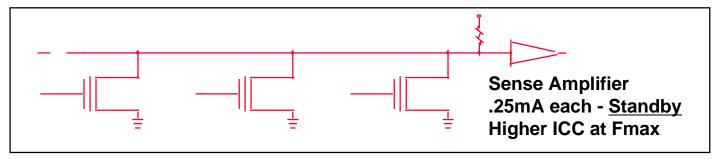


Fast Zero Power



Traditional CPLDs

CPLDs migrated from Bipolar to CMOS

- Easier platform to design upon
- Lower power consumption
- Continued to use the same Bipolar design technique to implement Product Terms

Product Term Construction

- This technique involves building up a word line using 'wired nor' inputs to a node.
- As more of these inputs are attached to the node, the capacitance increases and so does the time constant.
- In order to speed up propagation time, this node is followed by a sense amplifier, which examines the node for approximately a 100mV change to indicate a logic level transition.

Consequences of Using Sense Amplifiers

Power Consumption

- Sense amplifiers are linear elements which always draw a substantial amount of current.
- Each sense amplifier consumes 250uA during standby
 - 128 Macrocell device: 160mA of standby current (128MC * 5PTs/MC * 250uA/PT)
- Dynamic power increases as frequency increases.

Power Down Modes

- These modes reduce power consumption and performance
- Complicate timing model (additional delays depending on power down level)
- Are often associated with "wake-up" modes which have to be designed around

Performance

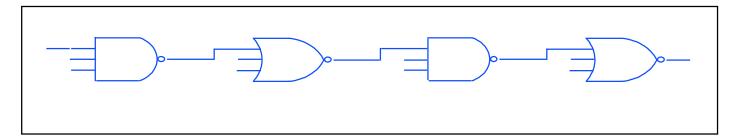
Performance versus Power Consumption trade-off

Device Size Limitations

Power consumption limits the size of the device you can build

Noise immunity

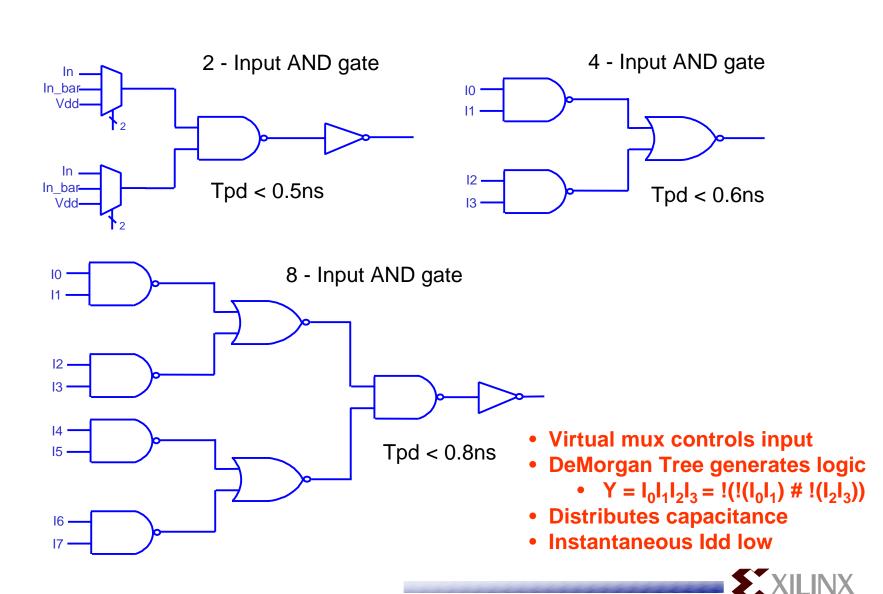
Sense amplifier makes the device more susceptible to noise



CoolRunner CPLDs

New Innovative approach

- Eliminated Sense amplifiers
- Removed <u>Performance</u> vs. <u>Power Consumption</u> trade-off
- Simultaneously deliver high performance and low power consumption


Product Term Construction

- This patented approach is called Fast Zero Power (FZPTM)
- Implement a product term word line without the use of sense amplifiers.
- The Fast Zero Power technology is based upon a CMOS chain of gates to implement "Product Terms"
- The primary benefit of this technique is much lower power consumption.

CoolRunner Product Term Generation

Consequences of Using FZP

Power Consumption

- 1000 times less standby current
- 33% to 50% the dynamic power
- Simultaneously delivers high performance and low power consumption
- This technology also allows for tremendous amounts of logic resources to be placed in very small packages.

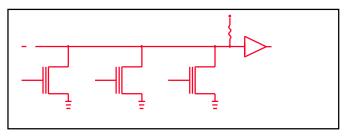
Power Down Modes

- Not needed
- FZP simultaneously delivers high performance and low power consumption

Performance

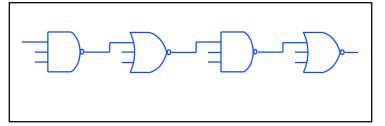
No tradeoffs between Performance and Power Consumption

Device Size Limitations


- No power limits on the device size
- XCR3960 is the world's largest CPLD (960 macrocells)

Noise immunity

Better noise immunity than sense amp based CPLDs

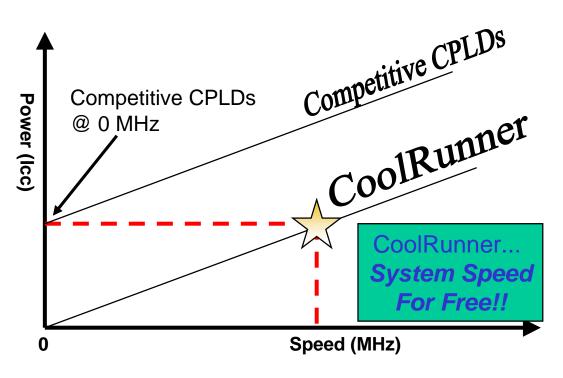

Technology Difference Summary

Sense Amplifier .25mA each - <u>Standby</u> Higher ICC at Fmax

Competitive CPLDs - bipolar sense amp product terms

- Always consumes power--even at standby
- Designer must choose between high performance and low power consumption
- Limits maximum device size due to power consumption

FZP: CMOS Everywhere - Zero Static Power



CoolRunner FZP design uses TotalCMOS for product terms

- Virtually no standby current
- Dynamic currents 1/3 the competition at F_{max}
- Simultaneously delivers high performance and low power
- No power limits on device size

CoolRunner Delivers Lowest Power @ Any Speed

- Reduce Icc requirements while increasing system reliability
 - smaller power supply
 - eliminate fans
 - smaller equipment
- Smaller device packaging
 - less board area & more logic packing density

CoolRunner Design Win Examples

Portable / Consumer

- PDAs
- Cell phones
- MP3 players
- Laptops
- Docking stations
- Battery powered scanners
- Camcorder viewfinders
- Digital cameras
- Portable dictation systems
- Gas meters
- Handheld meters
- Penguin counters

Medical

- Portable syringe pump
- Home monitoring system
- Blood analyzer

- "Neighborhood" Multiplexors
- Bay Stations
- Routers
- Multiplexors
- PBXs
- DACS
- Central office switches
- Speech recognition systems

PC Peripheral

- PCMCIA memory cards
- Portable computer displays
- White board scanners
- Memory cards

High Performance

- Alpha workstations an
- Video graphics cards

