

8-122



Supporting design files are available on the XACT CD-ROM and on the Xilinx Technical Bulletin Board under the names XAPP005V (VIEWlogic) and XAPP005O (OrCAD

)

Introduction

In the absence of RAM, XC3000 FIFOs must be con-
structed with registers. Using both flip-flops, one CLB is
required for each two bits of FIFO capacity. For a syn-
chronous FIFO, an additional one CLB per word is
required for control. Thus an 8-word by 8-bit FIFO can be
implemented in 40 CLBs. Speed is a function of depth,
with an 8-word FIFO able to achieve speeds of up to 42
MHz.

Asynchronous inputs and outputs may be added if
desired. Each of these adds n/2 CLBs for an n-bit wide
FIFO, plus a few additional CLBs for control logic. Typi-
cally, asynchronous inputs and outputs operate more
slowly because of the handshake required for synchroni-
zation. Where burst input or output speed is required for
data transfer, the FIFO should be operated in synchro-
nism with the high-speed port.

The basic designs shown use simple flags that permit
the input and output of single words. For block transfers,
flags could be generated for signaling the availability of a
block of data or space for a block of data.

Synchronous FIFOs

The basic FIFO design, shown in Figure 1, comprises a
broadside shift register; each word has a separate shift
enable. A control flip-flop, associated with each word,
contains a valid flag that is shifted with the data. The
shift-control logic uses these valid flags to generate shift
enables and control the flow of data through the FIFO.

Whenever a register does not contain valid data, shift is
enabled for that register, and for all the registers up-
stream from it. This causes data to continuously shift
through the FIFO, with valid words backing-up at the out-
put. They remain there until a POP command enables
the shift in all the registers in the FIFO. Invalid data is not
retained.

Register-Based FIFO

XAPP 005.002 Application Note

By BERNIE NEW AND WOLFGANG HÖFLICH

Summary

While XC3000-series LCA devices do not provide RAM, it is possible to construct small register-based FIFOs.
A basic synchronous FIFO requires one CLB for each two bits of FIFO capacity, plus one CLB for each word
in the FIFO. Optional asynchronous input and output circuits are provided. Design files are available for
two implementations of this design. The fastest of the two implementations uses a constraints file to achieve
better placement.

Specifications

Size 8 x 8 Bits
Maximum Clock Frequency XC3100A-2 49 MHz

Number of CLBs 40

Xilinx Family

XC3000A/XC3100A

SHIFT CONTROL LOGIC

X1975

RDY

PUSH VALID

D0

D1

D2

D3

D4

D5

D6

D7

POP

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

SHIFT
REGISTER

VALID

Figure 1. 8-Word x 8-Bit Synchronous FIFO (40 CLBs)

Figure 2 shows the detail of the FIFO. For simplicity, only
two data bits are shown (the top two rows of flip-flops);
all other data bits are identical. The bottom row of flip-
flops contains the valid bits. The shift control logic is the
chain of OR gates; a column of flip-flops is enabled if its
valid bit, or any valid bit to the right, is not asserted.

The POP command acts like an additional active-Low
valid bit, which is to the right of all the columns in the
FIFO. When it is High, all the registers shift. If the second
to last register contains valid data, this is shifted into the
last register, and the VALID flag remains High. Other-
wise, invalid data is shifted into the last register, and the
VALID flag goes Low. The last register continues shifting
until it receives valid data, when the VALID flag goes
High.

Data can only be written into the FIFO if the first register
contains invalid data or valid data that is about to be
shifted out. This condition is signaled by the RDY flag,
that is also the shift enable for the first register. Conse-

This document was created with FrameMaker 4 0 2

XAPP 005.002

8-123

quently, data is always being shifted in when the FIFO is
ready. The function of PUSH is simply to identify the data
being shifted in as valid, so that it is retained in the FIFO.

In the diagram, the CLB clock enable (CE) is used as shift
enable. When combining pairs of flip-flops into CLBs, CE
can only be used if adjacent bits of the same register are
combined. If it is more convenient, bits of equal weight
from adjacent registers may be combined. In this case,
function generators must be used to implement shift
enable. This entails a simple 2-input multiplexer that
selects input data when shift is enabled, and selects
existing data from the flip-flop when it is not enabled.

The speed of the FIFO is determined by the ripple-OR
time of the shift-control logic, and the distribution and set-
up times of the shift-enable signals. This defines the set-
up time for the POP command. The settling time for the
shift-control logic is one CLB delay per two words of FIFO
depth. Longlines should be used to distribute the shift-
enable signals.

Asynchronous Input Stage

Asynchronous data may be entered into the FIFO using
the circuit shown in Figure 3. An additional input holding

register is provided to facilitate edge-triggered input. If
appropriate, this can be implemented in IOB registers.

Data may only be entered when the RDY flag signals that
the input register is available to accept it. The input clock
(PUSH) also asserts the PUSH INP signal which removes
the RDY flag. On the next internal clock, PUSH INT is
asserted and PUSH INP cleared. When shift is enabled
into the first register of the FIFO, data is transferred out of
the holding register, PUSH INT is cleared and RDY is re-
asserted.

If data is being input from a synchronous system that is
not synchronized to the FIFO internal clock, the circuit
shown in Figure 4 should be used. Again, an input hold-
ing register is provided. However, it is enabled by PUSH,
instead of being clocked by it (an IOB register cannot be
used). As before, PUSH causes PUSH INP to be
asserted. Feedback around the flip-flop sustains PUSH
INP until it is recognized by the internal clock, permitting
the PUSH command to be removed after the one input
clock.

The entry of data into the FIFO proceeds as in the previ-
ous scheme. RDY is registered to synchronize it to the
input clock. The negative clock edge is used for this, so

D Q

CE

X1976

SE N-4

D Q

CE

D Q

CE

D Q

CE

SE N-3

D Q

CE

D Q

CE

D Q

CE

SE N-2

D Q

CE

D Q

CE

D Q

CE

SE N-1

D Q

CE

D Q

CE

Q

Q

VALID

0

1D Q

CE

SE 0

D Q

CE

D Q

CE

D Q

CE

SE 1

D Q

CE

D Q

CE

D

D

PUSH

0

1

POPRDY

Figure 2. Detail of Synchronous FIFO

XAPP 005.002

8-124

Register-Based FIFO

that, if the FIFO is sufficiently fast and is not full, the RDY
flag will remain set, and data can be entered on succes-
sive input clocks. If the positive clock edge had been
used, RDY would always be Low for at least one clock. At
best, this would only permit data to be entered on alter-
nate input clocks, no matter how slow.

Asynchronous Output Stage

The circuit shown in Figure 5 should be used, if an asyn-
chronous output is required. For an immediate, edge-trig-
gered output, a holding register is provided, which is
clocked by the output clock (POP). IOB flip-flops may be
used for this register.

The output register may only be clocked when the RDY
flag signals that data is available in the last register of the
FIFO. The output clock causes data to be transferred out
of the FIFO, and asserts POP OUT. This removes the
RDY flag. On the next internal clock, POP INT is asserted
and POP OUT is cleared. POP INT is held, and the FIFO
shifts, until the last register again contains valid data. It is
then cleared, and the RDY flag is re-asserted.

If data is being output to a synchronous system that is not
synchronized to the FIFO internal clock, the circuit shown
in Figure 6 should be used. The output register, which
cannot be implemented in IOBs, is enabled by POP. POP
also causes POP OUT to be asserted. Feedback around

the register sustains POP OUT until it is recognized by the
internal clock, even if POP is removed and another output
clock occurs.

The transfer of data out of the FIFO proceeds as in the
previous scheme. RDY is synchronized with the negative
edge of the output clock. As a result, data can be output
on successive clocks if the FIFO is fast enough and data
is available.

Implementation Notes

The obvious organization for the FIFO is as a rectangular
array of CLBs, with the control logic in the bottom row. The
flip-flops may be partitioned into CLBs in two ways. If
adjacent bits of the same word are combined, the result is
a FIFO that is twice as wide as it is tall (assuming equal
numbers of bits and words).

Alternatively, two bits of equal rank from adjacent words
may be combined. This gives a FIFO that is twice as tall
as it is wide and is potentially faster. The critical path
through the control logic passes through a chain of half as
many gates as there are words. The tall, narrow organiza-
tion allows these gates to be implemented in adjacent
CLBs with zero-delay direct interconnects.

Both forms of the FIFO are available as macros, using
CLBMAPs.

VALID 1D Q

I

O

D Q

CE

D Q

CE

Q1D Q

CE

D Q

CE

0

D Q

RD

PUSH INP
PUSH

INT

D Q

I

INPUT
CLOCK
(PUSH)

RDY

D0

INPUT CLOCK SE
INTCLK INTCLK

INTCLK

SE

X1977

0 SE1

2

Figure 3. Asynchronous Input Stage

XAPP 005.002

8-125

D Q Q10

D Q

X1978

CE

D Q VALID 1

CE

D Q

CE

D Q

CE

D Q

CE

D Q

RD

Q D

PUSH
INT

D0

PUSH

RDY

INPUT
CLK

PUSH INP

PUSH
INT
CLK SE

INT
CLK0 SE1

INT
CLK

INT CLK

SE2

O

I

Figure 4. Asynchronous Input Stage (From Synchronous System)

Figure 5. Asynchronous Output Stage

X3460

Q D

Q N-3, 0 D Q

CE

D Q

CE

D Q

CE

D Q

CE POP INT

SE

INT
CLK

INT
CLK

RDY

Q D

RD

D Q Q

POP
OUT

I

OUTPUT
CLK

OUTPUT
CLK
(POP)

VALID

INT CLK

N-3

N-2 SEN-2

SEN-2

O

I

XAPP 005.002

8-126

Register-Based FIFO

Figure 6. Asynchronous Output Stage (To Synchronous System)

X3205

Q D

D Q

CE

D Q

CE

D Q

CE

D Q

CE

INT
CLK

INT
CLK

Q D

RD

D Q Q

POP
OUT

OUTPUT
CLK

OUT
CLK

INT CLK

D Q

POP

POP
INT

0

POP

RDY

CE

Q N-3, 0

SEN-2

O

I

SEN-2 SEN-1

VALID N-3

