
Summary Pseudo-random Noise (PN) generators are at the heart of every spread spectrum system.
Many PN generators are required within Code Division Multiple Access (CDMA) base stations.
PN generators are used to implement synchronization and uniquely code individual user
signals across the transmission interface. PN generators are based upon Linear Feedback
Shift Registers (LFSRs). Every Look-Up-Table (LUT) in a Virtex device can be configured as
a 16-bit shift register (SRL16 macro). Hence, Virtex devices implement efficient LFSRs and
deliver a significant reduction in resource utilization when compared with alternative flip-flop
only PLD structures. For example, a 16-stage LFSR can be realized in just one LUT.

Introduction Code Division Multiple Access (CDMA) systems are based upon several forms of spread
spectrum techniques, the most popular being Direct Sequence Spread Spectrum (DS-SS).

Within a DS-SS system, the data being transmitted is spread across a wide radio spectrum
using a pseudo random binary sequence unique to each user. Every data bit of a user signal is
multiplied by many bits of a pseudo random binary sequence. This sequence is created by a
PN generator and often referred to as a PN-Code.

The PN-Codes used within a CDMA system posses mathematical properties that enable them
to coexist in the same spectrum with minimal interference. It is these properties that enable
multiple users to exist in the same radio spectrum and hence leads to the term Multiple Access
in CDMA.

It is the intention of this application note to discuss some of the terminology associated with PN
Generators and demonstrate how they can be implemented in an area efficient manner using
the Virtex SRL16 macro.

PN Generators A Pseudo-random Noise (PN) sequence/code is a binary sequence that exhibits randomness
properties but has a finite length and is therefore deterministic.

There are three uses for PN sequences in DS-SS applications:

1. Spreading the bandwidth of the modulated signal over a wide radio spectrum.

2. Uniquely coding the different user signals that occupy the same transmission bandwidth in
a multi-access system.

3. Synchronization for W-CDMA systems where there is no global timing reference.

In order to achieve these objectives, the coding sequences require special correlation
properties referred to as auto correlation, and cross correlation.

Auto Correlation
Auto correlation is a measure of how well a signal f (t) can differentiate between itself and every
time-shifted variant of itself.

Consider a data word of period seven bits at time δt = 0 (Table 1). If the 7-bit code were to be
repeating within a discrete system then there are only six time-shifted replicas of the word,
(shown in Table 1 for time δt = 1 to δt = 6). If each bit of the original (δt = 0), is compared with

Application Note: Virtex Series and Spartan-II Family

XAPP211 (v1.0) February 4, 2000

PN Generators Using the SRL Macro
Author: Andy Miller and Michael Gulotta

R
XAPP211 (v1.0) February 4, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at
http://www .xilinx.com/legal.htm . All other trademarks and registered trademarks are the property of their respective owners.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

PN Generators Using the SRL Macro R
each bit of every time-shifted replica, then there are a number of agreements (A), and
disagreements (D), that when subtracted provide a measure of how closely the two words
match (correlate).

In Table 1, the sequence "1110010" has a good auto correlation property as it provides a clear
difference in the correlation value between itself and any time-shifted variant of itself.

In Table 2, the sequence "1111000" has the same number of bits, but the auto correlation
property is not as good as there are some clear rejections of a match (correlation value = −5),
and there are some "fuzzy" conditions where the time-shifted replica almost matches,
(correlation value = 3).

Cross Correlation
Cross correlation is defined as the correlation between two different signals. Cross correlation
is also calculated by subtracting the disagreements from the agreements, between two
different sequences as opposed to the time-shifted replicas of the same signal.

Uniquely Coding the Different User Signals
In a CDMA system, each one of the multiple user signals in the receiver is assigned a unique
PN code that behaves like a "key". From the examples in Table 1 and Table 2 it is evident that
some sequences of the same length have better auto correlation properties than others and
these special PN sequences are the ones used to code user signals in the system.

It is important to use a set of PN sequences that have a small cross correlation between each
other in order to reduce an effect called adjacent channel interference. If the cross correlation
between two PN sequences or "keys" is not small, there is a possibility that data coded from
one user is incorrectly identified and assigned to another user because the two keys had a
reasonable correlation.

Research on small cross correlation PN sequences, have been carried out by many individuals
but code sets identified by Kasami, R. Gold and Walsh are used throughout the IS-95 and
UMTS W-CDMA systems.

Table 1: Auto Correlation Example

Sequence Time Shift (A) (D) (A −D)

1110010 δt = 0 7 0 7

 0111001 δt = 1 3 4 −1

 1011100 δt = 2 3 4 −1

 0101110 δt = 3 3 4 −1

0010111 δt = 4 3 4 −1

1001011 δt = 5 3 4 −1

 1100101 δt = 6 3 4 −1

Table 2: Auto Correlation Example

Sequence Time Shift (A) (D) (A −D)

1111000 δt = 0 7 0 7

0111100 δt = 1 5 2 3

 0011110 δt = 2 3 4 −1

 0001111 δt = 3 1 6 −5

1000111 δt = 4 1 6 −5

1100011 δt = 5 3 4 −1

 1110001 δt = 6 5 2 3
2 www.xilinx.com XAPP211 (v1.0) February 4, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com

PN Generators Using the SRL Macro R
When reviewing technical system specifications that require the use of PN generators or
LFSRs, it is usual to find comments such as "codes from the Kasami set of Length…" or "Gold
sequences generated with two polynomials of degree 41", or simply "x(n) = 1 + X3 + X7".

The next section reviews some of the terminology associated with LFSRs in order to help
match the system level definition to an architectural implementation.

LFSR
Terminology

The heart of the PN generator is the LFSR. LFSRs sequence through (2N − 1) states, where N
is the number of registers in the LFSR. The contents of the registers are shifted right by one
position at each clock cycle. The feedback from predefined registers or taps to the left most
register are XOR-ed together.

LFSRs have several variables:

• The number of stages in the shift register.

• The number of taps in the feedback path.

• The position of each tap in the shift register stage.

• The initial starting condition of the shift register often referred to as the "FILL" state

Shift Register Length (N)

This is often referred to as the degree, and in general, the longer the shift register, the longer
the duration of the PN sequence before it repeats. For a shift register of fixed length N, the
number, and duration of the sequences that it can generate, are determined by the number,
and position of taps used to generate the "parity" feedback bit.

Shift Register Taps

The combination of taps and their location is often referred to as a polynomial, and expressed
as:

P(x) = 1 + X3 + X7

Where X3 is the output of register stage 3 and X7 the output of register stage 7. The leading "1"
represents X0, which is the input to the shift register.

A couple of points to be noted about LFSRs and the polynomial used to describe them are:

• The last tap of the shift register is always used in the shift register feedback path. Hence
the length of the shift register can be deduced from the polynomial.

• The "1" in the polynomial is the signal connecting the final "XOR" output to the shift
register input. It does not feed back into the parity calculation along with the other taps
identified in the polynomial.

Maximal Length Sequences (L)

A maximal length sequence for a shift register of length N is referred to as an m-sequence, and
is defined as:

L = 2N − 1

e.g., An eight stage LFSR will have a set of m-sequences of length 255.

Correlation Properties

There are many combinations of taps that produce small cross correlation m-sequences.
Consequently it is possible to define a set of taps that produce a collection of small cross
correlation m-sequences for a constant length shift register. Kasami, Walsh, and Gold are
recognized for the identification of small cross correlation maximal length PN codes.

The number of independent m-sequences (S), for a given length of shift register is defined by:

 S ≤ (L − 1) ÷ N
XAPP211 (v1.0) February 4, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

PN Generators Using the SRL Macro R
Gold Code
Generator

The essence of a Gold Code generator (Figure 1) is that the outputs from two same-length
LFSRs loaded with paired factor codes are XOR'd to create a new family of codes suited for use
within CDMA systems. At the system level, a Gold Code generator is usually described by two
polynomials that indicate the LFSR structure to be implemented.

The remainder of this application note considers the implementation of LFSRs in the Virtex
series and Spartan-II family of FPGAs.

LFSRs
Implemented in
Virtex Devices

Each Virtex LUT, implements a 16-stage delay with the ability to connect any one of the 16
delay stages to the LUT output under control of the four address lines (A[3:0]). This mode of the
LUT configuration can be accessed with an SRL16 primitive. In this mode, each LUT is
effectively implementing a 16-stage shift register. This primitive will shift data on every clock
cycle. A second primitive (SRL16E), provides the same shift register functionality with a shift
register Clock Enable. Both the SRL16 and SRL16E implement area-efficient shift registers in
one LUT with one data output pin (Figure 2).

Figure 1: Gold Code Generator

LFSR 1

LFSR 2

Gold Code Out

x211_01_012400

Figure 2: SRL16/E

Q0Q0

Q15Q15

Q14

Q1

SRL16E

16 configuration SRAM cells
connected as a 16-stage shift register

16:1 MUX provides a
selectable tap point

within the LUT

Virtex CLB

DIN

A1
A2
A3

A0

CE
CLK

DOUT

LUT FF

LUT FF

LUT FF

LUT FF

Slice Slice

x211_02_102800
4 www.xilinx.com XAPP211 (v1.0) February 4, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com

PN Generators Using the SRL Macro R
Multiple Shift Registers with Parallel Tap Access and Parity Calculation
A 16-stage LFSR with four selectable tap points can be designed with four SRL16 primitives as
shown in Figure 3. An additional four input LUT is used to implement a parallel XOR parity
calculation that is then fed back into the shift register as the new bit in the sequence. Tap D is
the last stage in the shift register and so represents the LFSR output. The whole circuit is either
clocked at a frequency known as the "chip rate", or clocked by a higher frequency clock and
enabled at the "chip rate".

Figure 3: Parallel 16-stage 4-tap LFSR

Each SRL16E implements one
16-stage shift register with a
programmable TAP point

LFSR polynomial:
g(x) = 1 + X2 + X3 + X4 + X8

Q0Q0

Q15Q15

Q14

Q1

SRL16E
DIN

A1
A2
A3

A0

CE
CLK

Tap A

Tap B Tap D

Tap C

Tap C

Tap D

Tap B

Tap A

Q0Q0

Q15Q15

Q14

Q1

SRL16E

Parity
Generator

DIN

A1
A2
A3

A0

CE
CLK

Q0Q0

Q15Q15

Q14

Q1

SRL16E

Slice S0 Slice S1

DIN

A1
A2
A3

A0

CE
CLK

Q0Q0

Q15Q15

Q14

Q1

SRL16E
DIN

A1
A2
A3

A0

CE
CLK

X3

0
1
0
0

X2

1
0
0
0

X8

X8

1
1
1
0

X4

1
1
0
0

x211_03_020300

PN_SEQUENCE Output

7 6 5 4 3 2 1 0

X7 X6 X5 X4 X3 X1X2 X0
XAPP211 (v1.0) February 4, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

PN Generators Using the SRL Macro R
PN Generator
HDL Code

The Virtex SRL16 macro can be inferred by using synthesis tools. This enables a significant
area reduction to be achieved automatically using HDL code. As an example, the following HDL
code (Table 3) will infer a 64-bit shift register using SRLs rather than FFs.

Using SRLs instead of FFs, this circuit will cost only one Configurable Logic Block (CLB)
instead of 16. With such dramatic savings it is worth looking into ways to use SRLs whenever
possible.

SRL16s implement registers using the configuration memory that have previously been
considered an expensive overhead compared with ASICs. The user can now access those
SRAM cells as part of the design through the use of LUT configuration modes such as
RAM16x1 and the shift register modes SRL16 and SRL16E. The more that these elements can
be bought into the functional operation of the design, the fewer number of dedicated flip-flop
resources are required and so the device utilization can be reduced significantly.

The SRAM cells that form the SRL16 primitive are simple elements, however, there is no
parallel access, nor can they be asynchronously reset. In a PN generator application it is often
necessary to jump out of sequence requiring parallel loading of the LFSR with a predetermined
state. This can still be satisfied with the SRL16 by serially filling the LFSR with a predetermined
state.

Filling the LFSR with an Initial Sequence
To achieve the LFSR serial fill, a mux is required in the LFSR feedback path allowing the loop
to be broken while the predetermined state gets shifted in, as shown in Figure 4. The only
caveat to implementing this pseudo-parallel fill with a serial fill is that the system must know in
advance when the first bit of the new fill code is required to be output from the LFSR. The new
serial fill sequence must be loaded into the LFSR over the same number of clock cycles that
there are stages in the LFSR. The first bit of the new sequence must shift out of the LFSR on
the first clock cycle after a parallel load would have occurred. The feedback path is reconnected
and this first bit of the new sequence now contributes to the feedback bit entering the first stage
of the LFSR.

The PN Generator in Figure 4 has 20 register stages. If a parallel load is required at time T = 0,
then at time T = −20 clock cycles, the feedback path is broken when the signal Fill Sel is
asserted. The shift register now contains the last 20 bits of the old sequence created before the
feedback path was broken. It is unaffected by the feedback path now being disconnected from
the shift register. Over the next 20 cycles from T = −20 to T = 0, the old sequence is shifted out,
and the new fill sequence is shifted in. At T = 0, the new fill sequence has been shifted in, the
feedback path is closed, and the next clock cycle delivers the first bit of the new sequence just
as if the LFSR had been parallel loaded in a single cycle at T = 0.

Table 3: 64-Bit SRL Shift Register

VHDL Verilog

process (clk)

begin

 if clk'event and clk='1' then

 Y <= Y(62 downto 0) & INPUT;

 end if;

end process

Always @(posedge clk) begin

 Y <= {Y[62:0], INPUT};

End
6 www.xilinx.com XAPP211 (v1.0) February 4, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com

PN Generators Using the SRL Macro R
Puncturing and Augmenting
CDMA systems may require additional control of the basic LFSR. "Augmenting" the sequence
with an additional state may be required to achieve 2N states (instead of 2N − 1) in order to
maintain an even modulo count. "Puncturing" the sequence by periodically skipping a state
may be required if only a subset of the total 2N states (e.g., 3 of 4) are required. Control signals
have been provided in the HDL code to allow external circuitry to control such things as filling,
puncturing, and stalling (augmentation).

LFSR Greater Than 16 Stages Long Using Multiple SRL16Es
Figure 5 demonstrates how an LFSR of length greater than 16 stages can be constructed from
multiple SRL16s.

Figure 4: PN Generator

DataIn_i

x211_04_020300

16 15 14 13 12 11 10 9 8 7 6 5 3 2 1 04

FillSel

Clk
ShiftEn

Shift

Pn_out_i

LFSR polynomial:
g(x) = 1 + X4 + X17

Figure 5: 41-stage, 2-tap LFSR with SRL16s

x211_05_020400

Chip Rate Clock

Input
Delayed

by 16

Input
Delayed

by 32

Input
Delayed
by 20

Input
Delayed
by 41

Tap D

Q0Q0

Q15Q15

Q14

Q1

Q0Q0

Q15Q15

Q14

Q1

Q0Q0

Q15Q15

Q14

Q1

Q0Q0

Q15Q15

Q14

Q1

SRL16ESRL16ESRL16E
DINDIN

DIN

DIN

A0
A1
A2
A3

CE

CLK

SRL16E

LUT

CE

CLK

0
0
0
1

0
0
1
0

1
1
1
1

1
1
1
1

1CE

CLK

1

1

CE

CLK

1

Fill Enable

Tap 20
Tap 0

New Fill Data
1

0

LFSR polynomial:
g(x) = 1 + X20 + X41

A0
A1
A2
A3

A0
A1
A2
A3

A0
A1
A2
A3
XAPP211 (v1.0) February 4, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

PN Generators Using the SRL Macro R
HDL Code Verilog and VHDL code examples have been written for the PN Generator module. The PN
Generator provides two spreading sequences for the "I" (In-Phase) and "Q" (Quadrature
phase) channels used in Quadrature Phase Shift Keying (QPSK) modulation schemes. The PN
Generator HDL code therefore implements two LFSRs, one for the "I" channel and one for the
"Q" channel.

In the verilog code, the number of LFSR taps are fixed, however the tap points and LFSR width
are parameterizable. In the VHDL code, the number of taps, as well as, the tap points, and
LFSR width are all parameterizable. The reference design is available on Xilinx’s ftp site at:

ftp://ftp.xilinx.com/pub/applications/xapp/xapp211.zip or xapp211.tar .gz

This code is not necessarily technology specific and can be used to target ASICs or FPGAs.
When targeting Virtex devices however, all the latest synthesis vendors (Leonardo, Synplicity,
and FPGA Express) will infer the shift register LUTS (SRL16) resulting in a very efficient
implementation. Table 4 is a comparison of performance and utilization results using all three
synthesis tools.

Conclusion The Virtex architecture is very efficient for creating PN generators by using the SRL. The SRL
can also be used in many other applications such as pipe-line balancing, filters, dividers, and
even waveform generators. In large systems, such as CDMA, the overall FPGA utilization can
be reduced considerably by taking advantage of the SRL, which can lead to smaller, fewer, and
less expensive parts. With only a basic understanding of the SRL, along with Virtex device
friendly synthesis tools, these savings are easily accomplished without sacrificing code
portability.

Revision
History

The following table shows the revision history for this document.

Table 4: Performance/Utilization of an XCV50-6 Device

Design
Implementation

Synopsys
FPGA Express

v3.3

Synplicity
Synplify
v5.2.2a

Exemplar
Leonardo v1999.1g

Utilization
SRL16 6 slices 6 slices 6 slices

Flip-Flops 24 slices 23 slices 24 slices

Performance SRL16 178 MHz(2) 180 MHz(2) 220 MHz (1)

Notes:
1. Leonardo implements the design in just two levels of logic because the MUX, F5 in the Virtex slice, is

inferred for the FillSelect MUX (shown in Figure 5).
2. Both FPGA Express and Synplify implement the design in 4 levels of logic because the MUX, F5 is not

inferred for the FillSelect MUX (shown in Figure 5).

Date Version Revision

2/4/00 1.0 Initial Xilinx release.
8 www.xilinx.com XAPP211 (v1.0) February 4, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp211.zip
message URL ftp://ftp.xilinx.com/pub/applications/xapp/xapp211.tar.gz

	Summary
	Introduction
	PN Generators
	Auto Correlation
	Cross Correlation
	Uniquely Coding the Different User Signals

	LFSR Terminology
	Shift Register Length (N)
	Shift Register Taps
	Maximal Length Sequences (L)
	Correlation Properties

	Gold Code Generator
	LFSRs Implemented in Virtex Devices
	Multiple Shift Registers with Parallel Tap Access and Parity Calculation

	PN Generator HDL Code
	Filling the LFSR with an Initial Sequence
	Puncturing and Augmenting
	LFSR Greater Than 16 Stages Long Using Multiple SRL16Es

	HDL Code
	Conclusion
	Revision History

