Designing W
Simple design makes XC5200

carry logic even more flexible
than that of XC4000 Series

The XC5200 FPGA's carry logic is
deceptively simple. While this architecture
only provides a series of multiplexers inter-
connected by dedicated carry nets, the use
of function generators to control these
multiplexers makes the XC5200 FPGA'’s
carry logic extremely flexible — more
flexible, in fact, than the XC4000 carry
logic with its multiplicity of modes.

In the XC5200 architecture, one bit of a
simple adder uses two function generators
and a carry chain multiplexer, as shown in
Figure 1. However, not all of the function
generator's capability is utilized in the basic
adder. In the input function generator, the
adder input, p can be any function of the
three inputs that are available. For example,
one of these inputs could be used as an
add/subtract control, inverting in an XOR
gate when necessary.

Similarly, the adder output can be com-
bined in any way with the two remaining
function generator inputs. In a typical
counter application, these might be used
for a multiplexer to load the counter or,
alternatively, for an AND gate to provide a
synchronous clear.

A more complex example uses this
additional capability in a carry-select adder
that trades additional logic for higher per-
formance Figure 2). The adder is divided
into two sections. The lower half operates
normally, but in the upper half two carry
chains are used in parallel, one initialized
with a ‘0’ and the other with a ‘1." The carry
output of the lower half is used to select
which carry chain is used to complete the
sum. The carry propagates simultaneously
in the upper and lower halves of the adder;
thus, the settling time is reduced.

)

B Carry Logic

Since a single function generator can
both select the carry and complete the
sum, the incremental cost over the basic
adder is only 25%. The direct access to th
carry chain minimizes the timing overhead
associated with this technique, which is
effective even for relatively short adders.

Carry Out

b

1

-

Function Generator

SUM

Function Generator

Carry In

The corresponding acceleration tech-
nique for long adders in the XC4000 archi
tecture is the conditional-sum technique.
In the upper half of a conditional-sum
adder, two complete adders are imple-
mented with ‘0" and ‘1’ carry inputs, and

Figure 1.
XC5200 Carry Structure

Continued on
the next page

MS Adder (0)

CI)FOT

Cour

. LS Adder
Figure 2:

XC5200 Carry-Select Adders

XC5200
Carry Logic

Continued from the previous page

additional CLBs are required to select
between the outputs of these adders ac-
cording to the carry output from the lower
half. The technique is only effective for
relatively long adders; the incremental cost
is 100%.

It is interesting to note that, in the
XC5200 architecture, the carry-select and
conditional-sum techniques cannot always

In a simple multiplier, the product is
computed using a cascade of gated adders
together with appropriate shift$igure 3).

A more detailed view of a single bit slice
through the first two adders of this multi-
plier is shown inFigure 4. One of the two
AND gates that precedes the first adder is
combined into the function generator that
controls the carry multiplexer. The other

X4
Y1—

X —
Y3 —

X JE—
Yo—

— Product

=2

X JE—
Yo—

Figure 3:
4-Bit Cascade Multiplier

Figure 4:
Bit-Slice of First
Two Adders

be distinguished. Both sums of the condi-
tional-sum adder can be completed in the
same function generator. This function

generator can be further used to select

between them. If this is done, all the func-
tion-generator truth tables and all the inter-
connections become identical to the carry-

AND gate, however, must use a separate
function generator because there is a fan-
out point at the second input to the adder.
In the second and subsequent adders,
the AND gates again use separate function
generators. This permits the XOR gates that
complete the previous sums to be merged

select adder. This should not be surprising, adder inputs, thus saving both logic re-

however, since both techniques implement
the same uniquely defined adder function.

sources and critical-path delay. If, instead,
the AND gates had been merged into the

,,,,,,,,,,,,,

Y 1
Xj1
Y1 S C;)UT C;)UT
) ,
Yo +J | >
o~ | Cin Next

Stage

X4

X8

S
w

X JR—
Yo—

T
—

—> Product

-

X —1
inputs, the XOR gates would have required Y1— X2 j
function generators. In this case, the re-
source utilization would have been the
same, but the delay longer. Only in the
final adder is a separate function generator
needed for the XOR gate.

The speed of the multiplier can be
increased by rearranging the cascade of A hit slice of this more efficient approach is Figure 5:
adders into a tree, as Figure 5. After the shown inFigure 6. The carry chain is only | Adder-Tree Multiplier
first set of adders, the input of each adder used to add X and 2X when the 3X outpu
can absorb the output XOR gate of one of is required. Otherwise, 0, X or 2X is se-
the two preceding adders, as described in lected in the first function generator and
the cascade multiplier. The other preceding routed to the second function generator
adder, however, must use a separate func- where it passes through unaltered. While
tion generator for its XOR gate. the carry chain continues to operate in a

In the first set of adders, the objective is meaningless way, it cannot damage itself,
to multiply the X input by bit pairs of Y, and its outputs are not required. When 3X
creating products that are 0X, 1X, 2X or 3X. is required, the first function generator
This is usually achieved by gating X and 2X XORs X and 2X to control the carry chain
into an adder, as is shown in Figure 5. in a normal addition. The sum is completed Figure 6:

However, a different, more direct in the XOR gate that precedes the multi- | First Stage of a Tree-Adder
approach may be used in XC5200 FPGA. plexer in the second function generatar. | Multiplier

X —
Yo—

T

Cour
A : | 0
o) e L pa
Xig — 2 2 | | Product
] R
| 0—1 0 | | 5 |
Vi | | 12 |
Yi+1 7 ;_________________ 4 Yy
CiN

