



## UTOPIA Slave (CC143S)

January 10, 2000

## *C*@reEl

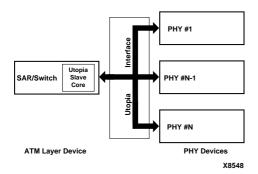
MicroSystems

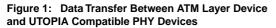
## **CoreEl MicroSystems**

46750 Fremont Blvd. #208 Fremont, CA 94538 USA Phone: +1 510-770-2277 Fax: +1 510-770-2288 URL: www.coreel.com E-mail: sales@coreel.com

## **Features**

- Supports 4000X, Spartan<sup>™</sup>-II, Virtex<sup>™</sup>, and Virtex<sup>™</sup>-E devices
- Conforms to ATM Forum's Utopia Level 2 specifications, V 1.0
- Conforms to the cell transfer procedure required in ATM UNI devices
- Supports 8/16-bit Utopia operation
- · Provides a 32-bit FIFO interface on the PHY side
- Supports a single port with configurable PHY address
- Supports SPHY operation in the Cell-Level Handshake
- · Detects Runt cells on the Transmit side
- Drops excess bytes of a cell on the Transmit side
- Verifies parity on the Transmit side
- Indicates parity on the receive side
- HEC is always passed through
- Indicates occurrence of parity error(s) on the Transmit side
- Provides Overrun indication on Transmit side and Underrun indication on Receive side
- Statistics feature on the Receiver in the form of pulses for total cells and on the Transmitter in the form of pulses for total cells, excess cells, runt cells and parity error.


## Applications


The UTOPIA core can be used in Asynchronous Transfer Mode (ATM) networking systems such as adapter cards, routers and switches. **Product Specification** 

| AllianceCORE™ Facts                     |                              |                     |  |  |
|-----------------------------------------|------------------------------|---------------------|--|--|
| Cor                                     | Core Specifics               |                     |  |  |
| Supported Family                        | 4000XL                       | Virtex              |  |  |
| Device Tested                           | 4013XL-08                    | V50-4               |  |  |
| CLBs - Transmitter                      | 134                          | 118 <sup>1</sup>    |  |  |
| CLBs - Receiver                         | 81                           | 80 <sup>1</sup>     |  |  |
| IOBs <sup>2</sup> - Transmitter         | 74                           | 74                  |  |  |
| IOBs <sup>2</sup> - Receiver            | 70                           | 70                  |  |  |
| CLKIOBs - Transmitter                   | 1                            | 1                   |  |  |
| CLKIOBs - Receiver                      | 1                            | 1                   |  |  |
| Performance                             | 74 MHz <sup>3</sup>          | 79 MHz <sup>3</sup> |  |  |
| Xilinx Tools                            | M1.5i                        | M1.5i               |  |  |
| Special Features                        | None                         | None                |  |  |
| Provided with Core                      |                              |                     |  |  |
| Documentation                           | Product Brief Datasheet      |                     |  |  |
|                                         |                              | esign Document      |  |  |
|                                         | Test Bench D                 | esign Document      |  |  |
|                                         |                              | Test Scripts        |  |  |
| Design File Formats                     | VHDL Compiled, EDIF netlist  |                     |  |  |
| Constraints File                        | Transmitter - txchip.ucf     |                     |  |  |
|                                         | Receiver - rxchip.ucf        |                     |  |  |
| Verification                            | Script-based behavioral VHDL |                     |  |  |
| • • • • • •                             | test bench, test vectors     |                     |  |  |
| Instantiation Templates                 | VHDL, Verilog                |                     |  |  |
| Reference Designs &                     | Utopia Level 2 Specification |                     |  |  |
| Application Notes                       | V 1.0 from ATM Forum         |                     |  |  |
| Additional Items                        |                              | None                |  |  |
| Simulation Tool Used                    |                              |                     |  |  |
| Model Tech. V-system V 4.6f             |                              |                     |  |  |
| Support                                 |                              |                     |  |  |
| Support provided by CoreEl MicroSystems |                              |                     |  |  |

Notes:

- 1. Utilization numbers for Virtex are in CLB slices.
- 2. Assuming all core I/O are routed off-chip.
- 3. Utopia Level 2, V1.0 specification requires only 50 MHz





## **General Description**

The CC143S CoreCell can be used in any Physical Layer Device (PHY) that performs the functions of Transmission Convergence sublayer. CC143S facilitates data transfer between the UNI (User Network Interface device) in ATM networks and a UTOPIA compatible ATM layer device as shown in Figure 1.

The UTOPIA Slave (CC143S) consists of two independent CoreCells for Transmitter and Receiver. It provides an interface to connect the PHY device to the ATM layer. CC143S provides a facility to externally count the number of normal, runt, parity error and excess byte cells on the Transmitter side and the total number of cells on the Receiver side.

## **Functional Description**

#### Transmitter

The Transmitter, CC143ST, provides an industry standard interface between the ATM layer and a PHY device through a 32 bit FIFO interface. It supports both SPHY and MPHY modes of operation, accepts cells from the ATM layer and writes them into the PHY Interface FIFO. It gives FIFO status on the txclav line. It detects selection of a port connected to the Transmitter by the ATM layer. The Transmitter detects and discards runt cells and excess bytes of a cell. It clubs the data received on the Utopia bus into 32 bits and sends it to the FIFO Interface. It also checks the parity on the txprty line, indicates occurrence of parity errors on parity\_err\_count\_enb line, and generates the socin, eocin, datain\_valid and discard\_cell signals on the FIFO interface.

In the Transmit operation, data flows from ATM layer to Utopia interface. THe ATM layer controls the operation and provides an interface clock to the transmitter to synchronize all transfers.

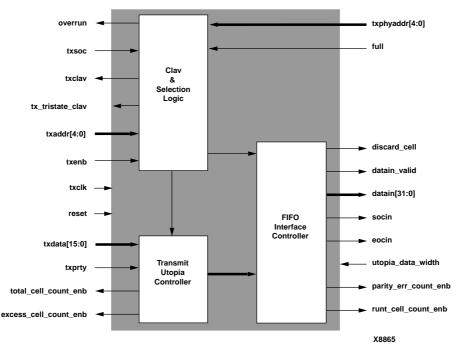



Figure 2: Slave CC143ST Block Diagram

The CC143ST is architecturally divided into the following blocks as shown in Figure 2. The operation of each block is described below.

#### **Clav & Selection Logic**

This block provides Clav status of the PHY port when its address is placed on the txaddr lines. The full status line of PHY ports is used to send the txclav status. The txphyaddr lines specify PHY port address.

The Selection Logic decides whether a PHY port connected to the CC143ST is selected by the ATM layer. It also decides whether it is a valid selection or not and hence avoids the possibility of an overrun condition.

#### Transmit Utopia Controller

This block monitors the handshake on the utopia bus. The txsoc and txprty lines indicate the Start of Cell and the odd parity of the data on the txdata bus respectively. The block calculates the parity and flags an error if it does not match the input parity. Pulses are generated on the statistical count lines to increment counters connected externally, if desired by the user. The txdata lines are configured for 16-bit or 8-bit operations with the utopia\_data\_width signal.

#### FIFO Interface Controller

This block receives data from the Transmit Utopia Controller block and converts it to the 32 bit FIFO interface width. It also validates the data sent to the FIFO through the datain\_valid line. The start of a cell and end of cell to the FIFO is indicated by the socin line and eocin line respectively.

### Receiver

The Receiver, CC143SR, accepts cells from a 32-bit FIFO interface and sends them to the ATM layer. It supports both SPHY and MPHY modes of operation. The Receiver reads data from the FIFO and splits it into Utopia compatible data width. It generates odd parity for data on txprty line, gives FIFO status on rx\_clav line, and detects selection of a port connected to the Receiver by the ATM layer.

In the Receiver operation, data flows from Utopia interface to ATM layer. The ATM layer controls the operation and provides an interface clock to synchronize all transfers.

CC143SR is architecturally divided into the following blocks shown in Figure 3. The operation of each block is described below.

#### **Clav and Selection Logic**

This block is responsible for sending the Clav status of the addressed port to the Utopia interface. It is also responsible for the selection of FIFO from which data transfer to the Utopia side is to be made.

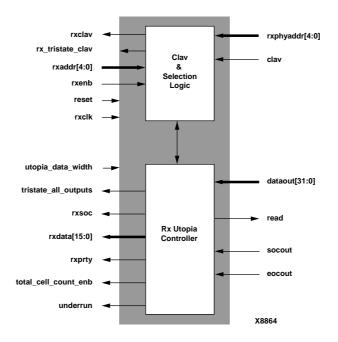



Figure 3: Slave CC143SR Block Diagram

The Clav indication and port selection are two entirely independent entities, operating in parallel.

#### **Rx Utopia Controller**

This block controls the data flow to Utopia. It sends data in the defined width format on the Utopia side. Start of Cell, synchronized with the first data transfer, is also sent. Cell count can be maintained on the Utopia side externally by the use of total\_cell\_count\_enb signal that pulses high at the start of every cell transfer. This block provides an odd parity of data on the rxdata bus and indicates it on the rxprty.

## **Core Modifications**

Normally, modifications are not possible by the user since the core is provided in a Xilinx netlist format. CoreEl can perform special modifications for additional charge. However, source code, where the customer can make modifications is available for an additional cost. Contact CoreEl Microsystems for more information.

## **Pinout**

The pinout is not fixed to any specific device I/O. Signal names for transmitter and receiver UTOPIA blocks are provided in the block diagrams shown in Figures 2 and 3 and described in Tables 1 and 2, respectively.

## **Verification Methods**

This core has been used in larger ASICs and is silicon proven. The FPGA verification was done by back annotating the implementation and simulating in a model technology V-System, V 4.6f, environment.

The testbench was written in VHDL with very powerful scripting capabilities and several scripts have been written for verifying the implementation. Additional tests can be added to the testbench by writing new scripts.

# Recommended Design Experience

The following experience is recommended for the user to implement a complete design with CC143S:

- · Familiarity with the FPGA architecture
- · Familiarity with simulation, synthesis, and Xilinx tools
- Knowledge of the ATM and B-ISDN (Broadband ISDN) will be an added advantage

#### Table 1: Transmitter Utopia Block Signal Pinout

| Signal                   | Signal<br>Direction | Description                                                                                                                                            |
|--------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitter Uto          | oia Interfa         | ce Signals                                                                                                                                             |
| txclk                    | Input               | Transmit Utopia Clock.                                                                                                                                 |
| txclav                   | Output              | Active High. Indicates avail-<br>ability of space for complete<br>cell in addressed FIFO.                                                              |
| tx_tristate_clav         | Output              | Active High Tristate. En-<br>ables txclav buffer when low.                                                                                             |
| txaddr[4:0]              | Input               | 5-bit wide address driven<br>from ATM layer to poll and<br>select appropriate PHY de-<br>vice. txaddr[4] is MSB.                                       |
| txenb                    | Input               | Enable. Active low signal,<br>validates data on txdata<br>lines.                                                                                       |
| txdata[15:0]             | Input               | 16-bit Utopia data bus driven<br>from ATM to PHY. txdata[15]<br>is MSB, txdata[0] is LSB in<br>16-bit data path.                                       |
| txsoc                    | Input               | Start of Cell. Active high sig-<br>nal indicates start of new cell.                                                                                    |
| txprty                   | Input               | Data Path Parity. txprty<br>serves as odd parity bit over<br>txdata [7:0] in 8-bit mode and<br>as odd parity bit over txdata<br>[15:0] in 16-bit mode. |
| Transmit FIFO Ir         | nterface Si         | gnals                                                                                                                                                  |
| full                     | Input               | Active High. Indicates that<br>Cell FIFO is not ready to ac-<br>cept complete cell.                                                                    |
| datain[31:0]             | Output              | 32-bit data bus to Transmit<br>PHY layer Cell FIFO.                                                                                                    |
| datain_valid             | Output              | Active High signal. Validates data on datain bus.                                                                                                      |
| socin                    | Output              | Pulse High Synchronous<br>with first data transfer to<br>FIFO.                                                                                         |
| eocin                    | Output              | Pulse high synchronous with last data transfer to FIFO.                                                                                                |
| discard_cell             | Output              | Active High. Pulses high<br>upon reception of either pari-<br>ty error cell or runt cell on last<br>FIFO-side data transfer.                           |
| Statistics Signal        | ls                  |                                                                                                                                                        |
| runt_cell_count_<br>enb  | Output              | Pulses high when a runt cell is detected                                                                                                               |
| parity_err_count<br>_enb | Output              | Pulses high when a parity er-<br>ror is detected during cell<br>transmission                                                                           |

#### Table 1: Transmitter Utopia Block Signal Pinout (Cont)

| Signal                    | Signal Direction | Description                                                                                                                                       |
|---------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| total_cell_count<br>_enb  | Output           | Pulses high when a Start Of Cell is detected                                                                                                      |
| excess_cell_cou<br>nt_enb | Output           | Pulses high when an excess byte cell is detected                                                                                                  |
| overrun                   | Output           | Active high. When high indi-<br>cates that the ATM layer is<br>selecting a PHY port whose<br>FIFO is full.                                        |
| Configuration Signals     |                  |                                                                                                                                                   |
| txphyaddr[4:0]            | Input            | 5-bit Physical Port Address                                                                                                                       |
| utopia_data_wid<br>th     | Input            | Data width configuration sig-<br>nal for the Utopia side data<br>bus. '1' indicates a 16-bit<br>bus, '0' indicates an 8-bit bus<br>- txdata[7:0]. |
| reset                     | Input            | Active high asynchronous re-<br>set                                                                                                               |

## **Available Support Products**

The support tools or related products that are available to help the user to integrate the CoreCell are listed below. These products must be purchased separately.

- Utopia Slave test bench
- Utopia Master CoreCell
- Utopia Master test bench

## **Ordering Information**

For information on this or other products mentioned in this specification, contact CoreEl MicroSystems directly from the information provided on the front page.

## **Related Information**

RFC documents can be downloaded from several websites, including:

sunsite.auc.dk/RFC/ ftp.digital.com/pub/net/info/RFC/ds.internic.net/rfc/

| Table 2: Receiver | Utopia | Block Signal | Pinout |
|-------------------|--------|--------------|--------|
|-------------------|--------|--------------|--------|

| Signal                   | Signal Direction      | Description                                                                                                                                       |  |  |
|--------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Receiver Utopia          | Interface             | Signals                                                                                                                                           |  |  |
| rxclk                    | Input                 | Receive Utopia Clock.                                                                                                                             |  |  |
| rxclav                   | Output                | Active High. Indicates avail-<br>ability of complete cell in ad-<br>dressed FIFO.                                                                 |  |  |
| rx_tristate_clav         | Output                | Active high tristate. Enables rxclav buffer when low.                                                                                             |  |  |
| rxaddr[4:0]              | Input                 | Utopia bus address lines.                                                                                                                         |  |  |
| rxenb                    | Input                 | Active low. Controls data flow from PHY to ATM layer.                                                                                             |  |  |
| rxsoc                    | Output                | Active High. Indicates start of data transmission cell.                                                                                           |  |  |
| rxdata[15:0]             | Output                | 16-bit Utopia Data Bus.                                                                                                                           |  |  |
| rxprty                   | Output                | Sends parity bit for current<br>word/byte being sent to ATM<br>side. Indicates odd parity for<br>data on rxdata bus.                              |  |  |
| tristate_all_outp<br>uts | Output                | Active High Tristate. When<br>low, rxsoc, rxdata, and rxprty<br>signal buffers are enabled.                                                       |  |  |
| FIFO Interface S         | ignals                |                                                                                                                                                   |  |  |
| clav                     | Input                 | Active High. Indicates avail-<br>ability of complete FIFO cell.                                                                                   |  |  |
| dataout[31:0]            | Input                 | 32-bit data lines: carry data from FIFO to CC143SR.                                                                                               |  |  |
| read                     | Output                | Active High. Is the read en-<br>able signal to the FIFO con-<br>nected.                                                                           |  |  |
| socout                   | Input                 | Active high. Indicates start of<br>FIFO cell transfer.                                                                                            |  |  |
| rxphyaddr [4:0]          | Input                 | 5-bit Physical Port Address.                                                                                                                      |  |  |
| eocout                   | Input                 | Active High. Indicates end of<br>FIFO cell transfer.                                                                                              |  |  |
| Statistics Signal        | ls                    |                                                                                                                                                   |  |  |
| totalcell_count_<br>enb  | Output                | Active High. Pulses high upon start of cell transfer.                                                                                             |  |  |
| underrun                 | Output                | Active High: indicates that<br>ATM layer is selecting a PHY<br>port with empty FIFO.                                                              |  |  |
| Configuration S          | Configuration Signals |                                                                                                                                                   |  |  |
| reset                    | Input                 | Active High. Asynchronous reset.                                                                                                                  |  |  |
| utopia_data_wid<br>th    | Input                 | Data width configuration sig-<br>nal for the Utopia side data<br>bus. '1' indicates a 16-wide<br>bus, '0' indicates an 8-bit bus<br>-rxdata[7:0]. |  |  |

#### Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 URL: www.xilinx.com For general Xilinx literature, contact:

Phone: +1 800-231-3386 (inside the US) +1 408-879-5017 (outside the US)

E-mail: literature@xilinx.com

For AllianceCORE<sup>TM</sup> specific information, contact:

- Phone: +1 408-879-5381
- E-mail: alliancecore@xilinx.com
- URL: www.xilinx.com/products/logicore/alliance/ tblpart.htm