD<1>,…, SYM/PAD<n>, where SYM is the
name of the OUTPUTS symbol.
X-BLOX Reference/User Guide 4-81

OUTPUTS — Output Pads with Buffers
LOC

The LOC attribute specifies the pin location for a single output pad-
buffer pair, for example: LOC=A1, or the attribute specifies the
placement of all IOBs on a specific edge or corner of the chip, for
instance, LOC=TL for the top-left corner of the chip.

LOC[i]

The LOC[i] attribute specifies the pin locations for multiple output
pad-buffer pair locations, for example: LOC[4]=B10, LOC[5]=P12.

TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=PADS:identifier

where PADS is the type of primitives to which X-BLOX propagates
the TNM attribute in the XNF file and where identifier is a user-
defined name. Refer to the section”Using XACT-Performance
Attributes” in the chapter “Creating an X-BLOX Design” for more
information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.

Constraints File
The OUTPUTS module is synthesized into an array of output pads
with names of the form: SYM/SIG<0>, SYM/SIG<1> . . . SYM/
SIG<N–1>. SYM is the schematic-editor label or instance for the
OUTPUTS symbol, and SIG is the name of the attached X-BLOX bus.
However, if the PADNAME attribute has been specified, the input
pads have the basename given by this attribute. The names of these
output pads can be used in a Constraints File as an alternate method
of specifying output-pad locations.
4-82 Xilinx Development System

OUTPUTS — Output Pads with Buffers
X-BLOX Reference/User Guide 4-83

PROM — Programmable Read-Only Memories
PROM — Programmable Read-Only Memories
The PROM module synthesizes a Programmable Read-Only Memory.
The contents of the PROM can be specified either by means of a
separate text file or on the symbol. The PROM can be of any size that
will fit on a chip. The width of the PROM is determined from the
BOUNDS definition of the D_OUT port. The depth is specified by the
DEPTH attribute on the PROM module or the data type of the
Address signal. The data type of the Address signal determines
maximum and minimum addressable locations. Only the addressable
locations that are within the valid DEPTH will be synthesized. The
word-locations in the PROM are indexed based on the data type of
the signal attached to the ADDR port.

Figure 4-32 The PROM Module Symbol

Inputs

ADDR

The Address port selects the word that appears on the Data Output
port. The Address port will determine the maximum depth of the
PROM if the DEPTH attribute is not specified. The Address port
cannot be connected to a bus with ENCODING=ONE_HOT.

Outputs

D_OUT

The Data Output port reflects the addressed word of the PROM. The
width of the D_OUT port is set by the BOUNDS of the signal attached

X1845

PROM

ADDR

D_OUT

ADDR_
ERROR

MEMFILE=

DEPTH=

ENCODING=

BOUNDS=
TNM=
4-84 Xilinx Development System

PROM — Programmable Read-Only Memories
to this port. If an out-of-bounds word is addressed, the D_OUT port
is undefined and the ADDR_ERROR is High.

ADDR_ERROR

The Address Error (out-of-bounds) output is High if the value on the
Address port is beyond the addressable locations for the PROM.
Please refer to the section “Out-of-Range Indicators” in the chapter
“Creating an X-BLOX Design” for more information.

Attributes

MEMFILE

The MEMFILE attribute specifies the name of a Memory Definition
File that defines the contents of this PROM. The name of the Memory
Definition File must have a .mem file extension. The extension can be
omitted from the MEMFILE attribute. If the Memory Definition File
exists, it will be read; otherwise, a template file with the given name
will be created by X-BLOX. The template file created by X-BLOX does
not contain valid data and has to be edited before you can re-execute
X-BLOX.

DEPTH

The DEPTH attribute defines the depth, in words, of the PROM.
Each word is "width" bits wide. The depth is specified in decimal
notation, unless a radix definition precedes it. If the DEPTH attribute
is not given on the symbol in the MEMFILE, it will be taken from the
DEPTH attribute on the PROM symbol, or calculated from the
BOUNDS and ENCODING on the ADDR input to the PROM.

ENCODING

You can use this parameter to define the encoding of the D_OUT
port. The available encodings are defined in the “Bus Data Types”
section of the chapter “Creating an X-BLOX Design.” All the
encodings on each data path must be the same.
X-BLOX Reference/User Guide 4-85

PROM — Programmable Read-Only Memories
BOUNDS

The BOUNDS attribute defines the precision (width) of the
XBLOX_BUS by specifying the MSB and LSB of the bus. Any pair of
numbers can be used, as long as the difference of the indices, plus
one, equals the width of the bus. See the “Bounds” section of the
chapter “Creating an X-BLOX Design” for details. This parameter is
optional.

Note: The ENCODING and BOUNDS attributes do not automatically
appear on this module. Refer to your interface user guide for
information on how to add these attributes. If you do not specify the
bus data type on the PROM module, data type propagation
determines the bounds and encoding for the bus ports connected to
the module.

TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=RAMS:identifier

where RAMS is the type of primitives to which X-BLOX propagates
the TNM attribute in the XNF file and where identifier is a user-
defined name. Refer to the section”Using XACT-Performance
Attributes” in the chapter “Creating an X-BLOX Design” for more
information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.

MEMFILE Syntax
A MEMFILE consists of two parts — the Header, which describes
characteristics of the PROM, and the Data portion, which defines the
contents of the PROM. The Data portion of the file begins as soon as
the DATA keyword is encountered. The MEMFILE is not case-
sensitive, except for ASCII data. X-BLOX will also read a MEMFILE
used by the MEMGEN program.
4-86 Xilinx Development System

PROM — Programmable Read-Only Memories
MEMFILE Header
The Header defines characteristics of the PROM, such as its size and
radix. Each of the following keywords must exist on a single line in
the MEMFILE. Continuation characters are not allowed in the
Header.

● TYPE (optional)

The Type definition defines the type of memory to be built. The
valid types that you can specify are ROM or PROM:

type ROM|PROM

● DEPTH

The DEPTH attribute defines the depth, in words, of the PROM.
Each word is "width" bits wide. The Depth is specified in decimal
notation, unless a radix definition precedes it. If the Depth is not
given in the MEMFILE, it will be taken from the DEPTH attribute
on the PROM symbol, or calculated from the BOUNDS and
ENCODING on the ADDR input to the PROM.

depth memory_depth

● WIDTH

The Width definition defines the width of the PROM, which is the
number of bits in each word. The width must be a positive, non-
zero, integer. The Width is specified in decimal, unless a radix
definition precedes it. If the Width is not specified in the
MEMFILE, it will be taken from the WIDTH attribute on the
PROM symbol (if present) and the BOUNDS of the bus attached
to the D_OUT pin.

width memory_width

● SYMBOL

The “symbol” keyword is obsolete and will be ignored. No
schematic symbols are generated by X-BLOX. The PROM symbol
serves as a schematic symbol for all sizes of PROMs.

● DEFAULT

The Default Definition defines the value of all PROM locations
that are not specified in the MEMFILE Data section. If no default
value is specified, all unspecified locations are zero. The default
X-BLOX Reference/User Guide 4-87

PROM — Programmable Read-Only Memories
definition uses the current radix, which is 10, unless a radix
definition was found.

● RADIX

You can specify numbers in X-BLOX with or without a radix
(base). Refer to the section, “Data Values,” of Chapter 1 for more
information. This keyword defines the radix (or base) of the
numbers following each radix definition in the MEMFILE.
Multiple radix definitions can appear in the header and affect all
non-radixed numbers up to, and including, the next Radix
definition. A radix definition affects the MEMFILE Header section
and the MEMFILE Data section.

The default radix for the MEMFILE Header section is 10. The
default radix for the MEMFILE Data section is 16.

radix integer

Comments

Comments must be preceded by a semicolon. You can start your
comment anywhere on the line. A semicolon at the end of the line
generates a blank comment as it does not affect the next line of
text.

 ; commentstring

Example

The following example illustrates the syntactical concepts defined
above:

; Defines the default PROM contents =10 10=10
Default 10
Radix 16; Defines default radix as 16 10
Depth 10; Defines the depth=10 16=16
Radix 10; Re-defines the default Radix=10 16=16
Width 12; Defines the width=12 16=18
4-88 Xilinx Development System

PROM — Programmable Read-Only Memories
MEMFILE Data Section
The data values specified in the MEMFILE Data Section define the
contents of the PROM. Data values are specified sequentially,
beginning with the lowest address in the PROM, as defined. The
address of a data value may be specified. The default radix of the
data values is 16. If Radix Definitions were given in the MEMFILE
Header Section, then the last such definition is the radix used in the
Data Section.

data data values

Data values may be separated by commas and/or white space.

Addressing

An address is specified as follows.

address :

For example, the following definition defines an 8-word PROM with
the contents (starting at address 0) 6,4, 5,5,2,7,5,3. Note that the
contents of locations 2, 3, and 6 were defined via the Default
Definition. Two starting addresses (4 and 7) are given.

depth 8
default 5
data 6,4,
4: 2, 7
7: 3

ASCII Data

You can specify ASCII data values by enclosing a string of characters
in double quotes. You can include a double quote by prefacing the
character with a backslash (\). A MEMFILE may contain both ASCII
strings and numeric values.

For instance, the following defines the contents of 16 memory
locations. Two ASCII BEL characters (7) are defined here — one
before the "R" and one after the two "l" characters.

data 7, "Ring the bell", 7, 0.
X-BLOX Reference/User Guide 4-89

PROM — Programmable Read-Only Memories
PROM Definition Procedure
The following sequence should be used when creating a PROM in the
X-BLOX environment:

1. Use a text editor to create and edit a Memory Definition File for
each different PROM in your design and to verify the proper
PROM data. Use the X-BLOX Data Values format, except the
default radix, which is hexadecimal for values after the DATA
keyword.

2. Insert the X-BLOX PROM symbol into the design using the
schematic editor.

3. Use the MEMFILE attribute to specify the name of the Memory
Definition File. This file will contain the data for the PROM. If the
Memory Definition File does not exist, this name is used by the
X-BLOX software to create a shell Memory Definition File when
the X-BLOX synthesis program is run. After X-BLOX creates a
shell file, X-BLOX halts so that you can return to step 1 to insert
the desired values into the file.

4. Run the X-BLOX synthesis software on the XNF file. The PROM
module is expanded and a shell created with the pointers set up to
the Memory Definition File containing the PROM data.
4-90 Xilinx Development System

PROM — Programmable Read-Only Memories
X-BLOX Reference/User Guide 4-91

SHIFT — Universal Shift Register
SHIFT — Universal Shift Register
The Universal Shift-Register module is a multifunction shift register
with predefined asynchronous or synchronous pre-load, and
dynamic synchronous parallel load.

Figure 4-33 The SHIFT Module Symbol

The Register can be synthesized in any combination of the
configurations listed below. Please refer to the figures shown at the
end of the descriptive section for this module for configuration
examples.

● Serial-in/serial-out shift register (FIFO or LIFO)

● Serial-in/parallel-out shift register

● Parallel-in/serial-out shift register

● Parallel-in/parallel-out shift register

PAR_IN

LOAD

MS_IN

LS_IN

RIGHT_LEFT

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

PAR_OUT

LS_OUT

MS_OUT

ASYNC_VAL=
SYNC_VAL=
STYLE=
ENCODING=
BOUNDS=

X1848

SHIFT

LOC=
LOC [i]=

USE_RLOC=
RLOC_ORIGIN=
RLOC_RANGE=
TNM=
4-92 Xilinx Development System

SHIFT — Universal Shift Register
The shifting style of the register can also be selected. The available
shifting styles include:

● Logical shift register

● Circular shift register

● Arithmetic shift register

By default, the SHIFT module is synthesized as an ALIGNED RPM in
XC4000 family parts if the PAR_OUT pin is connected. This means
that the registers will be placed in a column with the LSB in the
bottom-most CLB and the MSB in the upper-most CLB of the group.
PPR will then place this column of flip-flops at an appropriate place
on the die. This may not be desired if PPR is having trouble placing
the design. This behavior may be turned off by placing the
USE_RLOC=FALSE attribute on the symbol. If this behavior is
desired, and the PAR_OUT pin is not connected, then place the
USE_RLOC=TRUE attribute. If the SHIFT is taller than the die, the
column will fold to the right.

Table 4-15 Universal Shift Register Truth Table (for Logical
Style)

RT/
LFT

LOAD SYNC_
CTL

CLK_
EN

CLOCK ASYNC_
CTL

PAR_OUT MS_OUT LS_OUT

X X X X X H ASYNC_VAL ASYNC_VAL
 MSB

ASYNC_VAL
 LSB

X X X L ↑ L Qprev Qprev Qprev

X X H H ↑ L SYNC_VAL SYNC_VAL
MSB

SYNC_VAL
LSB

X H L H ↑ L PAR_IN PAR_IN MSB PAR_IN LSB

H L L H ↑ L Qprev /2 MS-IN LSB+1

L L L H ↑ L Qprev x2+
LS–IN

MSB-1 LS–IN
X-BLOX Reference/User Guide 4-93

SHIFT — Universal Shift Register
Figure 4-34 The Shift Register Data Flow Diagram

Inputs

PAR_IN

Parallel Data from the PAR_IN input port is loaded into the register
when the Parallel Load Enable is High during the active Clock
transition. When the PAR_IN pin is connected, the LOAD pin must
always be connected. When the PAR_IN pin is not connected, the
LOAD pin must be grounded or not connected.

If neither this PAR_IN port nor the PAR_OUT port are used for
parallel data transfers, the encoding and bounds must be defined on
this module or on a BUS_DEF module connected to the PAR_IN or
PAR_OUT ports.

LOAD

When the Parallel LOAD Enable input is High, the Parallel Data is
loaded into the Shift Register on the next active Clock transition.
When LOAD is Low, the Shift Register will respond to the Right/Left
control inputs. If LOAD is unconnected, the parallel data entry is not
synthesized.

Note: If PAR_IN is connected, LOAD must also be connceted;
otherwise, X-BLOX reports an error.

P Pn o

LS_IN

LS_OUT

MS_IN

MS_OUT

n o

• • •

• • •

X1941Q QQ
1

1P
4-94 Xilinx Development System

SHIFT — Universal Shift Register
MS_IN

The MSB serial-data input port provides the input for a right-shifting
MSB-to-LSB shift register, or converts serial data to parallel data
when the PAR_OUT output port is used. If unconnected, this port is
set Low (0) for logical shifts, set to the MSB for arithmetic shifts, or set
to the LSB for circular shifts. If the CIRCULAR STYLE of Shift register
is used, this MS_IN input cannot be connected.

Note: If both LS_IN and MS_IN are connected, RIGHT_LEFT must
also be connected or the MS_IN will not participate in the right shift.

LS_IN

The LSB serial-data input port provides the input for a left-shifting
LSB-to-MSB shift register, or converts serial data to parallel data
when the PAR_OUT output port is used. If unconnected, this port is
set to Low (0) for logical or arithmetic shifts, or set to the MSB for
circular shifts. If the CIRCULAR STYLE of Shift register is used, this
LS_IN input cannot be connected.

RIGHT_LEFT

The Right/Left Shift control input, when High, enables the left-to-
right shifting of data (from MSB to LSB); when Low, it enables the
right-to-left shifting of data (from LSB to MSB). Inverting this input
will reverse the active High/Low definition, but will not change the
MSB/LSB definitions nor the shift direction. If left unconnected, the
direction is determined by the connections on LS_IN and MS_IN. If
only LS_IN is connected, the default direction is Left Shift. If only
MS_IN is connected, or neither LS_IN or MS_IN is connected, the
default is a Right Shift.

CLK_EN

When the Clock Enable input is High, the load and shift actions take
place on the active Clock transition. When Clock Enable is Low, the
register contents are unaffected by the active Clock transition (hold).
If Clock Enable is left unconnected, the Clock is always enabled.
X-BLOX Reference/User Guide 4-95

SHIFT — Universal Shift Register
CLOCK

The Clock input, when enabled, either loads the selected data into the
register or performs a shift on the rising (positive) edge. An active
falling (negative) edge can be used by connecting an inverter to the
Clock input. The Clock must be connected.

ASYNC_CTRL

The Asynchronous Control input, when High, loads the value of the
ASYNC_VAL attribute into the shift register independently from the
Clock. If unconnected, this function is not synthesized.

SYNC_CTRL

When the Synchronous Control Enable input is High, the value of the
SYNC_VAL attribute will be loaded into the shift register during the
next active Clock transition. The SYNC_CTRL has priority over the
LOAD input if both are High at the same time. If unconnected, this
function is not synthesized.

Outputs

PAR_OUT

The Parallel Data output port contains the current value of the
register. The data type of the PAR_OUT port is the same as the
PAR_IN port. If unconnected, then one of the MS_OUT or LS_OUT
outputs must be used. If this port is connected, X-BLOX synthesizes
the Shift module as an RPM.

LS_OUT

The LSB serial-data (right-shift) output port is used for shifting or
parallel-to-serial data conversions. LS_OUT is equal to the LSB of the
shift register.

MS_OUT

The MSB serial-data (left-shift) output port is used for shifting or for
parallel-to-serial data conversions. MS_OUT is equal to the MSB of
the shift register.
4-96 Xilinx Development System

SHIFT — Universal Shift Register
Warning: At least one of the PAR_OUT, MS_OUT or LS_OUT output
ports must be connected.

Attributes

ASYNC_VAL

The ASYNC_VAL is the predefined value that is loaded into the shift
register when the ASYNC_CTRL input is High. This value will also
be loaded into the register at power up, whether the ASYNC_CTRL is
connected or not. If not specified, a default value of “zero” is used.

SYNC_VAL

The SYNC_VAL is the predefined value that is loaded into the shift
register, when the SYNC_CTRL input is High during the active Clock
transition. If not specified, a default value of “zero” is used.

STYLE

The shifting style can be chosen from the following table. If no style is
specified, the default shifting style is LOGICAL.

Table 4-16 SHIFT — Shifting Styles

ENCODING

You can use this parameter to define the encoding of the Q_OUT
port. The available encodings are defined in the “Bus Data Types”
section of the chapter “Creating an X-BLOX Design.” All the
encodings on each data path must be the same.

STYLE Description

LOGICAL •Shifts in a ‘0’ at the MSB during a right-shift
when MS_IN is not connected.
•Shifts in a ‘0’ at the LSB during a left-shift when
LS_IN is not connected.

CIRCULAR MS_IN and LS_IN are not allowed.
ARITH The MSB is the sign bit. X-BLOX issues a warning

if MS_IN is used with a possible right-shift,
because the sign bit could change.
X-BLOX Reference/User Guide 4-97

SHIFT — Universal Shift Register
BOUNDS

The BOUNDS attribute defines the precision (width) of the
XBLOX_BUS by specifying the MSB and LSB of the bus. Any pair of
numbers can be used, as long as the difference of the indices, plus
one, equals the width of the bus. See the “Bus Data Types” section of
the chapter “Creating an X-BLOX Design” for details. This parameter
is optional.

Note: The ENCODING and BOUNDS attributes do not automatically
appear on this module. Refer to your interface user guide for
information on how to add these attributes. If you do not specify the
bus data type on the SHIFT module, data type propagation
determines the bounds and encoding for the bus ports connected to
the module.

LOC

The LOC attribute specifies the pin location for a single input pad-
buffer pair, for example: LOC=A1, or the attribute specifies the
placement of all IOBs on a specific edge or corner of the chip, for
instance, LOC=TL for the top-left corner of the chip.

LOC[i]

The LOC[i] attribute specifies the pin locations for multiple input
pad-buffer pair locations, for example: LOC[2]=A10, LOC[3]=P15.

USE_RLOC={TRUE|FALSE}

If this attribute is set to false, RLOCs are not generated. If no
PAR_OUT pin is connected, but RLOCs are desired, set this attribute
to TRUE. RLOCs are produced by default if the PAR_OUT pin is
connected.

RLOC_ORIGIN

Position the MSB at a particular FPGA location. Do not specify a
location that does not allow enough room for the SHIFT register. That
is, if the SHIFT register is connected to a bus that is 10 bits wide, the
RLOC_ORIGIN must be at least 5 CLBs from the bottom of the die.
You can always specify an RLOC_ORIGIN, at R1 (top row) of the die.
4-98 Xilinx Development System

SHIFT — Universal Shift Register
RLOC_RANGE

Use this attribute to specify the range (rectangular area) of FPGA
locations that are allowed for the generated RPM. Refer to the chapter
“Generating Relationally Placed Macros” for more information.

TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=FFS:identifier

where FFS is the type of primitives to which X-BLOX propagates the
TNM attribute in the XNF file and where identifier is a user-defined
name. Refer to the section”Using XACT-Performance Attributes” in
the chapter “Creating an X-BLOX Design” for more information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.

Figure 4-35 Typical Serial-in/Parallel-out Shift Register

PAR_IN

LOAD

MS_IN

LS_IN

RIGHT_LEFT

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

PAR_OUT

LS_OUT

MS_OUT

ASYNC_VAL= 16#50#

X4621
SYNC_VAL= 16#20#

STYLE= LOGICAL

OUTPUTS

INPUTS

ENCODING=

BOUNDS=

FLOAT_VAL=

ENCODING= UBIN

BOUNDS= 7:0

FLOAT_VAL=

SHIFT

SERIAL_DATA_IN

ASYNC_CONTROL

SYNC_CONTROL

PARALLEL_DATA_OUT
X-BLOX Reference/User Guide 4-99

SHIFT — Universal Shift Register
Figure 4-36 Typical Serial-in/Serial-out Shift Register

Figure 4-37 Typical Parallel-in/Serial-out Shift Register

PAR_IN

LOAD

MS_IN

LS_IN

RIGHT_LEFT

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

PAR_OUT

LS_OUT

MS_OUT

ASYNC_VAL= 16#10#

X4622
SYNC_VAL= 16#20#

STYLE= LOGICAL

OUTPUTS

ENCODING=

BOUNDS=

FLOAT_VAL=

SHIFT

SERIAL_DATA_IN

BUS_SIZE

ASYNC_CONTROL

SYNC_CONTROL

INPUTS

ENCODING=

BOUNDS=

FLOAT_VAL=

SERIAL_DATA_OUT

ENCODING=UBIN

BOUNDS= 5:0

XBLOX_BUS

BUS_DEF

CLOCK

PAR_IN

LOAD

MS_IN

LS_IN

RIGHT_LEFT

ASYNC_CTRL

SYNC_CTRL

CLK_EN

CLOCK

PAR_OUT

LS_OUT

MS_OUT

ASYNC_VAL= 16#10#

X4433
SYNC_VAL= 16#20#

STYLE= LOGICAL

OUTPUTS

ENCODING=

BOUNDS=

FLOAT_VAL=

SHIFT

LOAD_CONTROL

PAR_DATA_IN

ASYNC_CONTROL

SYNC_CONTROL

INPUTS

INPUTS

BOUNDS=

FLOAT_VAL=

ENCODING=UBIN

ENCODING=

BOUNDS=7.0
SERIAL_DATA_OUT

CLOCK
4-100 Xilinx Development System

SHIFT — Universal Shift Register
X-BLOX Reference/User Guide 4-101

SLICE — SLICE of a Bus
SLICE — SLICE of a Bus
The SLICE module is used to extract a portion of a larger bus or to
collect smaller buses together into a larger bus. The SLICE module
does not contain any active circuitry; it merely re-labels groups of
lines for the convenience of the user. Any contiguous portion of the
MAIN bus can be extracted to form the SUB bus by using the SLICE
attribute. The SLICE module works the same way that slices work in
VHDL.

Figure 4-38 The Slice Module Symbol

Connections
These two ports can be connected to inputs, outputs or bidirectional
X-BLOX buses connected to ports on other X-BLOX modules. Because
the SLICE module has no active circuitry, there is no real Input or
Output.

MAIN

The MAIN port is defined as the larger of the two connected buses. A
portion of this bus, specified by the SLICE attribute, will become the
SUB bus.

SUB

The SUB bus is that portion of the MAIN bus defined by the SLICE
attribute.

X1858

MAIN SUB

SLICE=

SUB=

SUB_STARTS_AT=

SLICE
4-102 Xilinx Development System

SLICE — SLICE of a Bus
Attributes

SLICE

The SLICE attribute specifies the BOUNDS (MSB:LSB) of that portion
of the MAIN bus that is mapped to the SUB bus.

SUB_STARTS_AT

The SUB_STARTS_AT attribute defines the lower BOUND (LSB) of
the SUB-bus label, thus allowing the indices of the SUB bus to be
different from the indices of the SLICE of the MAIN bus. The upper
BOUND is determined either by the width of the SLICE as
determined by the SLICE attribute value, or by the SUB attribute. If
not specified, the lower BOUND of the SUB-bus index is zero.

SUB

The SUB attribute defines the upper and lower BOUNDS of the SUB
bus, thus allowing the indices of the SUB bus to be different from the
indices of the SLICE of the MAIN bus. If not specified, the upper and
lower BOUNDS of the SUB bus are determined from the
SUB_STARTS_AT attribute.
X-BLOX Reference/User Guide 4-103

SLICE — SLICE of a Bus
.

Bus A — is a 16-element bus with bounds 15:0.

Bus LOW — is an 8-element bus with bounds 7:0 and represents
the same elements as A[7:0].

Bus HIGH — is an 8-element bus with bounds 7:0 and represents
the same elements as A[15:8].

Buses MID and MID2 — are 4-element buses with bounds 11:8
and represent the same elements as A[11:8].

Figure 4-39 Examples of Three Types of SUB Buses Sliced from
One MAIN Bus

X1937

MAIN
SLICE

SUB LOW 7:0

15:0
A

SLICE=7:0

SUB=
SUB_STARTS_AT=

MAIN
SLICE

SUB HIGH 7:0

SLICE=15:8

SUB=7:0

SUB_STARTS_AT=

MAIN
SLICE

SUB MID 11:8

SLICE=11:8

SUB=

SUB_STARTS_AT=8

MAIN
SLICE

SUB MID2 11:8

SLICE=11:8

SUB=11:8

SUB_STARTS_AT=
4-104 Xilinx Development System

SLICE — SLICE of a Bus
X-BLOX Reference/User Guide 4-105

SRAM — Static Random-Access Memory
SRAM — Static Random-Access Memory
The SRAM module synthesizes a read-write Static Random-Access
Memory. The SRAM can be of any size that will fit on a chip. The
width of the SRAM is specified by the BOUNDS definition of the bus
attached to either the D_IN port or the D_OUT port. The depth is
specified by the DEPTH attribute of the SRAM or the data type of the
Address signal. The data type of the Address port determines the
maximum and minimum addressable locations, and can be greater
than, equal to, or less than the DEPTH attribute. Only the addressable
locations that are within the valid DEPTH will be synthesized.The
word locations in the SRAM are indexed based on the data type of the
signal attached to the ADDR port.

Note: The SRAM module is synthesized in different ways depending
on the target architecture. On the XC3000A/L, XC3100A, and
XC4000D architectures, flips-flops are used. Flip-flop data is stored
with an edge-triggered Write-Enable. RAM data is stored with a
level-triggered Write-Enable. On the XC4000/A/H architecture, CLB
RAM is used. The XC4000/A/H RAM contains 32 bits per CLB. The
XC3000A/L and XC3100A CLB can store only 2 bits per CLB.

Figure 4-40 The SRAM Module Symbol

Inputs

D_IN

D_IN is the Data Input port. The data type of this port is the same as
the D_OUT port.

D_IN

WR_EN

ADDR

D_OUT

ADDR_
ERROR

X1846

SRAM

DEPTH=

ENCODING=

BOUNDS=

TNM=
4-106 Xilinx Development System

SRAM — Static Random-Access Memory
ADDR

The Address port selects the word that appears on the Data Output
port and the location where new data is written. The Address port
determines the maximum depth of the SRAM if the DEPTH attribute
is not specified. The Address port cannot be connected to a bus with
ENCODING=ONE-HOT.

WR_EN

When the Write Enable input is High, the data on the D_IN port is
written into the selected address location. When Write Enable is Low,
no new data can be written into the SRAM.

Outputs

D_OUT

The Data Output port reflects the addressed word of the SRAM. The
width of the D_OUT port is set by the BOUNDS of the signal
attached to either this port or the signal connected to the D_IN port,
and defines the word width of the SRAM. If an out-of-bounds word
is addressed, the D_OUT port is undefined and the ADDR_ERROR
output is High.

ADDR_ERROR

The Address Error (out-of-bounds) output is High, if the value on the
Address port is beyond the addressable locations for the SRAM.
Please refer to the section “Out-of-Range Indicators” in the chapter
“Creating an X-BLOX Design” for more information.

Attributes

DEPTH

The DEPTH attribute represents the number of locations to be used in
the SRAM, addressed from DEPTH 0 to DEPTH –1.

If the DEPTH attribute is not specified, then the maximum and
minimum addressable locations are determined from the data type of
the signal attached to the ADDR port.
X-BLOX Reference/User Guide 4-107

SRAM — Static Random-Access Memory
ENCODING

You can use this parameter to define the encoding of the D_OUT port.
The available encodings are defined in the “Bus Data Types” section
of the chapter “Creating an X-BLOX Design.” All the encodings on
each data path must be the same.

BOUNDS

The BOUNDS attribute defines the precision (width) of the
XBLOX_BUS by specifying the MSB and LSB of the bus. Any pair of
numbers can be used, as long as the difference of the indices, plus
one, equals the width of the bus. See the “Bounds” section of the
chapter “Creating an X-BLOX Design” for details. This parameter is
optional.

Note: The ENCODING and BOUNDS attributes do not automatically
appear on this module. Refer to your interface user guide for
information on how to add these attributes. If you do not specify the
bus data type on the SRAM module, data type propagation
determines the bounds and encoding for the bus ports connected to
the module.

TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=RAMS:identifier

where RAMS is the type of primitives to which X-BLOX propagates
the TNM attribute in the XNF file and where identifier is a user-
defined name. Refer to the section”Using XACT-Performance
Attributes” in the chapter “Creating an X-BLOX Design” for more
information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.
4-108 Xilinx Development System

SRAM — Static Random-Access Memory
CLB Utilization
The following table shows CLB utilization for 1-bit wide SRAMs for
the types of parts that X-BLOX supports for different SRAM depths.
To derive the CLB utilization for n-bit wide SRAMs, multiply the CLB
utilization for the 1-bit wide SRAM by n.

Table 4-17 CLB Utilization

In the XC3000A/XC3100A/XC4000D families, flip-flops are used
because these devices do not contain RAM that can be rewritten at
non-configuration times.

Depth XC3000A XC4000D XC4000/A/H

 4 6.5 6.5 0.5

 8 13.5 13 0.5

16 35.5 34 0.5

32 103 84 1

48 179 126 3

64 238.5 168 3.5
X-BLOX Reference/User Guide 4-109

TRISTATE — 3-State Buffer
TRISTATE — 3-State Buffer
The 3-State (TRISTATE) module synthesizes internal non-inverting
3-State buffers for creating bidirectional or multiplexed data buses.

Figure 4-41 The 3-State Module Symbol

Inputs

I

The Input data port has the same width and data type as the Output
port.

OE

When the Output Enable (OE) input is Low, the Input data passes
non-inverted to the Output. When the OE is High, the Output is high-
impedance “off”. This OE input must be connected to a signal line.
An active-High Output Enable can be synthesized by adding an
inverter to this line (equivalent to the existing active-High 3-State
buffer Enable used on XC4000).

Outputs

O

The Output port reflects the Input port when the Output Enable is
Low. When the Output Enable is High, the Output is high-impedance
“off”. Although 3-State Output ports can be tied together, only one
port at a time can be active. The Output data port has the same size
and encoding as the Input port.

X1857

TRISTATE
OE

I O

ACTIVE
LOW

FLOAT_VAL=

LOC=

LOC [i]=

TNM=

RLOC_ORIGIN=
4-110 Xilinx Development System

TRISTATE — 3-State Buffer
Attributes (Optional)

FLOAT_VAL

You can use a FLOAT_VAL attribute to add pull-up resistors to 3-
State Buffer Outputs that are connected to on-chip buses. This is an
optional parameter for this module, and you must add it from the
schematic editor. The allowed specifications are one resistor
(FLOAT_VAL = PULLUP) or two resistors (FLOAT_VAL =
PULLUP_D). The double resistor (PULLUP_D) draws more power
than a single resistor, but it supports faster transition times. (See the
XC4000 Data Sheet in The Programmable Logic Data Book for timing
details).

LOC

The LOC attribute specifies the pin location for a single input/output
pad-buffer pair, for example: LOC=A1, or the attribute specifies the
placement of all IOBs on a specific edge or corner of the chip, for
instance, LOC=TL for the top-left corner of the chip.

LOC[i]

The LOC[i] attribute specifies the pin locations for multiple input/
output pad-buffer pair locations, for example: LOC[6]=A11,
LOC[7]=P9.

TNM

Use the TNM attribute to specify timing requirements.

You first place a TNM attribute on this module to identify the start or
end point of a path using the following syntax:

TNM=PADS:identifier

where PADS is the type of primitives to which X-BLOX propagates
the TNM attribute in the XNF file and where identifier is a user-
defined name. Refer to the section”Using XACT-Performance
Attributes” in the chapter “Creating an X-BLOX Design” for more
information.

You then use all the TNM attributes defined on the schematic in a
TIMESPEC statement to specify delay requirements.
X-BLOX Reference/User Guide 4-111

TRISTATE — 3-State Buffer
RLOC_ORIGIN

Position the upper left corner of the RPM at a particular FPGA
location. Do not specify a location that does not allow enough room
for the TRISTATE. Refer to the section “Computing the Number of
CLBs” in the chapter “Understanding X-BLOX Operations” for more
information.
4-112 Xilinx Development System

Chapter 5
X-BLOX-Generated Relationally Placed Macros

The XC4000 series contains fast-carry logic in its CLBs. The use of the
fast-carry logic results in circuits that are up to four times faster and
twice as dense. Fast-carry logic uses dedicated routing and is,
therefore, restricted to columns on the XC4000 series. X-BLOX
synthesizes relationally placed macros (RPMs) from the arithmetic
X-BLOX modules (ADD_SUB, INC_DEC, ACCUM, and COUNTER
modules as well as the COMPARE module when appropriate) to take
advantage of the carry logic.

RPMs allow PPR to place related groups of logic in one step. To take
advantage of this feature, X-BLOX also generates RPMs for the
DATA_REG and SHIFT modules provided the PAR_OUT port on
these modules is connected or you have specified the USE_RLOC
attribute to force the creation of an RPM, although these modules do
not use carry logic. This feature forces the flip-flops generated by
X-BLOX modules to be aligned on the chip.

When an RPM uses more CLBs than are available in a single column
of the FPGA, X-BLOX synthesizes the RPM so that the logic bends at
the top or bottom of the CLB column. X-BLOX knows when to
introduce bends in the RPM so that it will fit on the FPGA device that
you have selected.

For example, a 32-bit ADD_SUB requires 16 CLBs plus 1 to start the
chain. This is larger than a 4005 die, which is only 14 CLBs high. This
RPM starts at the bottom of the die and turns to the right and takes
up three CLBs from the top in the next column.

Implementation Styles for Arithmetic Modules
The STYLE attribute determines the placement of bits in the CLBs of
an RPM.
X-BLOX Reference/User Guide — 0401315 01 5-1

X-BLOX Reference/User Guide
STYLE=ALIGNED
This style uses the first CLB only to initialize the carry logic and puts
the first two bits of the arithmetic function in the second CLB.
Although this requires an extra half-CLB at the bottom of the
function, it gives a more logical pairing of bits. Note that only the
carry-logic is used in this first CLB and that PPR can still use the
function generators and flip-flops in this CLB for non-RPM logic.

STYLE=UNALIGNED
This style initializes the carry chain in the first bit of the CLB, (only
one sum bit is produced in this CLB) and puts two bits in each
succeeding CLB. Although this method is the most space-efficient, it
results in an odd pairing of bits. To make an UNALIGNED RPM, use
the UNALIGNED STYLE attribute.

By default, all relationally placed macros created by X-BLOX follow
the ALIGNED scheme. This default ensures that all RPMs in a design
are consistent with the Xilinx Unified Libraries macros. The
important factor is that all RPMs in a design be the same style and
Xilinx’s recommendation is that they all be ALIGNED.

If there are more than four inputs required to compute each output
bit, the RPM needs to be more than one column wide. A COUNTER
with UP_DN, D_IN, and LOAD is such an RPM since each bit
requires:

● Its current value

● The carry-in from the previous bit

● UP_DN

● LOAD

● D_IN

Such an RPM is structured with the carry chain in the first column
and the registers and load logic in the second column. If the carry
chain is longer than the die, the carry chain travels across the top of
the die to skip over the register columns. Be aware that COUNT_TO
on BINARY COUNTERS takes up one CLB input if UP_DN is not
connected, and two if it is connected.
5-2 Xilinx Development System

X-BLOX-Generated Relationally Placed Macros
FAST3KA and RIPPLE (XC3000A/L and XC3100A)
The STYLE=FAST3KA and STYLE=RIPPLE are two implementation
styles for the XC3000A/L and XC3100A architectures providing
different speed and area trade-offs. Each style uses CLBs for the carry
logic in a different way.

The FAST3KA style uses 50 percent more space than the RIPPLE style
but is 30 percent faster than the RIPPLE style after routing.

The RIPPLE style is smaller and slower than the FAST3KA
implementation style. RIPPLE is also available on the XC4000. It is
easier for PPR to place, but it consumes more CLBs and is much
slower than the ALIGNED or UNALIGNED styles.

Controlling the Placement of RPMs
You can control how PPR places RPMs synthesized by X-BLOX
modules using the attributes discussed below.

Note: The RLOC, U_SET, and HU_SET attributes are not supported
on any X-BLOX module in this release.

USE_RLOC={TRUE|FALSE}
This attribute is recognized in all XC4000 families by the ADD_SUB,
ACCUM, INC_DEC, SHIFT, and DATA_REG modules and by the
COUNTER module only if STYLE=BINARY.

● When the USE_RLOC attribute is set to FALSE, the XC4000 carry
logic is not used, and only gates are generated.

● When the USE_RLOC attribute is set to TRUE, the carry logic is
used where appropriate. The default is TRUE.

RLOC_ORIGIN=value
This attribute determines the absolute position (origin) of an RPM.
Without an RLOC_ORIGIN attribute, the RPM synthesized for an
X-BLOX module can be placed in any area of the FPGA, as long as the
shape and contents of the RPM remain unchanged. An
RLOC_ORIGIN specifies the absolute location of the upper-left
X-BLOX Reference/User Guide 5-3

X-BLOX Reference/User Guide
corner of an RPM. Use the following syntax to specify an RLOC
origin:

RLOC_ORIGIN=RnCn

where Rn and Cn denote the row and column numbers of the FPGA
grid array. These numbers must be positive, non-zero integers.

RLOC_ORIGIN is recognized in XC4000 and XC4000A parts by the
ADD_SUB, ACCUM, INC_DEC, DATA_REG, and SHIFT modules
and by the COUNTER module only if STYLE=BINARY.

It is an error to give a location for an RLOC_ORIGIN such that the
carry chain is traveling upward (the default) and must wrap at the
RLOC_ORIGIN point, but that point is not at the top of the die. See
the section “Restrictions on the RLOC_ORIGIN” in Chapter 6.

RLOC_RANGE=value
You can attach this attribute to certain X-BLOX symbols to specify the
range (rectangular area) of FPGA locations that are allowed for the
synthesized RPM. Unlike the RLOC_ORIGIN attribute, which fixes
each member of the RPM at an absolute location, the RLOC_RANGE
attribute allows the members of the RPM to be placed anywhere
within the rectangular range, as long as the relative location
constraints generated by X-BLOX are maintained.

Specify the rectangular region using the following syntax:

RLOC_RANGE=RmCm:RnCn

where Rn and Cn designate row and column numbers within the
FPGA of two opposite corners of the rectangular region. m and n can
be any non-zero, positive integers, or the wildcard character (“*”).
The wildcard character can be associated with either the row or the
column on both sides of the range separator character, “:” (colon). It
cannot be used for the row character on one side and the column
character on the other.

This attribute is recognized in the XC4000/XC4000A parts by only
the ADD_SUB, ACCUM, COMPARE, DATA_REG, INC_DEC, SHIFT
modules and by the COUNTER module only if STYLE=BINARY. The
RLOC_RANGE attribute is passed to the generated logic, but no error
checking is performed by X-BLOX. XNFPrep, which runs after
X-BLOX, reports any errors.
5-4 Xilinx Development System

Chapter 6
X-BLOX Reference/User Guide — 0401315 01 6-1

Understanding X-BLOX Operations

After entering your design, you must process your design either to
implement the design or to prepare for functional simulation. Refer
to the chapter “Processing Your Design” for specific information on
how to do these tasks. This chapter explains what goes on behind the
interface program shell and is intended to provide you with
information only on what X-BLOX does. In particular, it describes the
special optimization features and synthesis capabilities offered by the
X-BLOX software.

The chapter is structured as follows:

● X-BLOX Implementation Flow lists the different steps used by the
Xilinx software to implement an X-BLOX design.

● Data Propagation explains how X-BLOX propagates the bus data
types.

● Architectural Synthesis and Optimization describes the different
types of optimizations that are performed by X-BLOX as it
synthesizes your design.

● Computing the Number of CLBs discusses how X-BLOX places
RPMs on the FPGA chip.

● Synthesizing Your Design for Simulation discusses how X-BLOX
synthesizes your modules, expands your buses, and synthesizes
simulation models for X-BLOX modules in your design.

X-BLOX Implementation Flow
When you implement a design, that is, you run XMake to place and
route the design, the program flow shown in Figure 6-1 is used to
process your design.

X-BLOX Reference/User Guide
1. In the first step of the design flow, design entry, you use X-BLOX
modules and other components from the XC3000A, XC3000L,
XC3100A, or XC4000 library depending on the family that is the
target of your design.

2. The netlist obtained from the design entry tool is translated into a
Xilinx Netlist File (XNF) by the netlist-to-XNF translator, which is
based on your design-entry tool.

3. The XNFMerge program integrates all the XNF files into one (if
there is more than one file), resolves all RLOC and TSPEC
attributes, and writes out an XFF file. It also writes a report file,
called the MRG file.

4. XNFPrep performs a pre-X-BLOX DRC check, trims out all
unused or disabled logic, writes an XTG file, which is an XNF file
with a .xtg extension, and a report file called PRX file.

5. X-BLOX reads the XNF file (with the .xtg extension) containing the
X-BLOX modules and their attributes, propagates the data type
(bus size and encoding information) throughout the design,
determines operating modes for the modules, synthesizes the
modules, creates new relationally-placed macros (RPMs),
performs architecture-specific optimization, and creates a
standard XNF output file called an XG file and a report file called
the BLX file.

6. XNFPrep performs post-X-BLOX DRC checking, trims out the
unused or disabled logic connected to the X-BLOX synthesized
logic, creates an XTF file, which is an XNF file with a .xtf
extension, and a report file called the PRP file.

7. For XC3000A/L and XC3100A designs, run XNFMAP after
XNFPrep. XNFMAP creates a MAP file. The report file is called a
CRF file.

8. Finally, PPR partitions, places, and routes the design, creating an
LCA file on which you run Makebits to create a BIT file that can be
downloaded. It also creates a report file called RPT file.

For information on how to enter X-BLOX designs, refer to your
schematic or synthesis interface user guide. Continue with the next
sections for information on design optimization and space utilization
with X-BLOX, and for information on how to prepare for simulation.
6-2 Xilinx Development System

Understanding X-BLOX Operations
Figure 6-1 Implementation and Generation of a Bitstream File

X4442

X-BLOX
Library

XC4000
XC3000
Library

Design Entry

Netlist to
XNF Translator

Netlist
File

XNF File

XNFMerge

XNFMerge Report File

XNFPrep, Pre X-BLOX
Report File

X-BLOX Report File

P
e

rfo
rm

e
d

 A
u

to
m

a
tica

lly b
y X

M
a

ke
.XNFPrep Post X-BLOX

Report File

PPR Report File

XFF File

XNFPrep

XTG File

X-BLOX

XG File

XNFPrep

XTF File

PPR XNFMAP

XC3000A/L &
XC3100A

LCA File

MakeBits

Download

BIT File

MRG

PRX

BLX

PRP

RPT

MAP

CRF
X-BLOX Reference/User Guide 6-3

X-BLOX Reference/User Guide
Data Type Propagation
During schematic entry, you specify the bus data type only once for
all the buses in the same data path and you enter buses as single nets;
therefore, all the signals in the buses might not be known to your
schematic capture package or your simulator before the X-BLOX
program is run.

For this reason, when X-BLOX processes your design, it must
propagate the bus data type information to each bus in the same data
path so that all these buses have the same encoding and width. The
data type bounds determines bus widths, and the data type encoding
determines operating modes for some of the X-BLOX modules.

Architectural Synthesis and Optimization
X-BLOX does several things that are architecture specific so that
higher speed and density of your designs can be achieved. These
optimizations occur automatically during design implementation
unless you disable them. The following paragraphs describe the
optimizations and how to counteract them if you need to.

Merging Flip-Flops into the I/O Blocks
Most of the Xilinx FPGA architectures have flip-flops in the I/O
Blocks (IOBs). The IOB flip-flops do not have the same functionality
as the flip-flops in the CLBs, but under most circumstances, the IOB
flip-flops can be substituted for the CLB flip-flops. The X-BLOX
software moves the flip-flops from the internal core to the I/O blocks
when it is applicable. The use of these flip-flops instead of the ones in
the CLBs can have the following benefits:

1. Using fewer flip-flops in CLBs may mean fewer CLBs are needed,
and you can use a smaller, less expensive FPGA device or you can
use more logic or flip-flops on your device.

2. The setup and hold times between I/O pads and flip-flops in IOBs
are shorter than the setup and hold times between I/O pads and
CLB flip-flops.

3. The delay from an output flip-flop to the I/O pad is shorter than
the delay from a CLB flip-flop to a pad.
6-4 Xilinx Development System

Understanding X-BLOX Operations
X-BLOX evaluates the potential movement of a flip-flop from a CLB
into an IOB. It checks whether the flip-flop is one of the primitive flip-
flops, such as FD and FDCE, whether it is part of a macro, or whether
it is synthesized from an X-BLOX module, such as DATA_REG or
SHIFT for example.

X-BLOX automatically moves flip-flops from the CLBs into the IOBs
if the following conditions are met:

1. Flip-flops are connected to an I/O symbol and only an I/O
symbol. This can be an X-BLOX INPUTS, OUTPUTS, or
BIDIR_IO symbol, an IBUF, OBUF, or OBUFT symbol.

2. The CLB flip-flop does not use its clock-enable pin. Indeed, use of
this pin prevents the flip-flop from being implemented into an
IOB flip-flop. (This happens because IOB flip-flops do not have a
clock-enable pin.)

3. The IOBs have input or output flip-flops. The XC4000H
architecture has twice as many IOBs as the XC4000 architecture,
but does not have input or output flip-flops in the smaller IOBs.

4. There is no CLB External net attribute (X flag) on the signal
between the flip-flop and the I/O symbol.

5. The SYNC_CTRL and ASYNC_CTRL pins are not connected to
the DATA_REG or SHIFT module.

Note: If a flip-flop is connected to a TRISTATE output buffer, and the
above conditions have been met, then a TRISTATE output flip-flop
will be used.

To keep a flip-flop from being implemented in the I/O Blocks, make
sure that one of the above conditions is not met. For example, the
Save-Signal attribute can be placed on the signal between the I/O
symbol and the flip-flop to prevent the flip-flop from being moved to
an IOB.

Global Buffers
X-BLOX examines your circuit, looking for high-fanout nets
connected to clock, clock enable, and set/reset pins, and attempts to
use the high-speed global primary and secondary buffers. The use of
these global buffers can significantly reduce delays and routing
X-BLOX Reference/User Guide 6-5

X-BLOX Reference/User Guide
congestion and can determine whether your circuit completes the
routing phase and runs at the desired speed.

If your design already uses a global primary or secondary buffer, the
signals that use the buffers are compared to other high-fanout signals
in your design. If there are other nets with higher fanout, they may
be placed on the global buffer instead of the signals originally placed
on the global buffer.

To prevent X-BLOX from replacing the signals already in the global
buffers with other high-fanout signals, place the attribute
LOC=LOCKED on the global buffer. However, designs often change,
and a high-fanout net might easily become a net with lower fanout
during schematic entry. As a result, if you lock a Global Buffer onto a
particular signal, you need to examine your circuit carefully after
editing it to ensure that the net still warrants the Global Buffer.

Global Set-Reset
The XC4000 family chips have a Global Set-Reset line that goes to all
flip-flops, both in the CLBs and in the IOBs. If all the flip-flops in your
design are set or reset by the same signal, you can use the Global Set-
Reset line. The Global Set-Reset line is a high-speed, no-skew,
dedicated net on the XC4000 series. By using this net to set or reset
your flip-flops, you can reduce delays as well as routing congestion
significantly. Use of this net might determine whether your circuit
completes the routing phase and runs at the desired speed. See The
Programmable Logic Data Book for more details on the architecture.

Relationally Placed Macros
The XC4000 series contains fast-carry logic in its CLBs. The use of the
fast-carry logic over CLB logic will result in circuits that are up to four
times faster, and twice as dense. Fast-carry logic uses dedicated
routing and is, therefore, restricted to columns on the XC4000 series.
Typically, two bits of arithmetic logic can occupy a single CLB.
X-BLOX synthesizes relationally placed macros (RPMs) from the
arithmetic X-BLOX modules to take advantage of the carry logic.

When more CLBs are used than are in a single column on the FPGA,
X-BLOX synthesizes the arithmetic logic RPM so that it bends at the
top or bottom of CLB column(s). X-BLOX knows when to introduce
bends in the RPM so that it will fit on the FPGA device that you have
6-6 Xilinx Development System

Understanding X-BLOX Operations
selected. For example, it is possible for X-BLOX to implement a large
COUNTER that spans all of the columns of the FPGA.

Some X-BLOX modules that produce RPMs, such as the Loadable
Up/Down COUNTER, might require more than one-half of a CLB
per bit. Only up to 4-input functions can be implemented in half of a
CLB. When all of the input pins of a function generator are used, a 5-
input or larger function might be required. Although this function
could be implemented in a single CLB, the fast-carry logic would be
sacrificed. Instead, when more than one-half of a CLB is needed, the
proper RPM is synthesized using multiple, adjacent columns.
Typically, this results in two halves of adjacent CLBs being used for a
single bit so that the fast-carry logic can still be used. The logic is
synthesized for the fastest throughput.

Computing the Required Number of CLBs
This section explains how X-BLOX calculates the number of CLB
rows and columns required to implement your RPMs. These methods
can be used to estimate the space taken by RPMs. The section is
divided in two parts. The first part tells you how to calculate the
required number of CLB rows, and the second part tells you how to
calculate the required number of CLB columns. In the following
discussion, the number of rows and columns are calculated
independently of the size of the target chip. If the number of rows
required is larger than what is available on the target chip, X-BLOX
will fold an RPM in a serpentine fashion into multiple columns. Each
of these columns will be as wide as the calculation below predicts.

Computing the Number of Rows
You can compute the number of CLB rows required for an
ADD_SUB, ACCUM, or COUNTER module using the following
formulas:
X-BLOX Reference/User Guide 6-7

X-BLOX Reference/User Guide
Table 6-1 Equations for Computing Number of CLB Rows

where CEILING (x) is the closest integer greater than or equal to x.

The “1” in the equation for ALIGNED comes from the fact that the
ALIGNED style must use one CLB to start the carry chain whether
the C_IN pin is used or not. The “1” in the equation for UNALIGNED
comes from the one-half CLB used by the UNALIGNED style to start
the carry chain.

Remember that only the carry logic and not the function generators is
needed to start the carry chain. PPR uses the unused function
generators underneath the carry logic used to start the carry chain.

Example

The ADD_SUB shown in Figure 6-2 is connected to a bus with
BOUNDS 10:0, which is an 11-bit bus. We also have the C_OUT and
OVFL ports connected. This gives us a total of 13 bits output from this
RPM. As no style was specified, the default style of ALIGNED is
used. As a result, the number of CLBs required for this RPM is 1 +
CEILING (13/2) = 8 CLB rows . For STYLE=UNALIGNED, we
can compute the number of CLB rows as ceiling ((number of
outputs + 1) /2) which equals 7 for this particular example.

Figure 6-2 ADD_SUB Connections

STYLE Equation for Number of CLB Rows

ALIGNED 1 + CEILING (number of outputs/2)

UNALIGNED CEILING ((number of outputs + 1) /2)

X4653

ADD_SUB

C_IN

A

B

FUNC

OVFL

C_OUT

STYLE=

ENCODING=TWO_COMP

BUS_DEF
ADD_SUB

BOUNDS=10:0

XBLOX_BUS
6-8 Xilinx Development System

Understanding X-BLOX Operations
Counter modules with the STYLE=BINARY attribute are always
expanded in the ALIGNED style unless the attribute
USE_RLOC=FALSE is also provided, in which case a gate-level
implementation is used. Therefore, a 6-bit counter with
STYLE=BINARY and TERM_CNT connected has 7 output bits and
requires 1 + CEILING (7/2) = 5 CLB rows.

DATA_REG and SHIFT modules that are expanded as RPMs always
require CEILING (number of FFs/2) CLB rows.

Computing the Number of Columns
The number of CLB columns used per row by the RPM for an
ACCUM or a STYLE=BINARY counter can be more than one. The
number of CLB columns required for an ACCUM and COUNTER
can be computed as follows:

Table 6-2 Equations for Computing Number of CLB Columns

where ADD_SUB, UP_DN, SYNC_CTRL, and LOAD are 0 if the corresponding pin is
not connected and 1 if the corresponding pin is connected, and COUNT_TO is 1 if the
COUNT_TO attribute is used. The value 3 in the equation for ACCUM represents the
two operands (A and B) and the C_IN from the previous bit. The value 2 in the
equation for COUNTER is the current value and the C_IN from the previous bit. The
factor 2 * LOAD reflects the two pins required for this option (one for the D_IN pin,
one for LOAD), and the factor UP_DN * COUNT_TO represents that the max and min
values must be detected for this option to work.

Module Equation for Number of CLB Columns

ACCUM ceiling((3 + ADD_SUB + SYNC_CTRL + LOAD)/4)

COUNTER number of pins = 2 + UP_DN + SYNC_CTRL + (2 * LOAD) +
COUNT_TO +(UP_DN * COUNT_TO)
if (number of p ins > 7)

then number of columns = 3
else if (number of pins > 4)

then number of columns = 2
else number of columns = 1 .
X-BLOX Reference/User Guide 6-9

X-BLOX Reference/User Guide
Example 1

A STYLE=BINARY counter with the UP_DN, SYNC_CTRL, and
LOAD input pins and a COUNT_TO attribute has 8 pins. Therefore,
the counter requires three CLB columns. If UP_DN is not connected,
it has six pins and only two columns are needed.

Example 2

Consider an aligned 32-bit ACCUM that uses its ADD_SUB and
SYNC_CTRL pins but neither its C_OUT nor its OVFL pins. This
RPM will be 2 CLB columns wide and 17 CLB rows high. If the target
is the XC4002, which has an 8 x 8 array of CLBs, this RPM will have to
be folded into three column-groups. Each column-group will be 2
CLBs wide for a total of 6 CLB columns and 34 occupied CLBs. The
unused CLBs in each column will be available for other logic
functions.

RLOC_ORIGIN Restrictions
An RLOC_ORIGIN must be specified such that the resulting RPM
cannot be placed in the given part type. Take for example the 11-bit
ADD_SUB discussed above. It required 8 CLB rows. If this module
were generated for a 4005PC84, which has 14 CLB rows, then the
RLOC_ORIGIN could not be placed any lower than row 7. We cannot
place it lower because the upward traveling carry chain would be
required to turn right at the RLOC_ORIGIN point since it is the upper
left corner of the RPM. However, the FPGA only allows lateral
connection of the carry-chain at the top and bottom of the device. An
RLOC_ORIGIN placed at row 1 is always legal as long as there are
enough columns for the RPM to fit.

RLOC_RANGE Restrictions
An RLOC_RANGE must allow enough room for the RPM. Therefore,
the RLOC_RANGE must be at least as tall as the lower of the number
of CLB rows on the device or the number of rows required by the
RPM. The RLOC_RANGE must be at least as wide as the number of
columns the RPM requires. The number of columns required by an
RPM is:
6-10 Xilinx Development System

Understanding X-BLOX Operations
CEILING (number of CLB rows in RPM / number of
CLB rows on the device) * number of CLB columns
per row in the RPM

Example

A 16-bit STYLE=BINARY counter with the UP_DN, SYNC_CTRL,
LOAD ports, and a COUNT_TO attribute has 8 pins. Therefore, it
requires three CLB columns per row. This module requires 1 +
CEILING (16/2) = 9 CLB rows.

Therefore, on a 40002APC84 part, which has 8 CLB rows, any
RLOC_RANGE provided for this module must be 8 CLB rows tall
and CEILING (9/8) * 3 = 6 CLB columns wide.

Synthesizing Your Design for Simulation
Whereas the XACT Unified Libraries include precompiled simulation
models for each library primitive and macro, X-BLOX must
synthesize new models for its modules at run-time because the
X-BLOX modules are flexible and generic. X-BLOX synthesizes a new
simulation model for each different way an X-BLOX module is used
in your design. You must run X-BLOX to synthesize the simulation
models before simulating a design that contains X-BLOX modules.

Synthesizing Simulation Models
The present section explains how X-BLOX synthesizes simulation
models. These details are provided only for your understanding of
how the modules are generated. The actual process is entirely
performed by an interface-specific simulation program, such as
XSimMake.

Depending on the program you run, XMake or XSimMake, X-BLOX
optimizes the design or synthesizes simulation models.

● If you run XMake to implement your design, X-BLOX optimizes
your design. Please refer to the section “Architectural
Optimizations” for more details.

● If you translate the files for simulation by running XSimMake or
other interface-specific program, X-BLOX generates simulation
models for your design.
X-BLOX Reference/User Guide 6-11

X-BLOX Reference/User Guide
● When you translate the design into a functional simulation
netlist, X-BLOX does not perform any architectural
optimizations.

● When you translate the design into a timing simulation netlist,
XSimMake uses the optimized design created by XMake as
input.

Because X-BLOX modules are generic — they represent all module
sizes and many different operating modes, or functions — there are
no underlying simulation models until the X-BLOX modules have
been expanded. After X-BLOX has been run in simulation mode, it
writes the simulation models in the directory specified by the
SIMDIR command-line parameter. The directory specified by this
parameter is specific to your interface. Normally, you do not need to
use these files directly. If you need to use them, refer to your design
interface user guide for details.

Functional Simulation Models for Schematic Entry

A functional simulation schematic is derived from your original
schematic by a procedure that is specific to your schematic interface.
Each interface automatically calls X-BLOX during simulation.
X-BLOX expands the buses and synthesizes simulation models. If
there are any errors in your design, they are reported and no
simulation models are generated.

The interface generates a simulation schematic which looks identical
to your original schematic. The simulation schematic differs from the
original schematic in that:

● Buses now have their correct widths and indices (subscripts).

● Simulation models now exist for all X-BLOX modules.

All symbols, nets, and design hierarchies are named and placed on
the simulation schematic in the same way you entered them on your
original schematic. Even sourceless and loadless nets are retained in
simulation mode. This means you can simulate partial designs: the
components to which the wires are attached are not removed and can
be simulated.

The functional simulation models do not contain optimized logic,
and you should not pass these models to the place and route
software. The logic in each model is not optimized so as to enable
6-12 Xilinx Development System

Understanding X-BLOX Operations
simulation models to be shared whenever possible. Thus, if two
X-BLOX modules in your design have the same pins connected, the
same attributes, and the same bus widths, X-BLOX generates only
one model that the interface uses for both instances.

Timing Simulation Models

Just like functional simulation models, timing simulation models are
generated by an interface-specific procedure. Refer to Chapter 3,
“Processing Your Design,” for more details. However, timing
simulation models must be created from an implemented design.

The wire delays derived from a placed and routed LCA file, or
implemented design, are back-annotated into the simulation
schematic by the schematic interface.
X-BLOX Reference/User Guide 6-13

X-BLOX Reference/User Guide
6-14 Xilinx Development System

Appendix A
X-BLOX Reference/User Guide — 0401315 01 A-1

Command and Option Syntax

Usage
Use the following command syntax to execute the X-BLOX program
from the command line:

xblox infile [outfile] [parameter=value...]

infile —Input XNF file: This file should either be file.xtg, file with an
implied .xtg extension, or file with a non-xtg extension. The contents
of the file have to conform to the XNF specifications.

outfile — Output XG file: This file should either be file.xg, file with an
implied .xg extension, or file with a non-xg extension. The default is
the infile name with a .xg extension in place of the infile extension.
The contents are in the XNF syntax.

parameter=value: This variable can be any of the command-line
options listed in the next section.

Command-line and Xactinit.dat Settings
This section lists the options that you can use when issuing
commands from the command line or when specifying commands in
the xactinit.dat file. See your XACT Reference Guide for more
information on this file.

Options
archopt — This option allows the architectural optimizations to occur.
If set to 0 or False, X-BLOX does not perform any architectural
optimizations.

blxfile — This option allows you to specify the name of the file into

X-BLOX Reference/User Guide
which X-BLOX writes a report. If provided, no file extension is
added. By default, the file is called infile.blx. The screen output is
always written to xblox.log.

mergeio — This option allows the flip-flops to be merged, if possible,
into the IOBs. If set to 0 or False, mergeio prevents the flip-flops from
being merged into any IOBs. On a DATA_REG module, the STYLE
attribute overrides the mergeio=false option.

modgen — This option allows module generation (or synthesis) to
occur. If set to 0 or False, it prevents any X-BLOX modules from being
expanded or any special symbols from being evaluated. This option
should be used only if there are no X-BLOX symbols in the design.

parttype — Target FPGA device: If specified, this part type takes
precedence over the part specified in the input XNF file. The default
part type is "4005PQ160-5".

sim —If the sim option is used , it must be set as SIM=XNF. With this
setting, X-BLOX outputs an XGS functional simulation model instead
of an optimized simulation model. In this case, X-BLOX does not
perform any architectural optimizations, and does not write an XG
file. If this option is not used, X-BLOX does not produce any
simulation models. This option should only be used by a simulation
interface program.

simdir — X-BLOX produces many files for functional simulation. The
simdir option is used to specify the directory or path in which to
place the functional simulation models. By default, the directory is
outfile.bsm. This option is used in combination with SIM=XNF only.
You can change the path by setting the simdir option to another
directory name. For example, ‘SIMDIR=. ' places the functional
simulation models in the current directory. This option should only
be used by a simulation interface program.

subscripts — When X-BLOX expands buses, it appends subscripts to
the bus names. If you set the subscripts option to True or 1, this
option generates brackets in the bus subscripts. If you set this option
to False or 0, no brackets are generated. The default is True.
A-2 Xilinx Development System

Appendix A
Xactinit.dat Settings
The following variables can be set in your xactinit.dat file only. Do
not use them when issuing commands from the command line. The
xactinit.dat file contains all the options to be used at run-time by PPR
and other programs. For more information on this file, see your
XACT Reference Guide.

xblox_merge_tristate=true

If this variable is set to True, X-BLOX merges TRISTATE modules into
arithmetic RPM modules that drive them, when it is possible to do so.
Merging occurs only if the RLOC_ORIGIN attribute is present on the
RPM driving the TRISTATE. The default is False.

xblox_merge_reg=false

If this variable is set to True, X-BLOX merges DATA_REG modules
into arithmetic RPM modules that drive them, when it is possible to
do so. The default is True.
X-BLOX Reference/User Guide A-3

X-BLOX Reference/User Guide
A-4 Xilinx Development System

Index

Numerics
3-State

BIDIR_IO, 4-18

ADDR_ERROR
PROM, 4-85
SRAM, 4-107

Aliasing, 2-22
X-BLOX Reference/User Guide — 0401315 01 Index-1

3-State module, 4-110

A
ACCUM module, 4-2, 4-8

Adder/Subtracter, 4-8, 4-9
ASYNC_VAL, 4-11
RLOC_ORIGIN, 4-12
RLOC_RANGE, 4-12
STYLE

ALIGNED=Default, 4-11
RPM, 4-11

SYNC_VAL, 4-11
TNM, 4-12
USE_RLOC, 4-12

Accumulator (ACCUM), 4-8
ADD_SUB input

ADD_SUB module, 4-14
ADD_SUB module, 4-2, 4-14

RLOC_ORIGIN, 4-16
RLOC_RANGE, 4-16
STYLE

ALIGNED=Default, 4-15
RPM, 4-15

USE_RLOC, 4-16
Adder/Subtracter (ADD_SUB), 4-14
Adding

Module, 2-1
ADDR

PROM, 4-84
SRAM, 4-107

ANDBUS module, 4-2
Attributes, 4-3
Bused gate functions, 4-4

ANDBUS1 module, 4-2
Bused gate functions, 4-4

ANDBUS2 module, 4-5
archopt option, A-1
ARITH style, 4-34, 4-97
ASYNC_CTRL, 2-9

ACCUM, 4-10
CLK_DIV, 4-29
COUNTER, 4-38
DATA_REG, 4-49
SHIFT, 4-96

ASYNC_VAL attribute, 2-8, 2-9
ACCUM, 4-11
COUNTER, 4-39
DATA_REG, 4-50
SHIFT, 4-97
Usage, 2-8

Asynchronous control, 2-8
Attributes

ASYNC_VAL, 2-9
BOUNDS, 2-17
COUNT_TO, 4-40
DECODEMASK, 2-9
DEPTH, 4-85, 4-107
DIVIDE_BY, 4-30
DUTY_CYCLE, 4-30

X-BLOX Reference/User Guide
ELEM, 4-60
ENCODING, 2-16
FAST3KA, 5-3
FLOAT_VAL, 2-12
Implementation style, 2-4
INC_BY, 4-65
INVMASK, 2-9

Bus–level functions, 2-9
KEEPNAME (KN), 2-23
LOC, 2-27
MEMFILE, 4-85
Operating modes, 2-6
PULLUP, 4-111
RIPPLE, 5-3
RLOC_ORIGIN, 5-3, 6-10
RLOC_RANGE, 5-4, 6-10
SLICE, 4-103
Specifying attributes, 3-7
STYLE, 4-3, 5-1
SUB, 4-103
SUB_STARTS_AT, 4-103
SYNC_VAL, 2-9
TNM, 2-31
TSidentifier, 2-31
USE_RLOC, 5-3
VALUE, 4-63

B
Back-annotation, 3-8, 3-12
BIDIR_IO module, 4-2, 4-18

BOUNDS, 4-19
ENCODING, 4-19
FLOAT_VAL, 4-20
LOC, 4-20
PADNAME, 4-20
TNM, 4-21

Bidirectional I/O (BIDIR_IO), 4-18
Big–endian, 2-18
Binary, 2-8
Binary Counter, 4-40
Binary point, 2-18

BIT encoding, 2-17
blxfile option, A-1
BOUNDS attribute

BIDIR_IO, 4-19
BUS_DEF, 4-22
CAST, 4-27
COUNTER, 4-41
Data type propagation, 2-19
DATA_REG, 4-50
FORCE, 4-62
INPUTS, 4-69
OUTPUTS, 4-81
PROM, 4-86
SHIFT, 4-98
SLICE, 4-103
SRAM, 4-108
Usage, 2-17

Bus
Bidirectional data, 4-110
Big–endian, Little–endian, 2-18
Constant, 4-2
Data type, 2-16
ELEMENT of a bus, 4-2
Interface, 2-28
Labels, 2-15
Manipulation, 2-25

CAST symbol, 2-25
ELEMENT symbol, 2-26
FORCE symbol, 2-26
MUXBUS symbol, 2-27
SLICE symbol, 2-26

Width, 2-17
Bus HIGH SLICE, example, 4-104
Bus LOW SLICE, example, 4-104
Bus MID SLICE, example, 4-104
BUS_DEF module, 2-21, 2-29, 4-2, 4-22

BOUNDS, 4-22
ENCODING, 4-22

BUS_IFxx symbol, 2-28
Bused gate functions, 4-4
Index-2 Xilinx Development System

Index
ANDBUS2, 4-5
INVBUS, 4-5
ORBUS, 4-5
ORBUS1, 4-6
ORBUS2, 4-6
XORBUS, 4-6
XORBUS1, 4-7
XORBUS2, 4-6, 4-7

Bused gates, 4-2

C
C_IN

ACCUM, 4-9
ADD_SUB, 4-14

C_OUT
ACCUM, 4-11
ADD_SUB, 4-15, 4-65

Cascading counters, 4-45
CAST module, 4-2, 4-24

BOUNDS, 4-27
ENCODING, 4-27

CIRCULAR style, 4-97
CLB

Computing number, 6-7
SRAM CLB utilization, 4-109

CLK_DIV attribute
DIVIDE_BY, 4-30

CLK_DIV module, 4-2, 4-28
DUTY_CYCLE, 4-30
TNM, 4-30

CLK_EN
ACCUM, 4-10
COUNTER, 4-38
DATA_REG, 4-49
SHIFT, 4-95

CLK_OUT
CLK_DIV, 4-29

CLOCK
ACCUM, 4-10
CLK_DIV, 4-29
COUNTER, 4-38
DATA_REG, 4-49

SHIFT, 4-96
Clock Divider (CLK_DIV), 4-2, 4-28
Command syntax, A-1
COMPARE module, 4-2, 4-32

Equality, 4-32
Magnitude, 4-32
RLOC_RANGE, 4-34
STYLE, 4-34

ARITH, 4-34
RIPPLE, 4-34
TREE, 4-34
WIRED, 4-34

Configuration
Environment, 3-4

Constraints file
BIDIR_IO, 4-21
Example, 3-18
INPUTS, 4-70
OUTPUTS, 4-82

COUNT_TO attribute
COUNTER, 4-40

COUNTER module, 4-2, 4-36
ASYNC_VAL, 4-39
BOUNDS, 4-41
Cascading counters, 4-45
COUNT_TO, 4-40
ENCODING, 4-41
RLOC_ORIGIN, 4-41, 4-112
RLOC_RANGE, 4-42
STYLE

BINARY, 4-42, 4-43
BINARY=Default, 4-40
Features, 4-42
JOHNSON, 4-40
LFSR, 4-40, 4-43
ONE_HOT, 4-44

SYNC_VAL, 4-39
TNM, 4-42
USE_RLOC, 4-41
X-BLOX Reference/User Guide Index-3

X-BLOX Reference/User Guide
D
D_IN

COUNTER, 4-37
DATA_REG, 4-49
SRAM, 4-106

D_OUT
DECODE, 4-59
PROM, 4-84
SRAM, 4-107

Data Register (DATA_REG), 4-48
Data type

Big–endian, 2-18
BOUNDS, 2-16
CAST, 4-24
COERCE, 4-34
ENCODING, 2-16
Little–endian, 2-18
Usage, 2-16

Data type propagation, 2-21, 6-4
Usage, 2-19

Data values, 2-6
Base, 2-6
Binary, 2-8
Decimal, 2-8
Default, 2-6
Dontcaredigits', 2-7
Format, 2-8
Hexadecimal, 2-8
Negative values, 2-7, 2-18
Octal, 2-8
Radix, 2-6
Radix point, 2-7

DATA_REG module, 4-2, 4-48
ASYNC_VAL, 4-50
BOUNDS, 4-50
ENCODING, 4-50
LOC, 4-51
RLOC_ORIGIN, 4-51
RLOC_RANGE, 4-51
STYLE attribute, 4-52
SYNC_VAL, 4-50

TNM, 4-52
USE_RLOC, 4-51

Decimal, 2-8
DECODE module, 4-2, 4-58

Select warning message, 4-58
DECODEMASK attribute, 2-9
DEPTH attribute

PROM, 4-85
SRAM, 4-107

Design
Creation, 3-3
Design example, 3-15
Design flow, 6-1
Design process, 3-1
Downloading, 3-14
Functional simulation, 3-8
Implementation, 3-10
Incremental flow, 3-2
Timing simulation, 3-12

Directories
design_tim, 3-12
otherxnf, 3-8, 3-12
sdesign, 3-8, 3-12
simdir, 3-8

DIVIDE_BY attribute
CLK_DIV, 4-30

Dontcaredigits', 2-7
DUTY_CYCLE attribute

CLK_DIV, 4-30

E
Edge location

ANDBUS location attribute, 4-3
ELEM attribute

ELEMENT, 4-60
ELEM port

ELEMENT, 4-60
ELEMENT module, 4-2, 4-60

ELEM, 4-60
EN

CLK_DIV, 4-29
ENCODING attribute, 2-16
Index-4 Xilinx Development System

Index
BIDIR_IO, 4-19
BIT, 2-17
BUS_DEF, 4-22
CAST, 4-27
COUNTER, 4-41
Data type propagation, 2-19
DATA_REG, 4-50
FORCE, 4-62
INPUTS, 4-69
ONE_HOT, 2-17
OUTPUTS, 4-81
PROM, 4-85
SHIFT, 4-97
SRAM, 4-108
TWO_COMP, 2-17
UBIN, 2-17
Usage, 2-16

Examples directory, 1-2

F
FAST3KA attribute, 4-12, 4-16, 4-66, 5-3
Fibonacci sequence, 3-15
FIFO, 4-92
File

.blx, 2-23
Flip-flops

Merging into IOBs, 6-4
FLOAT_VAL attribute

BIDIR_IO, 4-20
Example, 2-12
INPUTS, 4-69
OUTPUTS, 4-81
TRISTATE, 4-111
Usage, 2-12

FORCE module, 4-62
BOUNDS, 4-62
ENCODING, 4-62
VALUE, 4-63

Frequency divider, 4-2
FUNC

ADD_SUB, 4-15, 4-65
Functional simulation, 3-8

Back-annotation, 3-8

G
Global buffers, 6-5
Global modifications, 2-19
Global Set-Reset, 6-6

H
Hexadecimal, 2-8

I
I/O, 2-16

BIDIR_IO, 2-20, 4-2
INPUTS, 2-20, 4-1, 4-2
OUTPUTS, 2-20, 4-1, 4-2

IE
BIDIR_IO, 4-19

Implementation
Complete design, 3-14
Partial design, 3-10

Implementation styles, 2-4, 5-1
INC_BY attribute

INC_DEC, 4-65
INC_DEC module, 4-64

INC_BY, 4-65
RLOC_ORIGIN, 4-66
RLOC_RANGE, 4-66
STYLE

ALIGNED=Default, 4-66
RPM, 4-66

USE_RLOC, 4-66
Incremental design, 3-2

Program settings, 3-11
Initialization, 2-9
INPUTS module, 4-2, 4-68

BOUNDS, 4-69
ENCODING, 4-69
FLOAT_VAL, 4-69
INPUTS, 4-68
LOC, 4-70
PADNAME, 4-69
TNM, 4-70
X-BLOX Reference/User Guide Index-5

X-BLOX Reference/User Guide
INPUTS pin
BIDIR_IO, 4-19

INVBUS module, 4-2, 4-5
INVMASK attribute, 2-9, 4-2
IOB

Merging flip-flops into IOBs, 6-4

J
Johnson Counter, 4-40

K
KEEPNAME (KN) attribute, 2-23

L
Labels

Bus, 2-15
LFSR counter, 4-40

Cascading counters, 4-45
Library

Loading, 3-5
LIFO, 4-92
Little–endian, 2-18
LOAD

ACCUM, 4-9
COUNTER, 4-37
SHIFT, 4-94

LOC attribute
ANDBUS, 4-3
BIDIR_IO, 4-20
DATA_REG, 4-51
INPUTS, 4-70
OUTPUTS, 4-82
SHIFT, 4-98
TRISTATE, 4-111

Location attributes, 2-27
LOGICAL style, 4-97
LS_IN

SHIFT, 4-95
LS_OUT

SHIFT, 4-96

M
MEMFILE attribute

PROM, 4-85
Syntax, 4-86

Memory
PROM, 4-2, 4-84
SRAM, 4-2, 4-106

Memory Definition File
PROM, 4-85

mergeio option, A-2
modgen option, A-2
Module

 see also X-BLOX modules, Attributes
Data values, 2-6

MS_IN
SHIFT, 4-95

MS_OUT
SHIFT, 4-96

Multiplexers
MUXBUS, 4-72
MUXBUS2, 4-74
MUXBUS4, 4-76
MUXBUS8, 4-78

MUX_IN
MUXBUS, 4-72

MUX_OUT
MUXBUS, 4-73
MUXBUS2, 4-75
MUXBUS4, 4-77
MUXBUS8, 4-79

MUXBUS
Select warning message, 4-72

MUXBUS module, 4-2, 4-72
MUXBUS2 module, 4-2, 4-74

Select warning message, 4-74
MUXBUS4 module, 4-2, 4-76

Select warning message, 4-76
MUXBUS8 module, 4-2, 4-78

Select warning message, 4-78

O
Octadecimal, 2-6
Octal, 2-8
OE
Index-6 Xilinx Development System

Index
BIDIR_IO, 4-19
TRISTATE, 4-110

ONE_HOT encoding, 2-17
ONE_HOT style

Counter, 4-40
DECODE, 4-59

Operating modes, 2-6
Optimization, 6-4

DATA_REG module, 4-52
Option syntax, see X-BLOX options
ORBUS module, 4-2
ORBUS1 module, 4-2, 4-6
ORBUS2 module, 4-2, 4-6
Out-of-range indicators, 2-13
OUTPUTS module, 4-2, 4-80

BOUNDS, 4-81
ENCODING, 4-81
FLOAT_VAL, 4-81
LOC, 4-82
PADNAME, 4-81
TNM, 4-82

OUTPUTS pin
BIDIR_IO, 4-19

OVFL
ACCUM, 4-11
ADD_SUB, 4-15, 4-65

P
PADNAME attribute

BIDIR_IO, 4-20
INPUTS, 4-69
OUTPUTS, 4-81

PAR_IN
SHIFT, 4-94

PAR_OUT
SHIFT, 4-96

parttype option, A-2
Power–up

Reset, 2-9
Precision, 2-17
PROM module, 4-2, 4-84

BOUNDS, 4-86

Default Radix=Hexadecimal, 4-90
Definition Procedure, 4-90
DEPTH, 4-85
ENCODING, 4-85
MEMFILE, 4-85
TNM, 4-86

PULLUP Resistor
TRISTATE, 4-111

PULLUP_D Resistor
TRISTATE, 4-111

Q
Q_OUT

ACCUM, 4-11
COUNTER, 4-38
DATA_REG, 4-50

R
Register

Data
Storage, 4-2

SHIFT, 4-2
Relationally placed macro, see RPM
Resistors

Pull–down, 2-12
Pull-up, 2-12

RIGHT_LEFT
SHIFT, 4-95

RIPPLE attribute, 4-12, 4-16, 4-66
RIPPLE style, 4-34, 5-3
RLOC_ORIGIN attribute, 5-3

ACCUM, 4-12
ADD_SUB, 4-16
COUNTER, 4-41, 4-112
DATA_REG, 4-51
INC_DEC, 4-66
Restrictions, 6-10
SHIFT, 4-98

RLOC_RANGE attribute, 5-4
ACCUM, 4-12
ADD_SUB, 4-16
COMPARE, 4-34
X-BLOX Reference/User Guide Index-7

X-BLOX Reference/User Guide
COUNTER, 4-42
DATA_REG, 4-51
INC_DEC, 4-66
Restrictions, 6-10
SHIFT, 4-99

RPM, 5-1, 6-2, 6-6
Aligned, 4-12, 4-16, 4-66
Controlling RPM placement, 5-3
Unaligned, 4-12, 4-16, 4-66

S
SEL

MUXBUS, 4-72
MUXBUS2, 4-74
MUXBUS4, 4-76
MUXBUS8, 4-78

SEL_ERROR
DECODE, 4-59
MUXBUS, 4-73
MUXBUS2, 4-75
MUXBUS4, 4-77
MUXBUS8, 4-79

Serial-in/Serial-out
BUS_DEF, 4-23

SHIFT module, 4-92
ASYNC_VAL, 4-97
BOUNDS, 4-98
ENCODING, 4-97
LOC, 4-98
Parallel-in/Serial-out, 4-100
Register, 4-2
Right/Left Control, 4-95
RLOC_ORIGIN, 4-98
RLOC_RANGE, 4-99
Serial-in/Parallel-out, 4-99
Serial-in/Serial-out, 4-100
STYLE

ARITH, 4-97
CIRCULAR, 4-97
LOGICAL=Default, 4-97

SYNC_VAL, 4-97

TNM, 4-99
USE_RLOC, 4-98

Signal aliasing, 2-22
sim option, A-2
simdir option, A-2
Simulation

Functional simulation, 3-8
Timing simulation, 3-12

Simulation models, 6-11
Functional simulation models, 6-12
Timing simulation models, 6-13

SLICE attribute
SLICE, 4-103

SLICE module, 4-2, 4-102
MAIN bus, 4-102
SLICE, 4-103
SUB, 4-103
SUB bus, 4-102
SUB_STARTS_AT, 4-103

SRAM module, 4-2, 4-106
BOUNDS, 4-108
DEPTH, 4-107
ENCODING, 4-108
TNM, 4-108

STYLE attribute, 5-1
ACCUM, 4-11
ADD_SUB, 4-15
ANDBUS, 4-3
COMPARE, 4-34
COUNTER, 4-40
DATA_REG, 4-52
INC_DEC, 4-66
Selection, 2-5
SHIFT, 4-97
Usage, 5-1

SUB attribute
SLICE, 4-103

SUB_STARTS_AT attribute
SLICE, 4-103

subscripts option, A-2
SYNC_CTRL
Index-8 Xilinx Development System

Index
ACCUM, 4-10
CLK_DIV, 4-29
COUNTER, 4-38
DATA_REG, 4-50
SHIFT, 4-96

SYNC_VAL attribute, 2-8
ACCUM, 4-11
COUNTER, 4-39
DATA_REG, 4-50
SHIFT, 4-97
Usage, 2-8

Synchronous control, 2-8
Synthesis, 6-4

T
TBUF location

ANDBUS location attribute, 4-4
TERM_CNT

COUNTER, 4-38
Timing attributes, see XACT-Performance
Timing simulation, 3-12

Back-annotation, 3-12
TNM attribute, 2-31

ACCUM, 4-12
BIDIR_IO, 4-21
CLK_DIV, 4-30
COUNTER, 4-42
DATA_REG, 4-52
INPUTS, 4-70
OUTPUTS, 4-82
PROM, 4-86
SHIFT, 4-99
SRAM, 4-108
TRISTATE, 4-111

TREE structure comparisons, 4-34
TREE style, 4-34
TRISTATE module, 4-2, 4-110

FLOAT_VAL, 4-111
LOC, 4-111
TNM, 4-111

TSidentifier attribute, 2-31
TWO_COMP encoding, 2-17

U
Universal Counter, 4-36
Universal Shift Register, 4-92
UP_DN

COUNTER, 4-37
USE_RLOC attribute, 5-3

ACCUM, 4-12
ADD_SUB, 4-16
COUNTER, 4-41
DATA_REG, 4-51
INC_DEC, 4-66
SHIFT, 4-98

V
VALUE attribute

FORCE, 4-63

W
Wide edge-decoder

ANDBUS DECODE style, 4-3
WIRED style, 4-34
Wired-AND

ANDBUS WAND style, 4-3
WR_EN

SRAM, 4-107

X
X attribute, 6-5
Xactinit.dat settings, A-1, A-3
XACT-Performance

Attributes, 2-30
Logic primitives, 2-32

X-BLOX
Features, 1-1

Block-diagram design, 1-1
Compatibility, 1-2
Data path, 1-1
Optimization, 1-2

X-BLOX modules
ACCUM, 4-8
ADD_SUB, 4-14
ANDBUS, 4-4
X-BLOX Reference/User Guide Index-9

X-BLOX Reference/User Guide
ANDBUS1, 4-4
ANDBUS2, 4-5
BIDIR_IO, 4-18
BUS_DEF, 4-22
BUS_IFxx, 2-28
CAST, 4-24
CLK_DIV, 4-28
COMPARE, 4-32
COUNTER, 4-36
DATA_REG, 4-48
DECODE, 4-58
ELEMENT, 4-60
FORCE, 4-62
INC_DEC, 4-64
INPUTS, 4-68
INVBUS, 4-5
MUXBUS, 4-72
MUXBUS2, 4-74
MUXBUS4, 4-76
MUXBUS8, 4-78
ORBUS, 4-5
ORBUS1, 4-6
ORBUS2, 4-6
OUTPUTS, 4-80
PROM, 4-84

SHIFT, 4-92
SLICE, 4-102
SRAM, 4-106
TRISTATE, 4-110
XORBUS1, 4-7
XORBUS2, 4-6, 4-7

X-BLOX options
archopt, A-1
blxfile, A-1
mergeio, A-2
modgen, A-2
parttype, A-2
sim, A-2
simdir, A-2
subscripts, A-2
Syntax, A-1

XBLOX_BUS
BUS_DEF, 4-22
ELEMENT, 4-60

XMake program, 3-10
XNF files

RPM, 6-2
XORBUS module, 4-2, 4-6
XORBUS1 module, 4-2
XORBUS2 module, 4-2, 4-6, 4-7
Index-10 Xilinx Development System

Trademark Information
X-BLOX Reference/User Guide — 0401315 01

, XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of
Xilinx. All XC-prefix product designations, XACT-Floorplanner, XACT-Performance,
XAPP, XAM, X-BLOX, X-BLOX plus, XChecker, XDM, XDS, XEPLD, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell,
LogicProfessor, MicroVia, PLUSASM, SMARTswitch, UIM, VectorMaze, VersaBlock,
VersaRing, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and
The Programmable Gate Array Company are service marks of Xilinx.

IBM is a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are
trademarks of International Business Machines Corporation. DASH, Data I/O and
FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-PLA are
trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-
Silos and P/C-Silos are trademarks of SimuCad Corporation. Microsoft is a registered
trademark and MS-DOS is a trademark of Microsoft Corporation. Centronics is a
registered trademark of Centronics Data Computer Corporation. PAL and PALASM are
registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T
Technologies, Inc. CUPL, PROLINK, and MAKEPRG are trademarks of Logical Devices,
Inc. Apollo and AEGIS are registered trademarks of Hewlett-Packard Corporation.
Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim,
QuickSim II, and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered
trademark of Sun Microsystems, Inc. SCHEMA II+ and SCHEMA III are trademarks of
Omation Corporation. OrCAD is a registered trademark of OrCAD Systems Corporation.
Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne
Electronic Design Automation Group. DECstation is a trademark of Digital Equipment
Corporation. Synopsys is a registered trademark of Synopsys, Inc. Verilog is a registered
trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product
described or shown herein; nor does it convey any license under its patents, copyrights, or
maskwork rights or any rights of others. Xilinx reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product
possible. Xilinx will not assume responsibility for the use of any circuitry described herein
other than circuitry entirely embodied in its products. Xilinx devices and products are
protected under one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216;
4,713,557; 4,746,822; 4,750,155; 4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,853,626;

R

Trademark Information
4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135; 5,023,606; 5,028,821;
5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704;
5,329,174; 5,329,181; 5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248;
5,349,249; 5,349,250; 5,349,691; 5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125;
5,367,207; 5,386,154; 5,394,104; 5,399,924; 5,399,925; 5,410,189; 5,410,194; 5,414,377; RE
34,363, RE 34,444, and RE 34,808. Other U.S. and foreign patents pending. Xilinx, Inc. does
not represent that devices shown or products described herein are free from patent
infringement or from any other third party right. Xilinx assumes no obligation to correct
any errors contained herein or to advise any user of this text of any correction if such be
made. Xilinx will not assume any liability for the accuracy or correctness of any
engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems.
Use of a Xilinx product in such applications without the written consent of the
appropriate Xilinx officer is prohibited.
Xilinx Development System

	COVER PAGE
	TRADEMARK INFORMATION
	BOOK CONVENTIONS
	TABLE OF CONTENTS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	GO TO OTHER BOOKS
	Chapter 1 Introduction
	X�BLOX Features
	X�BLOX Design Examples Directory

	Chapter 2 Creating an X BLOX Design
	Adding an X�BLOX Module to Your Schematic
	Customizing an X�BLOX Module
	Implementation Styles and Operating Modes
	Operating Modes

	Data Values
	Synchronous and Asynchronous Control
	Power-up Reset and Initialization

	Inverting and Decoding Masks for Bused Gate Functions
	INVMASK and DECODEMASK Attributes
	Single-Input Bused Modules
	Double-Input Bused Modules
	Single-Bus Gated Modules
	INVBUS Module

	Pull-up and Pull-down Resistors for I/O Pads
	FLOAT_VAL Attribute

	Out-of-Range Indicators

	Representing X�BLOX Buses
	Specifying Buses and Bus Labels
	Bus Data Types
	ENCODING
	BOUNDS
	Big-Endian vs. Little-Endian

	Data Type Propagation
	Creating a Hierarchical Symbol
	Bus Sizes
	Data Types
	Data Type Propagation

	Signal Aliasing
	Bus Manipulation
	CAST Symbol
	ELEMENT Symbol
	FORCE Symbol
	SLICE Symbol
	MUXBUS Symbol

	Location Attributes
	Using BUS_IFxx to Connect X BLOX Buses to non-X BLOX Logic
	Creating a Custom BUS_IFxx Macro

	Using XACT-Performance Attributes
	TSidentifier Attribute
	TNM Attribute

	Chapter 3 Processing Your Design
	Step 1: Creating and Modifying Your Design
	Step 2: Performing Functional Simulation
	Step 3: Implementing a Partial Design
	Step 4: Performing Timing Simulation
	Step 5: Implementing the Complete Design
	Step 6: Downloading Your Design
	X�BLOX Design Example
	Design Procedure

	Chapter 4 Module Definitions
	Bused Gate Functions
	ANDBUS Module

	ACCUM — Accumulator
	Inputs
	Outputs
	Attributes

	ADD_SUB — Adder/Subtracter
	Inputs
	Outputs
	Attributes

	BIDIR_IO — Bidirectional I/O Pads with Buffers
	Inputs
	Outputs
	Attributes
	Constraints File

	BUS_DEF — Bus Data-Type Definition
	Bus Connection
	Attributes
	Example

	CAST — Data Type Symbol
	Usage
	Inputs
	Attributes

	CLK_DIV — Clock or Frequency Divider
	Inputs
	Outputs
	Attributes

	COMPARE — Comparators
	Inputs
	Outputs
	Attributes
	RLOC_RANGE

	COUNTER — Universal Counter
	Inputs
	Outputs
	Attributes
	Counter Style Features and Selection Criteria
	LFSR
	ONE_HOT

	DATA_REG — Data Register
	Inputs
	Outputs
	Attributes
	STYLE Attribute
	Conditions for Implementation in an IOB

	DECODE — 1-of-n Decoder/Demultiplexer
	Inputs
	Outputs

	ELEMENT — Element of a Bus
	Connections
	Attributes

	FORCE — Force Value onto a Bus
	Outputs
	Attributes

	INC_DEC — Increment Decrement Symbol
	Inputs
	Outputs
	Attributes

	INPUTS — Input Pads with Buffers
	Inputs
	Outputs
	Attributes
	Constraints File

	MUXBUS — General n-to-1 Bus Multiplexer
	Inputs
	Outputs

	MUXBUS2 — 2-to-1 Bus Multiplexer
	Inputs
	Outputs

	MUXBUS4 — 4-to-1 Bus Multiplexer
	Inputs
	Outputs

	MUXBUS8 — 8-to-1 Bus Multiplexer
	Inputs
	Outputs

	OUTPUTS — Output Pads with Buffers
	Inputs
	Outputs
	Attributes
	Constraints File

	PROM — Programmable Read-Only Memories
	Inputs
	Outputs
	Attributes
	MEMFILE Syntax
	MEMFILE Header
	Comments
	Example

	MEMFILE Data Section
	Addressing
	ASCII Data

	PROM Definition Procedure

	SHIFT — Universal Shift Register
	Inputs
	Outputs
	Attributes

	SLICE — SLICE of a Bus
	Connections
	Attributes

	SRAM — Static Random-Access Memory
	Inputs
	Outputs
	Attributes
	CLB Utilization

	TRISTATE — 3-State Buffer
	Inputs
	Outputs
	Attributes (Optional)

	Chapter 5 X BLOX-Generated Relationally Placed Macros
	Implementation Styles for Arithmetic Modules
	STYLE=ALIGNED
	STYLE=UNALIGNED
	FAST3KA and RIPPLE (XC3000A/L and XC3100A)

	Controlling the Placement of RPMs
	USE_RLOC={TRUE|FALSE}
	RLOC_ORIGIN=value
	RLOC_RANGE=value

	Chapter 6 Understanding X BLOX Operations
	X�BLOX Implementation Flow
	Data Type Propagation
	Architectural Synthesis and Optimization
	Merging Flip-Flops into the I/O Blocks
	Global Buffers
	Global Set-Reset
	Relationally Placed Macros

	Computing the Required Number of CLBs
	Computing the Number of Rows
	Example

	Computing the Number of Columns
	Example 1
	Example 2

	RLOC_ORIGIN Restrictions
	RLOC_RANGE Restrictions
	Example

	Synthesizing Your Design for Simulation
	Synthesizing Simulation Models
	Functional Simulation Models for Schematic Entry
	Timing Simulation Models

	Appendix A Command and Option Syntax
	Usage
	Command-line and Xactinit.dat Settings
	Options

	Xactinit.dat Settings

