
Summary

The Xilinx high performance CPLD and FPGA families provide in-system programmability, reliable pin locking, and JTAG
boundary-scan test capability. This powerful combination of features allows designers to make significant changes and yet
keep the original device pinouts, eliminating the need to re-tool PC boards. By using an embedded controller to program
these CPLDs and FPGAs from an on-board RAM or EPROM, designers can easily upgrade, modify, and test designs, even
in the field.

Xilinx Families

XC9500, XC9500XL, XC9500XV, XC4000, Spartan, Virtex

Introduction
The Xilinx CPLD and FPGA families combine superior per-
formance with an advanced architecture to create new
design opportunities that were previously impossible. The
combination of in-system programmability, reliable pin lock-
ing, and JTAG test capability gives the following important
benefits:

• Reduces device handling costs and time to market.
• Saves the expense of laying out new PC boards.
• Allows remote maintenance, modification, testing.
• Increases the life span and functionality of products.
• Enables unique, customer-specific features.

The ISP controller shown in Figure 1 can help designers
achieve these unprecedented benefits by providing a sim-
ple means for automatically programming Xilinx CPLDs
and FPGAs from design information stored in EPROM.
This design is easily modified for remote downloading
applications and the included C-code can be compiled for
any microcontroller.

To create device programming files, Xilinx provides the
JTAG ProgrammerTM software that automatically reads
standard JEDEC/BIT device programming files and con-
verts them to SVF format which contains both data and pro-
gramming instructions for the CPLDs and FPGAs; it reads
JEDEC files for CPLDs and BIT files for FPGAs. These files
are then converted to a compact binary format (XSVF) and
can be stored in the on-board EPROM. The 8051 micro-
controller interprets the XSVF information and generates
the programming instructions, data, and control signals for
the Xilinx devices.

By using a simple IEEE 1149.1 (JTAG) interface, Xilinx
devices are easily programmed and tested without using
expensive hardware. Multiple devices can be daisy-
chained, permitting a single 4-wire Test Access Port (TAP)
to control any number of Xilinx devices or other JTAG-com-
patible devices.

Xilinx In-System Programming
Using an Embedded Microcontroller

XAPP058 June 1999 (Version 2.0) 1 Application Note

8051 74x373

Figure 1: ISP Controller Schematic

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
WR
RD
XTL1
XTL2

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
EA

ALE
PSEN

P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0

TCK
TMS
TDI
TDO

3
18
4

17
7

14
8

13

2
19
5
16
6
15
9
12

AD7

AD0

CP
30

OE 1

Data Bus (D0-D7)

31

29

Address Bus (A8-A15)

In Out

+5+5
Test

Access
Port

Address Bus (A0-A7)

Program
8051

Memory

Xilinx
Data

Memory

RDPSEN

to
XC9500/XL

28
27
26
25
24
23
22
21

38
37
36
35
34
33

1
2
3
4

17
18
19

1110

5Mhz

0.1uf

APPLICATION NOTE
XAPP058 June 1999 (Version 2.0) 1-1

R

Xilinx In-System P rogramming Using an Embedded Mic rocont roller
Programming Xilinx CPLDs and
FPGAs
Serial Vector Format (SVF) is a syntax specification for
describing high level IEEE 1149.1 (JTAG) bus operations.
SVF was developed by Texas Instruments and has been
adopted as a standard for data interchange by JTAG test
equipment and software manufacturers such as Teradyne,
Tektronix, and others. Xilinx CPLDs and FPGAs accept
programming and JTAG boundary-scan test instructions in
SVF format, via the TAP. The timing for these TAP signals is
shown in Figure 9 on page 16.

The JTAG Programmer software automatically converts
standard JEDEC/BIT programming files into SVF format.
However, the SVF format is ASCII which is inefficient for
embedded applications due to its memory requirements.
Therefore, to minimize the memory requirements, SVF is
converted into a more compact (binary) format called
XSVF. In this design, an 8051 C-code algorithm interprets
the XSVF file and provides the required JTAG TAP stimulus
to the CPLD, performing the programming and (optional)
test operations which were originally specified in the SVF
file.

Note: For a description of the SVF and XSVF commands and
file formats, see See “Appendix A” on page 19.
and See “Appendix B” on page 21..

The flow for creating the programming files that are used
with this design, is shown in Figure 2.

JTAG Instruction Summary
Xilinx devices accept both programming and test instruc-
tions via the JTAG TAP. The JTAG commands used for pro-
gramming and functional test.

Instructions supported by all devices:
• EXTEST - Isolates the device I/O pins from the internal

device circuitry to enable connectivity tests between
devices. It uses the device pins to apply test values and
to capture the results.

• INTEST - Isolates the device from the system, applies
test vectors to the device input pins, and captures the
results from the device output pins.

• SAMPLE/PREL OAD - Allows values to be loaded into
the boundary scan register to drive the device output
pins. Also captures the values on the input pins.

• BYPASS - Bypasses a device in a boundary scan chain
by functionally connecting TDI to TDO.

Instructions common to CPLD and some FPGAs:
• EXTEST - Isolates the device I/O pins from the internal

device circuitry to enable connectivity tests between

devices. It uses the device pins to apply test values and
to capture the results.

• IDCODE - Returns a 32-bit hardwired identification
code that defines the part type, manufacturer, and
version number.

• HIGHZ - Causes all device pins to float to a high
impedance state.

Instructions supported by XC4000/Spartan only:
• CONFIGURE - Allows access to the configuration bus

for configuration.
• READBACK - Allows access to the configuration bus

for readback.

Instructions supported by Virtex only:
• CFG_IN/CFG_OUT - Allows access to the configuration

bus for configuration and readback.
• JSTART - Clock the startup sequence when startup

clock = JTAGCLK.

Commands supported by CPLDs only:
• ISPEN - Enables the ISP function in the XC9500/XL/XV

device, floats all device function pins, and initializes the
programming logic.

• FERASE - Erases a specified program memory block.
• FPGM - Programs specific bit values at specified

addresses. An FPGMI instruction is used for the
XC95216 and larger devices which have automatic
address generation capabilities.

• FVFY - Reads the fuse values at specified addresses.
An FVFYI instruction is used for the XC95216 and
larger devices which have automatic address
generation capabilities.

• ISPEX - Exits ISP Mode. The device is then initialized
to its programmed function with all pins operable.

The following instructions are also available but are not
used for programing or functional test:

Instructions specific to CPLDs:
• USERCODE - Returns a 32-bit user-programmable

code that can be used to store version control
information or other user-defined variables.

Instructions specific to XC4000/Spartan
• USER1/USER2 - These instructions allow capture, shift

and update of user-defined registers.

Instructions specific to Virtex:
• USR1/USR2 - These instructions allow capture, shift

and update of user-defined registers.
• BUS_RST - Provides a mechanism to reset the

configuration bus through JTAG.
1-2 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
Creating an SVF File Using JTAG Programmer

This procedure describes how to create an SVF file; it
assumes that Xilinx Foundation or Alliance series software
version 1.5 or newer is being used. These software pack-
ages included the Xilinx CPLD fitter and JTAG Programmer
software.

JTAGProgrammer is supplied with both a graphical and
batch user interface. The batch user interface executable is
typically named “jtagprog” and the graphical user interface
is named “jtagpgmr”. The graphical tool is always launched
from the Design Manager or Project Manager. The batch
tool is available by opening a shell and invoking “jtagprog”
on the command line.

Using the batch download tool to generate SVF files.

1. Fit the design and create a JEDEC/BIT programming
file.

2. Invoke the batch JTAG Programmer tool from the com-
mand line in a new shell:

jtagprog –svf

The following messages appear:

JTAGProgrammer: version <Version Number>
Copyright: 1991-1998

Sizing system available memory...done.

Using CPLD Fitter

Using JTAGProgrammer

Using svf2xsvf

Output

in JEDEC Format

Convert JEDEC

to SVF

Convert SVF

to XSVF

Program EPROM

with XSVF Code

Create The
Design Using Foundation S/W or

Programming File

any compatible tool

Create Intel
Hex File

Fit Design

Figure 2: CPLD Program Flow

Using JTAGProgrammer

Using svf2xsvf

Convert BIT

to SVF

Convert SVF

to XSVF

Program EPROM

with XSVF Code

Create The
Design

Create Intel
Hex File

Figure 3: FPGA Program Flow

MAP

PAR

BITGEN
XAPP058 June 1999 (Version 2.0) 1-3

R

Xilinx In-System Programming Using an Embedded Microcontroller
*** SVF GENERATION MODE ***
[JTAGProgrammer::(1)] >

3. Set up the device types and assign design names. To do
this type following command at the JTAG Programmer
prompt:

part deviceType1:designName1
deviceType2:designName2 …
devic eTypeN:designNameN <CR>

where deviceType is the name of the BSDL file without the
.bsd extension for that device and designName is the
name of the design to translate into SVF. Multiple device-
Type:designName pairs are separated by spaces. For
example:

part xc95108:abc12 xc95216:ww133

The “part” command defines the composition and ordering
of the boundary-scan chain. The devices are arranged with
the first device specified being the first to receive TDI infor-
mation and the last device being that which provides the
final TDO data.

Note: For any non-Xilinx devices in the boundary-scan chain,
make certain that the BSDL file is available either
in the XILINX variable data directory or by
specifying complete path information in the
deviceType. The designName in this case can be
any arbitrary name.

4. Execute the required boundary-scan or ISP operation in
JTAG Programmer

- erase [-fh] designName – generates an SVF file to
describe the boundary-scan sequence to erase the
specified part. The –f flag is used to generate an
erase sequence that overrides write protection on
devices. The –h flag is used to specify that all other
parts (i.e., not designName) in the boundary-scan
chain should be held in the HIGHZ state during the
erase operation.

- verify [-h] designName [-j jedecFileName] –
generates an SVF file to describe the boundary-scan
sequence to read back the device contents and
compare it against the contents of the specified
JEDEC file. The JEDEC file defaults to be
designName.jed in the current directory or may be

alternatively specified using the –j flag. The –h flag is
used to specify that all other parts (i.e., not
designName) in the boundary-scan chain should be
held in the HIGHZ state during the verify operation.

- program [-bh] designName –j [jedecFileName/
bitFileName] - generates an SVF file to describe the
boundary-scan sequence to program the device
using that programming data specified JEDEC/BIT
file. The JEDEC/BIT file defaults to be
designName.jed or designName.bit in the current
directory or may be alternatively specified using the
–j flag. The –h flag is used to specify that all other
parts (i.e., not designName) in the boundary-scan
chain should be held in the HIGHZ state during the
programming operation. The –b flag instructs the
programming operations to erase the device. This is
useful when programming devices shipped from the
factory which are always delivered blank.

- partinfo [-h] –idcode designName - generates an
SVF file to describe the boundary-scan sequence to
read back the 32 bit hard-coded device IDCODE.
The –h flag is used to specify that all other parts (i.e.,
not designName) in the boundary-scan chain should
be held in the HIGHZ state during the IDCODE
operation.

- partinfo [-h] –signature designName - generates
an SVF file to describe the boundary-scan sequence
to read back the 32 bit user-programmed device
USERCODE. The –h flag is used to specify that all
other parts (i.e., not designName) in the boundary-
scan chain should be held in the HIGHZ state during
the USERCODE operation.

5. Exit JTAG Programmer

You will exit JTAG Programmer by entering the following
command:

Quit
Note: The SVF file will be named designName.svf and will be

created in the current working directory.
Consecutive operations on the same designName
will append to the SVF file. To create SVF files with
separate operations in each, you will need to
rename the SVF file after each operation by exiting
to the system shell.
1-4 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
Using the graphical user interface to generate SVF files

1. Fit the design and create a JEDEC programming file.

2. Double-click on the JTAG Programmer icon or open a
system shell and type “jtagpgmr’. The JTAG Program-
mer will appear in Figure 4.

3. Instantiate your boundary-scan chain. You may do this
by one of two ways. The first is to manually add each
device in the correct boundary-scan order from system
TDI to system TDO.

Selecting Edit->Add device for each device as it exists
in the boundary-scan chain in Figure 5.

Fill in the device properties dialog to identify the
JEDEC/BIT (if it is a Xilinx device) or BSDL (if it is not
an Xilinx device) file associated with the device that you
are adding.

Note: That the device type and JEDEC file name will appear
below the added device.

The second method is to allow JTAG Programmer to query
the boundary-scan chain for devices and their ordering and
then fill in the JEDEC and BSDL file information. This
method will only work when you have the target system

connect to your computer and powered up. The steps are
then as follows:

- Select File->Initialize chain.
- Perform no operations on the devices other than

those specified.
- JTAG Programmer will display the boundary-scan

chain configuration as shown in Figure 6.

- Then for each device in the resulting chain, double
click on the chip icon to bring up the device
properties dialog and select the JEDEC or BSDL file
associated with that device.

4. Put the JTAG Programmer into SVF mode by selecting
Output->Create SVF file… to create a new SVF file or
Output->Append to SVF file… to append to an existing
SVF file. Fill in the SVF file dialog with the desired name
of the target SVF file to be created.

Note: Once you enter SVF mode the composition of the
boundary-scan chain cannot be edited in order to
ensure consistency of the boundary-scan data in
the SVF file.

5. Highlight one of the devices by clicking on it once with
the mouse then select any of the enable operations for
the Operations pull down to generate an SVF file to
describe the boundary-scan sequence to accomplish
the requested operation.

6. When you have completed the required operations you
may exit JTAG Programmer by selecting File->Exit.

Note: You may select the “Use HIGHZ instead of BYPASS”
option from the File->Preferences… dialog to
specify that all other parts (i.e., not the device
selected) in the boundary-scan chain should be
held in the HIGHZ state during the requested
operation.

To generate separate SVF file for each operation you will
have to perform the following steps between operations:

1. Select Output->Use Cable…

2. On the Cable Communications Dialog select Cancel

Figure 4: JTAGProgrammer

Figure 5: Add Device

Figure 6: Boundary-scan Chain
XAPP058 June 1999 (Version 2.0) 1-5

R

Xilinx In-System Programming Using an Embedded Microcontroller
3. Select Output->Create SVF File…

4. Choose a new SVF file and proceed normally.

EPROM Programming
To program an EPROM, the binary XSVF file must be con-
verted to an Intel Hex or similar PROM format file. Most
embedded processor development system software will
automatically convert included binary files to the appropri-
ate format. Public domain file conversion software is also
available, as shown in See “Appendix D” on page 51..

Software Limitations
JTAG Programmer can generate SVF files only for devices
for which JEDEC/BIT files can be created. Designers
should verify that the development software they are using
can create JEDEC/BIT files for the specific devices they
intend to use.

The current software can only generate SVF files for oper-
ations on one part at a time. If there are several parts to be
programmed, additional program commands must be exe-
cuted — one for each part, creating multiple SVF files. In
each SVF file, one device will be programmed while the
others are held in bypass mode.

Hardware Design
As shown in Figure 1 on page 1, this design requires only
an 8051 microcontroller, an address latch, and enough
EPROM or RAM to contain both the 8051 code and the
CPLD/FPGA programming data.

Hardware Design Description
The 8051 allows 64K of program and 64K of data space;
much more than is needed in this application. However the
ability to separate address and data space is used to sim-
plify the addressing scheme.

The 8051 multiplexes port 0 for both data and addresses.
The ALE signal causes the 74x373 to latch the low order
address, and the high order address is output on port 2.
Port 0 then floats, allowing the selected EPROM to drive
the data inputs. Then the PSEN signal goes low to activate
an 8051 program read operation, or the RD signal goes low
to activate a CPLD programming data read operation.

Estimated EPROM Memory Requirements
Table 1 shows the estimated EPROM capacity needed to
contain both the 8051 code and the XC9500/XL program-
ming data. The XSVF file sizes are shown for an erase and
program operation.

Table 1: XSVF File Sizes

The XSVF file sizes are dependent only on the device type,
not on the design implementation. If further compression of
the XSVF file is needed, a standard compression tech-
nique, such as Lempel-Ziv can be used.

Modifications for Other Applications
The design presented in this application note is for a stand-
alone ISP controller. However, it is also possible to apply
these techniques to microcontrollers that may already exist
within a design. To implement this design in an already
existing microcontroller, all that is needed is four I/O pins to
drive the TAP, and enough storage space to contain both
the controller program and the CPLD/FPGA download
data. In addition, care must be taken to preserve the JTAG
port timing.

The TAP timing in this design is dependent on the 8051
clock. For other 8051 clock frequencies or for different
microcontrollers, the timing must be calculated accordingly,
in order to implement the timing specified in “Exception
Handling” on page 16.

Using a different microcontroller would require changing
the I/O subroutine calls while preserving the correct TAP
timing relationships. These subroutine calls are located in
the ports.c file. All other C-code is independent of the
microcontroller and will not need to be modified.

RAM can be used instead of the EPROM in this design.
This would allow the CPLD/FPGA devices to be pro-
grammed and tested remotely via modem, using remote
control software written by the user.

Debugging Suggestions
The following suggestions may be helpful in testing this
design:

Device Type XSVF File Size C-Code Total
XC9536 5,194 7k 12k
XC9572 11,674 7k 19k
XC95108 19,598 7k 27k
XC95144 12,960 7k 20k
XC95216 26,390 7k 33k
XC95288 34,560 7k 42k
XC9536XL 5,194 (estimated) 7k 12k
XC9572XL 11,674 (estimated) 7k 19k
XC95144XL 12,960 (estimated) 7k 20k
XC95288XL 34,560 (estimated) 7k 42k
XCV100 98 kBytes 7k 106k
XCV300 218 kBytes 7k 225k
XCV1000 760 kBytes 7k 767k
XC40150XV 419 kBytes 7k 426k
XC4028XL 83 kBytes 7k 90k
XC4044XL 126 kBytes 7k 133k
1-6 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
• View the contents of the XSVF file using the xsvf2ascii
converter. This will decode the binary file and display
the XSVF data and instructions. To run this converter,
enter the following command at the system prompt:

xsvf2ascii

• Compile macro.c with WIN95PP and use the parallel
cable to program the device with your xsvf file.

• Change the #define DEBUG_MODE 0 to #define
DEBUG_MODE 1 in the ports.h file to see the
calculated values of the TDI and TMS ports on the
rising edge of TCK, when the code is compiled. Use this
to verify the functionality of the C-code if it is ported to a
different microcontroller. (See See “Appendix C” on
page 25. for more information.)

• Use the ASCII text output, generated by xsvf2ascii, to
verify that the bit sequence output of the microcontroller
is correct.

• Decrease the TCK frequency to test that the wait times
for program and erase are sufficiently long.

• Make certain that the function pins go into a 3-state
condition in ISP mode.

• Test that the function pins initialize when ISP mode is
terminated with the ISPEX command.

• Verify that the devices which are not being programmed
are in bypass mode. Bypass mode causes TDO to be
the same as TDI, delayed by one TCK clock pulse.

Firmware Design
The flow chart for the C-Code is shown in Figure 7 on page
8. This code continuously reads the instructions and argu-
ments from the XSVF file contained in the program data
EPROM and branches in one of three ways based on the
three possible XSVF instructions (XRUNTEST, XSIR,
XSDR) as described in See “Appendix B” on page 21..

When the C-Code reads an XRUNTEST instruction, it
reads in the next four bytes of data that specify the number
of microseconds for which the device will stay in the Run-
Test/Idle state before the next XSIR or XSDR instruction is
executed. The runTestTimes variable is used to store this
value.

When the C-Code reads an XSIR instruction, it provides
stimulus to the TMS and TCK ports until it arrives in the
Shift-IR state. It then reads a byte that specifies the length
of the data and the actual data itself, outputting the speci-
fied data on the TDI port. Finally, when all the data has

been output to the TDI port, the TMS value is changed and
successive TCK pulses are output until the Run-Test/Idle
state is reached again.

When the C-Code reads an XSDR instruction, it reads the
data specifying the values that will be output during the
Shift-DR state. The code then toggles TMS and TCK
appropriately to transition directly to the Shift-DR state. It
then holds the TMS value at 0 in order to stay in the Shift-
DR state and the data from the XSVF file is output to the
TDI port while storing the data received from the TDO port.
After all the data has been output to the TDI port, TMS is
set to 1 in order to move to the Exit-1-DR state. Then, the
TDO input value is compared to the TDO expected value. If
the two values fail to match, the exception handling proce-
dure is executed as shown in Figure 10 on page 17. If the
TDO input values match the expected values, the code
returns to the Run-Test/Idle state and waits for the amount
of time specified by the runTestTimes variable (which was
originally set in the XRUNTEST instruction).

Memory Map
The 8051 memory map is divided into two 64K byte blocks:
one for the 8051 program and one for data. The 8051 pro-
gram memory resides in the 8051 program block and is
enabled by the PSEN signal. The Xilinx PLD program
memory resides in the 8051 data block and is enabled by
the RD signal.

When additional data space is required, use one of the
methodologies specified in the specific microprocessor’s
applications note.

Port Map
The 8051 I/O ports are used to generate the memory
address and the TAP signals, as shown in Figure 1 on page
1. Port 1 of the 8051 is used to control the TAP signals;
Table 2 shows the port configuration.

Table 2: 8051 Port 1 Mapping

TAP Pin Port1 Bit Configured as
TCK 0 Input
TMS 1 Input
TDI 2 Input
TDO 3 Output
XAPP058 June 1999 (Version 2.0) 1-7

R

Xilinx In-System Programming Using an Embedded Microcontroller
Figure 7: Flow Chart for the ISP Controller Code

Core XSTREAM Software Flow

3

Set TMS to 0, pulse
TCK twice.

Set TMS to 1, pulse
TCK once.

2

Read data value &
numbits from XSVF.

1

Read data &
numbits from XSVF.

Set TMS to 0, pulse
TCK twice.

Set TMS to 1, pulse
TCK twice.

case[]

switch

CLOCKRUNTEST:
value based on

clock-rate & delay
value in XSVF.

Read instruction &
numbits from XSVF

switch

STA RT

Read delay value
from XSVF file.

XSIR

Select-IR-Scan

Shiftt-IR

6

XSDR

Shift-DR

XRUNTEST

5801
1-8 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
Figure 7: Flow Chart for the ISP Controller Code (Continued)

Set TMS to 0, pulse
TCK - output data

on TDI.

3

numbits =1

Set TMS to 1, pulse
TCK - output data

while transitioning to
Exit1-DR.

Store value on
TDO.

TDO =
TDOEXPECTED

Set TMS to 1, pulse
TCK.

Increment
FAILTIMES

Set TMS to 0, pulse
TCK.

Loop <
CLOCKRUNTESTS

switch Increment Loop

4

Decrement numbits

Store value on
TDO.

Pulse TCK - output
data on TDI.

F

T

T

F

Shift-DR

Exit1-DR

Update-DR

Run-Test/Idle

F

T

XAPP058 June 1999 (Version 2.0) 1-9

R

Xilinx In-System Programming Using an Embedded Microcontroller
Figure 7: Flow Chart for the ISP Controller Code (Continued)

Note: For FPGAs, step 4 is scrapped completely if the TDO
expected does not match the actual TDO; the

program quits with an error message.

4

FAILT IMES >
MAXREPEAT

Set TMS to 0, pulse
TCK.

Set TMS to 1, pulse
TCK.

Set TMS to 0, pulse
TCK.

Set TMS to 1, pulse
TCK.

Set TMS to 1, pulse
TCK.

ISP FAILED.

END

5

Update-DR

F

T

Exit Program Pause-DR

Exit2-DR

Shift-DR

Exit1-DR

Exit1-DR
1-10 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
Figure 7: Flow Chart for the ISP Controller Code (Continued)

1

numbits =1

Set TMS to 1, pulse
TCK - output data

while transitioning to
Exit1-IR

Decrement numbits.

Pulse TCK - output
data on TDI.

Set TMS to 1, pulse
TCK.

Set TMS to 0, pulse
TCK.

switch

FT

Shiftt-IR

Exit1-IR

Update-IR

Run/Te st/Idle

5804
XAPP058 June 1999 (Version 2.0) 1-11

R

Xilinx In-System Programming Using an Embedded Microcontroller
Figure 7: Flow Chart for the ISP Controller Code (Continued)

Read data value
& numbits from
XSVF

Read data value
& numbits from
XSVF

Read data value
& numbits from
XSVF

Read data value
& numbits from
XSVF

Read data value
& numbits from
XSVF

Read data value
& numbits from
XSVF

99 102 7 8 2 9

6

10

5805

7

9

Set TMS to 1,
pulse TCK once

Set TMS to 0,
pulse TCK twice

Set TMS to 1,
pulse TCK once

Set TMS to 0,
pulse TCK twice

XSDRB XSDRC XSDRE XSDRB0 XSDRC0 XSDRE0
1-12 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
Figure 7: Flow Chart for the ISP Controller Code (Continued)

7

numbits = 0

Decrement numbits

 switch

5806

Set TMS to 0

Pulse TCK,
output data on TDI

F

8

numbits = 1

switch

Pulse TCK,
output data on TDI

F

Set TMS to 0, Pulse
TCK - output data on
TDI while transitioning
to Exit1-DR

Set TMS to 1
pulse TCK

Decrement numbits
EXIT1 - DR

Run-Test/Idle

Loop<
CLOCKRUNTESTS

Increment Loop

F T

T

T

XSDRC

XSDRE

Update - DR

Set TMS to 0
pulse TCK
XAPP058 June 1999 (Version 2.0) 1-13

R

Xilinx In-System Programming Using an Embedded Microcontroller
Figure 7: Flow Chart for the ISP Controller Code (Continued)

9

numbits = 0

switch

5807

Set TMS to 0

Pulse TCK,
output data on TDI

F

10

numbits = 1

switch

F

Set TMS to 1, Pulse
TCK - output data on
TDI while transitioning
to Exit1-DR

Store value on TDO

EXIT DR

Run-Test/Idle

Loop<
CLOCKRUNTESTS

Increment Loop

F T

T

 Store value on TDO

Quit with
Error Message

 Decrement numbits

 Pulse TCK,
output data on TDI

 Store value on TDO

TDO =
TDO Expected

Quit with
Error Message

Set TMS to 1
pulse TCK

Set TMS to 0
 pulse TCK

TDO =
TDO expected

Decrement numbits

XSDRC0

T

F

XSDRE0

FT

T

UPDATE - DR
1-14 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
TAP Timing
Figure 9 shows the timing relationships of the TAP signals.
The C-code running on the 8051 insures that the TDI and
TMS values are driven at least two instruction cycles before
asserting TCK. At that same time, TDO can be strobed.

Parts of the XSVF file specify wait times during which the
device programs or erases the specified location or sector.
Implementation of the wait timer can be accomplished
either by software loops that depend on the processor’s
cycle time or by using the 8051’s built-in timer function. In
this design, timing is established through software loops in
the ports.c file.

TAP AC Parameters
Table 3 shows the timing parameters for the TAP wave-
forms, shown in Figure 9 on page 16. XC9500/XL/XV Programming Algorithm

This section describes the programming algorithm exe-
cuted by the 8051 C-code that reads the XSVF file; this
code is contained in the micro.c file in See “Appendix C” on
page 25.. This information is valuable to users who want to
modify the C-code for porting to other microcontrollers.

The XSVF file contains all XC9500/XL/XV programming
instructions and data. This allows the TAP driver code to be
very simple. The 8051 interprets the XSVF instructions that
describe the CPLD design and then outputs the TAP sig-
nals for programming (and testing) the XC9500/XL/XV
device. The command sequence for device programming is
shown in Figure 8.

Note: When generating XSVF files for XC9500XL or
XC9500XV devices, use the -nc option for the
svf2xsvf executable

Table 3: Test Access Port Timing Parameters (ns.)

Symbol Parameter Min Max
TCKMIN TCK Minimum Clock Period 100
TMSS TMS Setup Time 10
TMSH TMS Hold Time 10
TDIS TDI Setup Time 15
TDIH TDI Hold Time 25
TDOZX TDO Float to Valid Delay 35
TDOXZ TDI Valid to Float Delay 35
TDOV TDO Valid Delay 35
TINS I/O Setup Time 15
TINH I/O Hold Time 30
TIOV EXTEST Output Valid Delay 55

ISPEN

FERASE

FPGM

FVFY (optional)

ISPEX

Set ISP Mode

Erase All Sectors

Program All Addresses

Verify Programming

Exit ISP Mode and
Initialize Device

Figure 8: Device Programming Flow
XAPP058 June 1999 (Version 2.0) 1-15

R

Xilinx In-System Programming Using an Embedded Microcontroller
Exception Handling
Figure 10 shows the state diagram for the internal device
programming state machine, as defined by the IEEE
1149.1 standard. The C-code drives the 1149.1 TAP con-
troller through the state sequences to load data and
instructions, and capture results. One of the key functions
performed by the C-code is the TAP controller state transi-
tion sequence that is executed when a program or erase
operation needs to be repeated, which may occur on a
small percentage of addresses. If a sector or address
needs to be re-programmed or re-erased, the device status
bits return a value that is different from that which is pre-
dicted in the XSVF file. In order to retry the previous (failed)
data, the following 1149.1 TAP state transition sequence is
followed, if the TDO mismatch is identified at the EXIT1-DR
state:

EXIT1-DR, PAUSE-DR, EXIT2-DR, SHIFT-DR,
EXIT1-DR, UPDATE-DR, RUN-TEST/IDLE

The application then waits for the amount of time that was
previously specified by XRUNTEST. The effect of this state
sequence is to re-apply the previous value rather than
apply the new TDI value that was just shifted in.

This “exception handling loop” is attempted no more than
32 times. If the TDO value does not match after 32
attempts, the part is defective and a failure is logged. When
the retry operation is successful, the algorithm shifts-in the
next XSDR data.

XC4000 and Spartan Programming
Algorithm
XC4000 Series devices can be configured through the
boundary-scan pins. The basic procedure is as follows:

• Power up the FPGA with INIT held Low (or the
PROGRAM pin Low for more than 300 ns followed by a
High while holding INIT Low). Holding INIT Low allows
enough time to issue the CONFIG command to the
FPGA. The pin can be used as I/O after configuration if
a resistor is used to hold INIT Low

• Issue the CONFIG command to the TMS input
• Wait for INIT to go High
• Sequence the boundary-scan Test Access Port to the

SHIFT-DR state
• Toggle TCK to clock data into TDI pin

The user must account for all TCK clock cycles after INIT
goes High, as all of these cycles affect the Length Count
compare.

For more detailed information, refer to the Xilinx application
note XAPP017, “Boundary Scan in XC4000 Devices.: This
application note also applies to XC4000E and XC4000X
devices.

Virtex Programming Algorithm
Virtex devices can be configured through the boundary-
scan pins. Configuration through the TAP uses the special
CFG_IN instruction. This instruction allows data input on

TCKMIN

TMSHTMSS

TDIHTDIS

TDOZX TDOV

TINHTINS

TIOV

TDOXZ

TCK

TMS

TDI

TDO

Input-I/O-CLK

I/O

Figure 9: Test Access Port Timing
1-16 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
TDI to be converted into data packets for the internal con-
figuration bus.

The following steps are required to configure the FPGA
through the boundary-scan port.

• Load the CFG_IN instruction into the boundary-scan
instruction register (IR)

• Enter the Shift-DR (SDR) state
• Shift a standard configuration bitstream into TDI
• Return to Run-Test-Idle (RTI)
• Load the JSTART instruction into IR
• Enter the SDR state
• Clock TCK for the length of the sequence (the length is

programmable)
• Return to RTI

Conclusion
Xilinx CPLDs and FPGAs are easily programmed by an
embedded processor. And, because they are 1149.1 com-
pliant, system and device test functions can also be con-
trolled by the embedded processor, in addition to
programming. This capability opens new possibilities for
upgrading designs in the field, creating user-specific fea-
tures, and remote downloading of CPLD/FPGA programs.

Figure 10: TAP State Machine Flow

Note: The values shown adjacent to each transition represent the signal present at TMS during the rising edge of TCK.

Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Test-Logic-Reset

Run-Test/Idle

1

0

1

0

1

0

1

1

1

0

0

1

0

1

0

1 0

1

1

1

0

0

0

1 0

0

0

0

1

0

1

1

Exception
Handling
Loop
XAPP058 June 1999 (Version 2.0) 1-17

R

Xilinx In-System Programming Using an Embedded Microcontroller
1-18 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
Appendix A
SVF File Format for Xilinx Devices

SVF Overview
This appendix describes the Serial Vector Format syntax,
as it applies to Xilinx devices; only those commands and
command options that apply to Xilinx devices are
described. An SVF file is the media for exchanging descrip-
tions of high-level IEEE 1149.1 bus operations which con-
sist of scan operations and movements between different
stable states on the 1149.1 state diagram (as shown in
Figure 10). SVF does not explicitly describe the state of the
1149.1 bus at every Test Clock (TCK).

An SVF file contains a set of ASCII statements. Each state-
ment consists of a command and its associated parame-
ters, terminated by a semicolon. SVF is case sensitive, and
comments are indicated by an exclamation point (!).

Scan data within a statement is expressed in hexadecimal
and is always enclosed in parenthesis. The scan data can-
not specify a data string that is larger than the specified bit
length; the Most Significant Bit (MSB) zeros in the hex
string are not considered when determining the string
length. The bit order for scan data defines the LSB (right-
most bit) as the first bit scanned into the device for TDI and
SMASK scan data, and is the first bit scanned out for TDO
and MASK data.

SVF Commands
The following SVF Commands are supported by the Xilinx
devices:

• SDR (Scan Data Register).
• SIR (Scan Instruction Register).
• RUNTEST.

For each of the following command descriptions:

• The parameters are mandatory.
• Optional parameters are enclosed in brackets ([]).
• Variables are shown in italics.
• Parenthesis “()”are used to indicate hexadecimal

values.
• A scan operation is defined as the execution of an SIR

or SDR command and any associated header or trailer
commands.

SDR, SIR
SDR length TDI (tdi) SMASK (smask)
[TDO (tdo) MASK (mask)];

SIR length TDI (tdi) TDO SMASK (smask);

These commands specify a scan pattern to be applied to
the target scan registers. The SDR command (Scan Data
Register) specifies a data pattern to be scanned into the

target device Data Register. The SIR command (Scan
Instruction Register) specifies a data pattern to be scanned
into the target device Instruction Register.

Prior to scanning the values specified in these commands,
the last defined header command (HDR or HIR) will be
added to the beginning of the SDR or SIR data pattern and
the last defined trailer command (TDR or TIR) will be
appended to the end of the SDR or SIR data pattern.

Parameters:

length — A 32-bit decimal integer specifying the number of
bits to be scanned.

[TDI (tdi)] — (optional) The value to be scanned into the
target, expressed as a hex value. If this parameter is not
present, the value of TDI to be scanned into the target
device will be the TDI value specified in the previous SDR/
SIR statement. If a new scan command is specified, which
changes the length of the data pattern with respect to a pre-
vious scan, the TDI parameter must be specified, otherwise
the default TDI pattern is undetermined and is an error.

[TDO (tdo)] — (optional) The test values to be compared
against the actual values scanned out of the target device,
expressed as a hex string. If this parameter is not present,
no comparison will be performed. If no TDO parameter is
present, the MASK will not be used.

[MASK (mask)] — (optional) The mask to be used when
comparing TDO values against the actual values scanned
out of the target device, expressed as a hex string. A “0” in
a specific bit position indicates a “don’t care” for that posi-
tion. If this parameter is not present, the mask will equal the
previously specified MASK value specified for the SIR/SDR
statement. If a new scan command is specified which
changes the length of the data pattern with respect to a pre-
vious scan, the MASK parameter must be specified, other-
wise the default MASK pattern is undefined and is an error.
If no TDO parameter is present, the MASK will not be used.

[SMASK (smask)] — (optional) Specifies which TDI data
is “don’t care”, expressed as a hex string. A “0” in a specific
bit position indicates that the TDI data in that bit position is
a “don’t care”. If this parameter is not present, the mask will
equal the previously specified SMASK value specified for
the SDR/SIR statement. If a new scan command is speci-
fied which changes the length of the data pattern with
respect to a previous scan, the SMASK parameter must be
specified, otherwise the default SMASK pattern used is
undefined and is an error. The SMASK will be used even if
the TDI parameter is not present.
XAPP058 June 1999 (Version 2.0) 1-19

R

Xilinx In-System Programming Using an Embedded Microcontroller
Example:

SDR 27 TDI (008003fe) SMASK (07ffffff)
TDO (00000003) MASK (00000003) ;

SIR 16 TDO (ABCD);

RUNTEST
RUNTESTrun_count TCK;

This command forces the target 1149.1 bus to the Run-
Test/Idle state for a specific number of microseconds, then

moves the target device bus to the IDLE state. This is used
to control RUNBIST operations in the target device.

Parameters:

run_count — The number of TCK clock periods that the
1149.1 bus will remain in the Run Test/Idle state, expressed
as a 32 bit unsigned number.

Example:

RUNTEST 1000 TCK;

Figure 11: Sample SVF File

! Begin Test Program

TRST OFF; !disable test reset line
ENDIR IDLE; !End IR scan in IDLE
HIR
HDR 16 TDI (FFFF) TDO (FFFF) MASK (FFFF); !16 bit DR Header
TIR
TDR
SIR
SDR
STATE
RUNTEST
!End test program
1-20 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
Appendix B
XSVF File Format and Conversion Utilities

This appendix includes the following reference information:

• The XSVF Commands — The instructions that are
supported, their arguments, and definitions.

• The svf2xsvf Utility — Converts the standard SVF file
format to the more compact binary XSVF format.

• The xsvf2ascii Utility — Converts the XSVF file format
to ascii text for debugging purposes.

XSVF Commands
The following commands describe the 1149.1 operations in
a way that is similar to the SVF syntax. The key difference
between SVF and XSVF is that the XSVF file format affords
better data compression and therefore produces smaller
files.

The format of the XSVF file is a one byte instruction fol-
lowed by a variable number of arguments (as described in
the command descriptions below). The binary (hex) value
for each instruction is shown in Table 4:

Table 4: Binary Encoding of XSVF Instructions

XTDOMASK
XTDOMASK value<"length" bits>

XTDOMASK sets the TDO mask which masks the value of
all TDO values from the SDR instructions. Length is
defined by the last XSDRSIZE instruction. XTDOMASK
may be used multiple times in the XSVF file if the TDO
mask changes for various SDR instructions.

Example:

XTDOMASK 0x00000003

This example defines that TDOMask is 32 bits long and
equals 0x00000003

XREPEAT
XREPEAT times<1 byte>

Defines the number of times that TDO will be tested against
the expected value before the ISP operation will be consid-
ered a failure. By default, a device may fail an XSDR
instruction 32 times before the ISP operation is terminated
as a failure. This instruction is optional.

Example:

XREPEAT 0x0f

This example sets the command repeat value to 15.

XRUNTEST
XRUNTEST time<4 bytes>

Defines the amount of time (in microseconds) the device
should sit in the Run-Test/Idle state after each visit to the
SDR state.

Example:

XRUNTEST 0x00000fa0

This example specifies an idle time of 4000 microseconds.

XSIR
XSIR length<1 byte> TDIValue<"length"
bits>

Go to the Shift-IR state and shift in the TDIValue.

Example:

XSIR 0x08 0xec

XSDR
XSDR TDIValue<"length" bits>

Go to the Shift-DR state and shift in TDIValue; compare the
TDOExpected value from the last XSDR instruction against
the TDO value that was shifted out (use the TDOMask
which was generated by the last XTDOMASK instruction).
Length comes from the XSDRSIZE instruction.

If the TDO value does not match TDOExpected, return to
the Run-Test/Idle state again, and wait the amount of time
last specified by the XRUNTEST command, then try the
SIR instruction again. If TDO is wrong more than the maxi-
mum number of times specified by the XREPEAT instruc-

XSVF Instruction Binary Encoding (hex)
XCOMPLETE 0x00
XTDOMASK 0x01
XSIR 0x02
XSDR 0x03
XRUNTEST 0x04
XREPEAT 0x07
XSDRSIZE 0x08
XSDRTDO 0x09
XSETSDRMASKS 0x0a
XSDRINC 0x0b
XSDRB 0x0c
XSDRC 0x0d
XSDRE 0x0e
XSDRTDOB 0x0f
XSDRTDOC 0x10
XSDRTDOE 0x11
XAPP058 June 1999 (Version 2.0) 1-21

R

Xilinx In-System Programming Using an Embedded Microcontroller
tion, then the ISP operation will be determined to have
failed.

Example:

XSDR 02c003fe

XSDRSIZE
XSDRSIZE length<4 bytes>

Specifies the length of all XSDR/XSDRTDO records that
follow.

Example:

XSDRSIZE 0x0000001b

This example defines the length of the following XSDR/
XSDRTDO arguments to be 27 bits (4 bytes) in length.

XSDRTDO
TDIValue<"length" bits>
TDOExpected<"length" bits>

Go to the Shift-DR state and shift in TDIValue; compare the
TDOExpected value against the TDO value that was
shifted out (use the TDOMask which was generated by the
last XTDOMASK instruction). Length comes from the
XSDRSIZE instruction.

If the TDO value does not match TDOExpected, return to
the Run-Test/Idle state again, and wait the amount of time
last specified by the XRUNTEST command, then try the
SIR instruction again. If TDO is wrong more than the maxi-
mum number of times specified by the XREPEAT instruc-
tion, then the ISP operation will be determined to have
failed.

The TDOExpected Value will be used in all successive
XSDR instructions until the next XSDR instruction is given.

Example:

XSDRTDO 0x000007fe 0x00000003

For this example, go to the Shift-DR state and shift in
0x000007fe. Perform a logical AND on the TDO shifted out
and the TDOMASK from the last XTDOMASK instruction
and compare this value to 0x00000003.

XSDRB
XSDRB TDIValue<"length" bits>

Go to the shift-DR state and shift in the TDI value. Continue
to stay in the shift-DR state at the end of the operation. No
comparison of TDO value with the last specified TDOEx-
pected is performed.

XSDRC
XSDRC TDIValue<"length" bits>

Shift in the TDI value. Continue to stay in the shift-DR state
at the end of the operation. No comparison of TDO value
with the last specified TDOExpected is performed.

XSDRE
XSDRE TDIValue<"length" bits>
Shift in the TDI value. At the end of the operation, return to
the run-test/idle state. No comparison of TDO value with
the last specified TDOExpected is performed.

XSDRTDOB
XSDRTDOB TDIValue<"length" bits> TDOEx-
pected<"length" bits>

Go to the shift-DR state and shift in TDI value; Compare
the TDOExpected value against the TDO value that was
shifted out. TDOMask is not applied. All bits of TDO are
compared with the TDOExpected. Length comes from the
XSDRSIZE instruction.

Because this instruction is primarily meant for FPGAs, if the
TDO value does not match TDOExpected, the program-
ming is stopped with an error message. At the end of the
operations, continue to stay in the SHIFT-DR state.

XSDRTDOC
XSDRTDOC TDIValue<"length" bits>
TDOExpected<"length" bits>

Shift in the TDI value; compare the TDOExpected value
against the TDO value that was shifted out. Length comes
from the XSDRSIZE instruction. TDOMask is not applied.
All bits of TDO are compared with the TDOExpected.

If the TDO value does not match TDOExpected, stop the
programming operation with an error message. At the end
of the operation continue to stay in the SHIFT-DR state.

XSDRTDOE
XSDRTDOE TDIValue<"length" bits>
TDOExpected<"length" bits>

Shift in the TDI value; compare the TDOExpected value
against the TDO value that was shifted out. Length comes
from the last XSDSIZE instruction. TDOMask is not
applied. All bits of TDO are compared with the TDOEx-
pected.

If the TDO value does not match the TDOExpected, stop
the programming operations with an error message. At the
end of the operation, return to the run-test/idle state.

XSETSDRMASKS
XSETSDRMASKS addressMask<"length" bits>
dataMask<"length" bits>

Set SDR Address and Data Masks. The address and data
mask of future XSDRINC instructions are indicated using
the XSETSDRMASKS instructions. The bits that are 1 in
1-22 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
addressMask indicate the address bits of the XSDR
instruction; those that are 1 in dataMask indicate the data
bits of the XSDR instruction. "Length" comes from the value
of the last XSDRSize instruction.

Example:

XSETSDRMASKS 00800000 000003fc

XSDRINC
XSDRINC startAddress<"length" bits>
numTimes<1 byte> data[1]<"length2" bits>
...data[numTimes]<"length2" bits>

Do successive XSDR instructions. Length is specified by
the last XSDRSIZE instruction. Length2 is specified as the
number of 1 bits in the dataMask section of the last XSETS-
DRMASKS instruction.

The startAddress is the first XSDR to be read in. For num-
Times iterations, increment the address portion (indicated
by the addressMask section of the last XSETSDRMASKS
instruction) by 1, and load in the next data portion into the
dataMask section.

Note: that an XSDRINC <start> 255 data0 data1 ... data255
actually does 256 SDR instruction since the start
address also represents an SDR instruction.

Example:

XSDRINC 004003fe 05 ff ff ff ff ff

XCOMPLETE
XCOMPLETE

End of XSVF file reached.

Example:

XCOMPLETE

svf2xsvf File Conversion Utility
This executable reads in an SVF file (generated by JTAG
Programmer) and generates an XSVF file.

Usage:

svf2xsvf [-nc] [-fpga] [-rlen number] [-r
number] <file1> <file2>

file1: SVF input file name.
file2: XSVF output file name.

Options:

-nc — No compression. Don't use the XSETSDRMASKS
and XSDRINC instructions.

Note: The -nc option must be used with all XC9500XL and
XC9500XV devices.

-r number — Set the XREPEAT value to number

-fpga — FPGA device

-rlen — Create records of length specified by rlen (FPGA
only)

xsvf2ascii File Conversion Utility
This executable reads in an XSVF file (generated by
svf2xsvf) and outputs the XSVF commands contained in
the file. It is useful for debugging.

Usage:

xsvf2ascii <file1> <file2>

file1: XSVF input file name.
file2: ascii output file name.
XAPP058 June 1999 (Version 2.0) 1-23

R

Xilinx In-System Programming Using an Embedded Microcontroller
1-24 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
Appendix C
C-Code Listing

The following files contain the C source code used to read
an XSVF file and output the appropriate Test Access Port
control bits:

C-Code Files
• lenval.c — This file contains routines for using the

lenVal data structure.
• micro.c — This file contains the main function call for

reading in a file from an EPROM and driving the JTAG
signals.

• ports.c — This file contains the routines to output
values on the JTAG ports, to read the TDO bit, and to
read a byte of data from the EPROM.

Header Files
• lenval.h — This file contains a definition of the lenVal

data structure and extern procedure declarations for
manipulating objects of type lenVal. The lenVal
structure is a byte oriented type used to store an
arbitrary length binary value.

• ports.h — This file contains extern declarations for

providing stimulus to the JTAG ports.

To compile this C-code for a microcontroller, only four func-
tions within the ports.c file need to be modified:

• setPort — Sets a specific port on the microcontroller to
a specified value.

• readTDOBit — Reads the TDO port.
• readByte — Reads a byte of data from the XSVF file.
• waitTime — Pauses for a specified amount of time.

For help in debugging the code, a compiler switch called
DEBUG_MODE is provided. This switch allows the
designer to simulate the TAP outputs in a PC environment.
If DEBUG_MODE is defined, the software reads from an
XSVF file (which must be named prom.bit) and prints the
calculated value of the microcontroller’s I/O ports (TDI and
TMS) on each rising edge of TCK. Because the TDO value
cannot be read during DEBUG_MODE, the software
assumes that the TDO value is correct. This function pro-
vides a simulation of the TAP signals that can be used to
verify the actual operation.
XAPP058 June 1999 (Version 2.0) 1-25

R

Xilinx In-System Programming Using an Embedded Microcontroller
/***/
/* file: lenval.c */
/* abstract: This file contains routines for using */
/* the lenVal data structure. */
/***/
#ifdef DEBUG_MODE
#include <stdio.h>
#endif
#include "lenval.h"
#include "ports.h" /* for DEBUG_MODE define */

/* return the value represented by this lenval */
long value(lenVal *x)
{

int i;
long result=0; /* result to hold the accumulated result */
for (i=0;i<x->len;i++)
{

result=result<<8; /* shift the accumulated result */
result+=x->val[i]; /* get the last byte first */

}
return result;

}

/* set x to value; assumes value<512 */
void initLenVal(lenVal *x, long value)
{

x->len=1;
x->val[0]=(unsigned char) value;

}

/* return TRUE iff actual=expected (after masking out some bits using mask */
short EqualLenVal(lenVal *expected, lenVal *actual, lenVal *mask)
{

int i;
for (i=0;i<expected->len;i++)
{

unsigned char byteVal1=expected->val[i]; /* i’th byte of expected */
unsigned char byteVal2=actual->val[i]; /* i’th byte of actual */
byteVal1 &= mask->val[i]; /* mask out expected */
byteVal2 &=mask->val[i]; /* mask out actual */

#ifdef DEBUG_MODE
printf("val1 %x : val2 %x\n", byteVal1, byteVal2);

#else
if (byteVal1!=byteVal2)

return 0; /* values are not equal */
#endif

}
return 1; /* values are equal */

}

/* return the (byte, bit) of lv (reading from left to right) */
short RetBit(lenVal *lv, int byte, int bit)
{

1-26 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
int i;
unsigned char ch=lv->val[byte]; /* get the correct byte of data */
unsigned char mask=128; /* 10000000 */

for (i=0;i<bit;i++)
mask=mask>>1; /* mask the correct bit of the byte */

return ((mask & ch) !=0); /* return 1 if the bit is 1, 0 otherwise */
}

/* set the (byte, bit) of lv equal to val (e.g. SetBit("00000000",byte, 1)
 equals "01000000" */
void SetBit(lenVal *lv, int byte, int bit, short val)
{

int i;
unsigned char *ch=&(lv->val[byte]);
unsigned char OrMask=1, AndMask=255;

for (i=0;i<7-bit;i++)
OrMask=OrMask<<1;

AndMask-=OrMask;
*ch = *ch & AndMask; /* 0 out the bit */
if (val)

*ch = *ch | OrMask; /* fill in the bit with the correct value */
}

/* add val1 to val2 and store in resVal; */
/* assumes val1 and val2 are of equal length */
void addVal(lenVal *resVal, lenVal *val1, lenVal *val2)
{

unsigned char carry=0;
short i;

resVal->len=val1->len; /* set up length of result */

/* start at least significant bit and add bytes */
for (i=val1->len-1;i>=0;i--)
{

unsigned char v1=val1->val[i]; /* i’th byte of val1 */
unsigned char v2=val2->val[i]; /* i’th byte of val2 */

/* add the two bytes plus carry from previous addition */
unsigned char res=v1+v2+carry;

/* set up carry for next byte */
if (v1+v2+carry>255)

carry=1; /* carry into next byte */
else

carry=0;

resVal->val[i]=res; /* set the i’th byte of the result */
}

}

/* read from XSVF numBytes bytes of data into x */
void readVal(lenVal *x, short numBytes)
XAPP058 June 1999 (Version 2.0) 1-27

R

Xilinx In-System Programming Using an Embedded Microcontroller
{
int i;
for (i=0;i<numBytes;i++)

readByte(&(x->val[i])); /* read a byte of data into the lenVal */
x->len=numBytes; /* set the length of the lenVal */

}

1-28 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
/***/
/* file: lenval.h */
/* abstract: This file contains a description of the */
/* data structure "lenval". */
/***/

#ifndef lenval_dot_h
#define lenval_dot_h

/* the lenVal structure is a byte oriented type used to store an */
/* arbitrary length binary value. As an example, the hex value */
/* 0x0e3d is represented as a lenVal with len=2 (since 2 bytes */
/* and val[0]=0e and val[1]=3d. val[2-MAX_LEN] are undefined */

/* maximum length (in bytes) of value to read in */
/* this needs to be at least 4, and longer than the */
/* length of the longest SDR instruction. If there is, */
/* only 1 device in the chain, MAX_LEN must be at least */
/* ceil(27/8) == 4. For 6 devices in a chain, MAX_LEN */
/* must be 5, for 14 devices MAX_LEN must be 6, for 20 */
/* devices MAX_LEN must be 7, etc.. */
/* You can safely set MAX_LEN to a smaller number if you*/
/* know how many devices will be in your chain. */
#define MAX_LEN 7000

typedef struct var_len_byte
{

short len; /* number of chars in this value */
unsigned char val[MAX_LEN+1]; /* bytes of data */

} lenVal;

/* return the long representation of a lenVal */
extern long value(lenVal *x);

/* set lenVal equal to value */
extern void initLenVal(lenVal *x, long value);

/* check if expected equals actual (taking the mask into account) */
extern short EqualLenVal(lenVal *expected, lenVal *actual, lenVal *mask);

/* add val1+val2 and put the result in resVal */
extern void addVal(lenVal *resVal, lenVal *val1, lenVal *val2);

/* return the (byte, bit) of lv (reading from left to right) */
extern short RetBit(lenVal *lv, int byte, int bit);

/* set the (byte, bit) of lv equal to val (e.g. SetBit("00000000",byte, 1)
 equals "01000000" */
extern void SetBit(lenVal *lv, int byte, int bit, short val);

/* read from XSVF numBytes bytes of data into x */
extern void readVal(lenVal *x, short numBytes);

#endif
XAPP058 June 1999 (Version 2.0) 1-29

R

Xilinx In-System Programming Using an Embedded Microcontroller
/***/
/* file: micro.c */
/* abstract: This file contains the main function */
/* call for reading in a file from a prom */
/* and pumping the JTAG ports. */
/* */
/* Notes: There is a compiler switch called DEBUG_MODE. */
/* If DEBUG_MODE is defined, the compiler will read */
/* the xsvf file from a file called "prom.bit". */
/* It will also enable debugging of the code */
/* by printing the TDI and TMS values on the */
/* rising edge of TCLK. */
/***/

#include "lenval.h"
#include "ports.h"
/*#include "prgispx.h"*/

/* encodings of xsvf instructions */

#define XCOMPLETE 0
#define XTDOMASK 1
#define XSIR 2
#define XSDR 3
#define XRUNTEST 4
#define XREPEAT 7
#define XSDRSIZE 8
#define XSDRTDO 9
#define XSETSDRMASKS 10
#define XSDRINC 11
#define XSDRB 12
#define XSDRC 13
#define XSDRE 14
#define XSDRTDOB 15
#define XSDRTDOC 16
#define XSDRTDOE 17

/* return number of bytes necessary for "num" bits */
#define BYTES(num) \
 (short) (((num%8)==0) ? (num/8) : (num/8+1))

extern void doSDRMasking(lenVal *dataVal, lenVal *nextData,
 lenVal *addressMask, lenVal *dataMask);

extern short loadSDR(int numBits, lenVal *dataVal, lenVal *TDOExpected, lenVal *TDOMask);
extern short loadSDRTDOB(int numBits, lenVal *dataVal, lenVal *TDOExpected, lenVal
*TDOMask);
extern void loadSDRbegin(int numBits, lenVal *dataVal);
extern void loadSDRhold(int numBits, lenVal *dataVal);
extern void loadSDRend(int numBits, lenVal *dataVal);
extern void clockOutLenVal(lenVal *lv,long numBits,lenVal *tdoStore);
extern void shiftOutLenVal(lenVal *lv,long numBits, short last);
extern void shiftOutLenValStoreTDO(lenVal *lv,long numBits,lenVal *tdoStore,int last);
extern void gotoIdle();
short checkAgainstTDO(lenVal *actualTDO,lenVal *TDOExpected,long *runTestTime,int
*failTimes);
1-30 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
lenVal TDOMask; /* last TDOMask received */
lenVal maxRepeat; /* max times tdo can fail before ISP considered failed */
lenVal runTestTimes; /* value of last XRUNTEST instruction */

/*extern BYTE *xsvf_data;*/

#include <stdio.h>
#ifdef DEBUG_MODE
FILE *in; /* for debugging */
#endif

void stoi_new(lenVal * x, short Bytes)
{
 int num = 0;
 int i =0;
// while (x->val[i]!=’\0’)
 // {
// if((x->val[i] >= ’0’) && (x->val[i] <= ’9’))
 // {
 // num = num*16 + x->val[i]-’0’;
 // }
 // else if((x->val[i] >= ’a’)&& (x->val[i] <= ’f’))
 // {
 // num = num*16 + x->val[i] - ’a’ + 10;
 // }
for(i=0;i<Bytes;i++)

{
if (x->val[i] < 16)
 printf("0");
printf("%x",x->val[i]);

 }
printf("\n");

 // return(num);
}
/* clock out the bit onto a particular port */
void clockOutBit(short p, short val)
{

setPort(p,val); /* change the value of TMS or TDI */
pulseClock(); /* set TCK to Low->High->Low */

}

/* clock out numBits from a lenVal; the least significant bits are */
/* output on the TDI line first; exit into the exit(DR/IR) state. */
/* if tdoStore!=0, store the TDO bits clocked out into tdoStore. */
void clockOutLenVal(lenVal *lv,long numBits,lenVal *tdoStore)
{

int i;
short j,k;

/* if tdoStore is not null set it up to store the tdoValue */
if (tdoStore)

tdoStore->len=lv->len;

for (i=0;i<lv->len;i++)
{

XAPP058 June 1999 (Version 2.0) 1-31

R

Xilinx In-System Programming Using an Embedded Microcontroller
/* nextByte contains the next byte of lenVal to be shifted out */
/* into the TDI port */
unsigned char nextByte=lv->val[lv->len-i-1];
unsigned char nextReadByte=0;
unsigned char tdoBit;

/* on the last bit, set TMS to 1 so that we go to the EXIT DR */
/* or to the EXIT IR state */
for (j=0;j<8;j++)
{

/* send in 1 byte at a time */
/* on last bit, exit SHIFT SDR */
if (numBits==1)

setPort(TMS,1);

if (numBits>0)
{

tdoBit=readTDOBit(); /* read the TDO port into tdoBit */
clockOutBit(TDI,(short)(nextByte & 0x1)); /* set TDI to last bit */
nextByte=nextByte>>1;
numBits--;
/* first tdoBit of the byte goes to 0x00000001 */
/* second tdoBit goes to 0x00000010, etc. */
/* Shift the TDO bit to the right location below */
for (k=0;k<j;k++)

tdoBit=tdoBit<<1;

/* store the TDO value in the nextReadByte */
nextReadByte|=tdoBit;

}
}

/* if storing the TDO value, store it in the correct place */
if (tdoStore) {

tdoStore->val[tdoStore->len-i-1]=nextReadByte;
#ifdef DEBUG_MODE

printf("byte %x : index %x\n", nextReadByte, tdoStore->len-i-1);
#endif

}
}

}

/* clock out numBits from a lenVal; the least significant bits are */
/* output on the TDI line first; stay in the current state */
void shiftOutLenVal(lenVal *lv,long numBits,short last)
{

int i;
short j;

for (i=0;i<lv->len;i++)
{

/* nextByte contains the next byte of lenVal to be shifted out */
/* into the TDI port */
unsigned char nextByte=lv->val[lv->len-i-1];
1-32 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
for (j=0;j<8;j++)
{

/* send in 1 byte at a time */
/* on last bit, exit SHIFT SDR */
if ((last ==1) && (numBits==1))

setPort(TMS,1);

if (numBits>0)
{

clockOutBit(TDI,(short) (nextByte & 0x1)); /* set TDI to last bit */
nextByte=nextByte>>1;
numBits--;

}
}

}
}
void shiftOutLenValStoreTDO(lenVal *lv,long numBits,lenVal *tdoStore,int last)
{

int i;
short j,k;

/* if tdoStore is not null set it up to store the tdoValue */
if (tdoStore)
 {

 tdoStore->len=lv->len;
 }
for (i=0;i<lv->len;i++)
{

/* nextByte contains the next byte of lenVal to be shifted out */
/* into the TDI port */
unsigned char nextByte=lv->val[lv->len-i-1];
unsigned char nextReadByte=0;
unsigned char tdoBit;
for (j=0;j<8;j++)
{

/* send in 1 byte at a time */
/* on last bit, exit SHIFT SDR */
if ((last ==1) && (numBits==1))

setPort(TMS,1);
if (numBits>0)
{

clockOutBit(TDI,(short) (nextByte & 0x1)); /* set TDI to last bit */
nextByte=nextByte>>1;
numBits--;
/* first tdoBit of the byte goes to 0x00000001 */
/* second tdoBit goes to 0x00000010, etc. */
/* Shift the TDO bit to the right location below */
for (k=0;k<j;k++)

tdoBit=tdoBit<<1;

/* store the TDO value in the nextReadByte */
nextReadByte|=tdoBit;
XAPP058 June 1999 (Version 2.0) 1-33

R

Xilinx In-System Programming Using an Embedded Microcontroller
}
}
/* if storing the TDO value, store it in the correct place */
if (tdoStore) {

tdoStore->val[tdoStore->len-i-1]=nextReadByte;
#ifdef DEBUG_MODE

printf("byte %x : index %x\n", nextReadByte, tdoStore->len-i-1);
#endif

}
}

}

/* parse the xsvf file and pump the bits */
int main()
{

lenVal inst; /* instruction */
lenVal bitLengths; /* hold the length of the arguments to read in */
lenVal dataVal,TDOExpected;
lenVal SDRSize,addressMask,dataMask;
lenVal sdrInstructs;
long i;

#ifdef DEBUG_MODE
/* read from the file "prom.bit" instead of a real prom */
in=fopen("prom.bit","rb");

#endif

gotoIdle();
while (1)
{

/*lenVal dataVal,TDOExpected;*/
readVal(&inst,1); /* read 1 byte for the instruction */

/*if((long)xsvf_data==0x2048e0)
while(1);*/

switch (value(&inst))
{

case XTDOMASK:
/* readin new TDOMask */
readVal(&TDOMask,BYTES(value(&SDRSize)));
#ifdef DEBUG_MODE1
printf("TDOMASK");
stoi_new(&TDOMask,BYTES(value(&SDRSize)));
#endif
break;

case XREPEAT:
/* read in the new XREPEAT value */
readVal(&maxRepeat,1);
#ifdef DEBUG_MODE1
printf("maxRepeat: %x\n",value(&maxRepeat));
#endif
break;

case XRUNTEST:
1-34 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
/* read in the new RUNTEST value */
readVal(&runTestTimes,4);
#ifdef DEBUG_MODE1
printf("runTestTimes: %x\n",value(&runTestTimes));
#endif
break;

case XSIR:
#ifdef DEBUG_MODE1

 printf("XSIR: \n");
 #endif

/* load a value into the instruction register */
clockOutBit(TMS,1); /* Select-DR-Scan state */
clockOutBit(TMS,1); /* Select-IR-Scan state */
clockOutBit(TMS,0); /* Capture-IR state */
clockOutBit(TMS,0); /* Shift-IR state */
readVal(&bitLengths,1); /* get number of bits to shift in */
#ifdef DEBUG_MODE1
printf("XSIR----bitLengths: %x\n",value(&bitLengths));
#endif
/* store instruction to shift in */
readVal(&dataVal,BYTES(value(&bitLengths)));
#ifdef DEBUG_MODE1
printf("XSIR----dataVal:");
 stoi_new(&dataVal,BYTES(value(&bitLengths)));
#endif
/* send the instruction through the TDI port and end up */
/* dumped in the Exit-IR state */
clockOutLenVal(&dataVal,value(&bitLengths),0);
clockOutBit(TMS,1); /* Update-IR state */
clockOutBit(TMS,0); /* Run-Test/Idle state */
break;

case XSDRTDO:
/* get the data value to be shifted in */
readVal(&dataVal,BYTES(value(&SDRSize)));
#ifdef DEBUG_MODE1
printf("XSDRTDO-----dataVal:");
 stoi_new(&dataVal,BYTES(value(&SDRSize)));
printf("BYTES ----- %d\n",BYTES(value(&SDRSize)));
#endif
/* store the TDOExpected value */
readVal(&TDOExpected,BYTES(value(&SDRSize)));
#ifdef DEBUG_MODE1
printf("XSDRTDO-----TDOExpected:");
stoi_new(&TDOExpected,BYTES(value(&SDRSize)));
printf("BYTES ----- %d\n",BYTES(value(&SDRSize)));
#endif
/* shift in the data value and verify the TDO value against */
/* the expected value */
if (!loadSDR(value(&SDRSize), &dataVal, &TDOExpected, &TDOMask))
{

/* The ISP operation TDOs failed to match expected */
printf("******************************Did not Match*******************\n");
return 0;

}

XAPP058 June 1999 (Version 2.0) 1-35

R

Xilinx In-System Programming Using an Embedded Microcontroller
break;

 case XSDRTDOB:
 /* get the data value to be shifted in */
 readVal(&dataVal,BYTES(value(&SDRSize)));

#ifdef DEBUG_MODE1
printf("XSDRTDOB-----dataVal:");
stoi_new(&dataVal,BYTES(value(&SDRSize)));
#endif

 /* store the TDOExpected value */
 readVal(&TDOExpected,BYTES(value(&SDRSize)));

#ifdef DEBUG_MODE1
printf("XSDRTDOB-----TDOExpected:");
stoi_new(&TDOExpected,BYTES(value(&SDRSize)));
#endif

/* shift in the data value and verify the TDO value against */
/* the expected value */

if (!loadSDRTDOB(value(&SDRSize), &dataVal, &TDOExpected,
&TDOMask))
 {
 /* The ISP operation TDOs failed to match expected */

printf("******************************Did not Match*******************\n");
 return 0;
 }
 break;

 case XSDRTDOC:
 /* get the data value to be shifted in */
 readVal(&dataVal,BYTES(value(&SDRSize)));

#ifdef DEBUG_MODE1
printf("XSDRTDOC-----dataVal:");
stoi_new(&dataVal,BYTES(value(&SDRSize)));
#endif

 /* store the TDOExpected value */
 readVal(&TDOExpected,BYTES(value(&SDRSize)));

#ifdef DEBUG_MODE1
printf("XSDRTDOC-----TDOExpected:");
 stoi_new(&TDOExpected,BYTES(value(&SDRSize)));
#endif

/* shift in the data value and verify the TDO value against */
/* the expected value */

if (!loadSDRTDOB(value(&SDRSize), &dataVal, &TDOExpected,
&TDOMask))
 {
 /* The ISP operation TDOs failed to match expected */

printf("******************************Did not Match*******************\n");
 return 0;
 }
 break;

 case XSDRTDOE:
 /* get the data value to be shifted in */
 readVal(&dataVal,BYTES(value(&SDRSize)));

#ifdef DEBUG_MODE1
printf("XSDRTDOE-----dataVal:");
stoi_new(&dataVal,BYTES(value(&SDRSize)));
1-36 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
#endif
 /* store the TDOExpected value */
 readVal(&TDOExpected,BYTES(value(&SDRSize)));

#ifdef DEBUG_MODE1
printf("XSDRTDOE-----TDOExpected:");
stoi_new(&TDOExpected,BYTES(value(&SDRSize)));
#endif

/* shift in the data value and verify the TDO value against */
/* the expected value */

if (!loadSDRTDOB(value(&SDRSize), &dataVal, &TDOExpected,
&TDOMask))
 {
 /* The ISP operation TDOs failed to match expected */

printf("******************************Did not Match*******************\n");
 return 0;
 }
 break;

case XSDR:
readVal(&dataVal,BYTES(value(&SDRSize)));
#ifdef DEBUG_MODE1
printf("XSDR-----dataVal:");
stoi_new(&dataVal,BYTES(value(&SDRSize)));
#endif
/* use TDOExpected from last XSDRTDO instruction */
if (!loadSDR(value(&SDRSize), &dataVal, &TDOExpected, &TDOMask))
 {

printf("******************************Did not Match*******************\n");
return 0; /* TDOs failed to match expected */

 }
break;

case XSDRB:
readVal(&dataVal,BYTES(value(&SDRSize)));
#ifdef DEBUG_MODE1
printf("XSDRB-----dataVal:");
stoi_new(&dataVal,BYTES(value(&SDRSize)));
#endif
loadSDRbegin(value(&SDRSize), &dataVal);
break;

case XSDRC:
readVal(&dataVal,BYTES(value(&SDRSize)));
#ifdef DEBUG_MODE1
printf("XSDRC-----dataVal:");
stoi_new(&dataVal,BYTES(value(&SDRSize)));
#endif
loadSDRhold(value(&SDRSize), &dataVal);
break;

case XSDRE:
readVal(&dataVal,BYTES(value(&SDRSize)));
#ifdef DEBUG_MODE1
printf("XSDRE-----dataVal:");
stoi_new(&dataVal,BYTES(value(&SDRSize)));
#endif
XAPP058 June 1999 (Version 2.0) 1-37

R

Xilinx In-System Programming Using an Embedded Microcontroller
loadSDRend(value(&SDRSize), &dataVal);
break;

case XSDRINC:
readVal(&dataVal,BYTES(value(&SDRSize)));
#ifdef DEBUG_MODE1
printf("XSDRINC-----dataVal:");
stoi_new(&dataVal,BYTES(value(&SDRSize)));
#endif
if (!loadSDR(value(&SDRSize), &dataVal, &TDOExpected, &TDOMask)){

printf("******************************Did not Match*******************\n");
return 0; /* TDOs failed to match expected */
}

readVal(&sdrInstructs,1);
#ifdef DEBUG_MODE1
printf("XSDRINC-----sdrInstructs:");
stoi_new(&sdrInstructs,1);
#endif
for (i=0;i<value(&sdrInstructs);i++)
{

lenVal nextData;
int dataLength=8; /* fix to be number of 1’s in dataMask */
readVal(&nextData,BYTES(dataLength));
#ifdef DEBUG_MODE1
printf("XSDRINC-----nextData:");
 stoi_new(&nextData,BYTES(dataLength));
#endif
doSDRMasking(&dataVal, &nextData, &addressMask, &dataMask);
if (!loadSDR(value(&SDRSize), &dataVal, &TDOExpected, &TDOMask)){
printf("******************************Did not Match*******************\n");

return 0; /* TDOs failed to match expected */
}

}
break;

case XSETSDRMASKS:
/* read the addressMask */
readVal(&addressMask,BYTES(value(&SDRSize)));
#ifdef DEBUG_MODE1
printf("XSETSDRMASKS-----addressMask:");
stoi_new(&addressMask,BYTES(value(&SDRSize)));
#endif
/* read the dataMask */
readVal(&dataMask,BYTES(value(&SDRSize)));
#ifdef DEBUG_MODE1
printf("XSETSDRMASKS-----dataMask:");
stoi_new(&dataMask,BYTES(value(&SDRSize)));
#endif
break;

case XCOMPLETE:
/* return from subroutine */
#ifdef DEBUG_MODE1
printf("XCOMPLETE: \n");
#endif
return 1;
1-38 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
break;

case XSDRSIZE:
/* set the SDRSize value */
readVal(&SDRSize,4);
#ifdef DEBUG_MODE1
printf("SDRSize: %x\n",value(&SDRSize));
#endif
break;

default:
printf("Unknown Instruction encountered\n");
printf("Make sure you have used the right options to convert svf2xsvf\n");
printf("For FPGAs use -fpga option with the -rlen option to specify the record

length\n");
}

}
}

/* determine the next data value from the XSDRINC instruction and store */
/* it in dataVal. */
/* Example: dataVal=0x01ff, nextData=0xab, addressMask=0x0100, */
/* dataMask=0x00ff, should set dataVal to 0x02ab */
void doSDRMasking(lenVal *dataVal, lenVal *nextData, lenVal *addressMask,

 lenVal *dataMask)
{

int i,j,count=0;

/* add the address Mask to dataVal and return as a new dataVal */
addVal(dataVal, dataVal, addressMask);
for (i=0;i<dataMask->len;i++)
{

/* look through each bit of the dataMask. If the bit is */
/* 1, then it is data and we must replace the corresponding*/
/* bit of dataVal with the appropriate bit of nextData */
for (j=0;j<8;j++)

if (RetBit(dataMask,i,j)) /* this bit is data */
{

/* replace the bit of dataVal with a bit from nextData */
SetBit(dataVal,i,j,RetBit(nextData,count/8,count%8));
count++; /* count how many bits have been replaced */

}
}

}

/* goto the idle state by setting TMS to 1 for 5 clocks, followed by TMS */
/* equal to 0 */
void gotoIdle()
{

int i;
setPort(TMS,1);
for (i=0;i<5;i++)

pulseClock();
setPort(TMS,0);
XAPP058 June 1999 (Version 2.0) 1-39

R

Xilinx In-System Programming Using an Embedded Microcontroller
pulseClock();
}

/* return 0 iff the TDO doesn’t match what is expected */
short loadSDR(int numBits, lenVal *dataVal, lenVal *TDOExpected,

 lenVal *TDOMask)
{

int failTimes=0;
long runTestTime;
lenVal actualTDO;

actualTDO.len = dataVal->len;

/* store local copy of wait time */
runTestTime = value(&runTestTimes);

/* data processing loop */
while (1)
{

clockOutBit(TMS,1); /* Select-DR-Scan state */
clockOutBit(TMS,0); /* Capture-DR state */
clockOutBit(TMS,0); /* Shift-DR state */
/* output dataVal onto the TDI ports; store the TDO value returned */
clockOutLenVal(dataVal,numBits,&actualTDO);
if (TDOExpected != (lenVal *) 0x0) {

/* compare the TDO value against the expected TDO value */
if (EqualLenVal(TDOExpected,&actualTDO,TDOMask))
{

/* TDO matched what was expected */
clockOutBit(TMS,1); /* Update-DR state */
clockOutBit(TMS,0); /* Run-Test/Idle state*/

/* wait in Run-Test/Idle state */
waitTime(runTestTime);
break;

} else {
/* TDO did not match the value expected */
failTimes++; /* update failure count */
if (failTimes>value(&maxRepeat))

return 0; /* ISP failed */

clockOutBit(TMS,0); /* Pause-DR state */
clockOutBit(TMS,1); /* Exit2-DR state */
clockOutBit(TMS,0); /* Shift-DR state */
clockOutBit(TMS,1); /* Exit1-DR state */
clockOutBit(TMS,1); /* Update-DR state */
clockOutBit(TMS,0); /* Run-Test/Idle state */
/* wait in Run-Test/Idle state */
waitTime(runTestTime);
/* as a paranoia check, increase wait time by 25% */
runTestTime += (runTestTime>>2);

}
} else {

/* No TDO check - go to RTI */
1-40 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
clockOutBit(TMS,1); /* Update-DR state */
clockOutBit(TMS,0); /* Run-Test/Idle state*/

/* wait in Run-Test/Idle state */

waitTime(runTestTime);
break;

}
}
return 1;

}

short loadSDRTDOB(int numBits, lenVal *dataVal, lenVal *TDOExpected,
 lenVal *TDOMask)

{
int failTimes=0;
long runTestTime;
lenVal actualTDO;
short retValue;

actualTDO.len = dataVal->len;

/* store local copy of wait time */
runTestTime = value(&runTestTimes);

/* data processing loop */
while (1)
{

clockOutBit(TMS,1); /* Select-DR-Scan state */
clockOutBit(TMS,0); /* Capture-DR state */
clockOutBit(TMS,0); /* Shift-DR state */
/* output dataVal onto the TDI ports; store the TDO value returned */
 shiftOutLenValStoreTDO(dataVal,numBits,&actualTDO,0);
if (TDOExpected != (lenVal *) 0x0) {
 /* compare the TDO value against the expected TDO value */

if(retValue
=checkAgainstTDO(&actualTDO,TDOExpected,&runTestTime,&failTimes)==1)

 break;
 else if(retValue == 0)
 return 0;

}
 /*else {*/

 /* No TDO check - go to RTI */

/*clockOutBit(TMS,1); */ /* Update-DR state */
/*clockOutBit(TMS,0); *//* Run-Test/Idle state*/

/* wait in Run-Test/Idle state */

/*waitTime(runTestTime);
break;*/

/*}*/
XAPP058 June 1999 (Version 2.0) 1-41

R

Xilinx In-System Programming Using an Embedded Microcontroller
}
return 1;

}

short loadSDRTDOC(int numBits, lenVal *dataVal, lenVal *TDOExpected,
 lenVal *TDOMask)

{
int failTimes=0;
long runTestTime;
lenVal actualTDO;
short retValue;

actualTDO.len = dataVal->len;

/* store local copy of wait time */
runTestTime = value(&runTestTimes);

/* data processing loop */
while (1)
{

/* output dataVal onto the TDI ports; store the TDO value returned */
 shiftOutLenValStoreTDO(dataVal,numBits,&actualTDO,0);
if (TDOExpected != (lenVal *) 0x0) {
 /* compare the TDO value against the expected TDO value */

if(retValue
=checkAgainstTDO(&actualTDO,TDOExpected,&runTestTime,&failTimes)==1)

 break;
 else if(retValue == 0)
 return 0;

}
 /*else {*/

 /* No TDO check - go to RTI */

/*clockOutBit(TMS,1); */ /* Update-DR state */
/*clockOutBit(TMS,0); *//* Run-Test/Idle state*/

/* wait in Run-Test/Idle state */

/*waitTime(runTestTime);
break;*/

/*}*/
}
return 1;

}

short loadSDRTDOE(int numBits, lenVal *dataVal, lenVal *TDOExpected,
 lenVal *TDOMask)

{
int failTimes=0;
long runTestTime;
lenVal actualTDO;
short retValue;
1-42 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
actualTDO.len = dataVal->len;

/* store local copy of wait time */
runTestTime = value(&runTestTimes);

/* data processing loop */
while (1)
{

/* output dataVal onto the TDI ports; store the TDO value returned */
 shiftOutLenValStoreTDO(dataVal,numBits,&actualTDO,1);
if (TDOExpected != (lenVal *) 0x0) {
 /* compare the TDO value against the expected TDO value */

if(retValue
=checkAgainstTDO(&actualTDO,TDOExpected,&runTestTime,&failTimes)==1)

 {
 /* TDO matched what was expected */
 clockOutBit(TMS,1); /* Update-DR state */
 clockOutBit(TMS,0); /* Run-Test/Idle state*/

 /* wait in Run-Test/Idle state */
 waitTime(runTestTime);
 break;

 }
 else if(retValue == 0)
 return 0;

}
 /*else {*/

 /* No TDO check - go to RTI */

/*clockOutBit(TMS,1); */ /* Update-DR state */
/*clockOutBit(TMS,0); *//* Run-Test/Idle state*/

/* wait in Run-Test/Idle state */

/*waitTime(runTestTime);
break;*/

/*}*/
}
return 1;

}
short checkAgainstTDO(lenVal *actualTDO,lenVal *TDOExpected,long *runTestTime,int
*failTimes)

 {
 if (EqualLenVal(TDOExpected,actualTDO,&TDOMask))

{
/* TDO matched what was expected */
/*clockOutBit(TMS,1); */ /* Update-DR state */
/*clockOutBit(TMS,0); */ /* Run-Test/Idle state*/

/* wait in Run-Test/Idle state */
XAPP058 June 1999 (Version 2.0) 1-43

R

Xilinx In-System Programming Using an Embedded Microcontroller
/*waitTime(*runTestTime);*/
return 1;

} else {
/* TDO did not match the value expected */
/**failTimes++;*/ /* update failure count */
/*if (*failTimes>value(&maxRepeat))*/

return 0; /* ISP failed */

/*clockOutBit(TMS,0); *//* Pause-DR state */
/*clockOutBit(TMS,1); *//* Exit2-DR state */
/*clockOutBit(TMS,0); *//* Shift-DR state */
/*clockOutBit(TMS,1); *//* Exit1-DR state */
/*clockOutBit(TMS,1); *//* Update-DR state */
/*clockOutBit(TMS,0); *//* Run-Test/Idle state */
/* wait in Run-Test/Idle state */
/*waitTime(*runTestTime);
/* as a paranoia check, increase wait time by 25% */
/**runTestTime += (*runTestTime>>2);*/
/*return 2;*/

}

 }
void loadSDRbegin(int numBits, lenVal *dataVal)
{

clockOutBit(TMS,1); /* Select-DR-Scan state */
clockOutBit(TMS,0); /* Capture-DR state */
clockOutBit(TMS,0); /* Shift-DR state */
/* output dataVal onto the TDI ports; store the TDO value returned */
shiftOutLenVal(dataVal,numBits,0);

}

void loadSDRend(int numBits, lenVal *dataVal)
{

/* output dataVal onto the TDI ports; store the TDO value returned */
shiftOutLenVal(dataVal,numBits,1);
clockOutBit(TMS,1); /* Update-DR state */
clockOutBit(TMS,0); /* Run-Test/Idle state*/

}

void loadSDRhold(int numBits, lenVal *dataVal)
{

/* output dataVal onto the TDI ports; store the TDO value returned */
shiftOutLenVal(dataVal,numBits,0);

}

1-44 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
/***/
/* file: ports.c */
/* abstract: This file contains the routines to */
/* output values on the JTAG ports, to read */
/* the TDO bit, and to read a byte of data */
/* from the prom */
/* */
/* Notes: See the notes for micro.c for explanation of */
/* the compiler switch "DEBUG_MODE". */
/***/
#include "ports.h"
/*#include "prgispx.h"*/

#ifdef DEBUG_MODE
#include "stdio.h"
extern FILE *in;
#endif

#ifdef DEBUG_MODE
/* if in debugging mode, use variables instead of setting the ports */
short pTCK,pTMS,pTDI;
#endif

#ifdef WIN95PP
#include "conio.h"
static inPortType in_word;
static outPortType out_word;
static unsigned short base_port = 0x378;
static int once = 0;
#endif

/*BYTE *xsvf_data=0;*/

/* if in debugging mode, then just set the variables */
void setPort(short p,short val)
{
#ifdef DEBUG_MODE

if (p==TCK)
pTCK=val;

if (p==TMS)
pTMS=val;

if (p==TDI)
pTDI=val;

#endif

#ifdef WIN95PP
if (once == 0) {

out_word.bits.one = 1;
out_word.bits.zero = 0;
once = 1;

}
if (p==TMS)

out_word.bits.tms = (unsigned char) val;
if (p==TDI)
XAPP058 June 1999 (Version 2.0) 1-45

R

Xilinx In-System Programming Using an Embedded Microcontroller
out_word.bits.tdi = (unsigned char) val;
if (p==TCK) {

out_word.bits.tck = (unsigned char) val;
(void) _outp((unsigned short) (base_port + 0), out_word.value);

}
/*#else*/
/* me40 specific code to control isp bits */
/*switch(p)
{

case TCK:
if(val)

(BYTE)(void*)PORTE0|=ISP_TCK;
else

(BYTE)(void*)PORTE0&=~(ISP_TCK);
break;

case TMS:
if(val)

(BYTE)(void*)PORTE0|=ISP_TMS;
else

(BYTE)(void*)PORTE0&=~(ISP_TMS);
break;

case TDI:
if(val)

(BYTE)(void*)PORTE0|=ISP_TDI;
else

(BYTE)(void*)PORTE0&=~(ISP_TDI);
break;

default:
break;

}*/

#endif
}

#ifdef DEBUG_MODE
void printPorts()
{

printf("M=%d I=%d\n",pTMS,pTDI);
}
#endif

/* toggle tck LHL */
void pulseClock()
{

setPort(TCK,0); /* set the TCK port to low */
setPort(TCK,1); /* set the TCK port to high */

#ifdef DEBUG_MODE
/* if in debugging mode, print the ports on the rising clock edge */
printPorts();

#endif
setPort(TCK,0); /* set the TCK port to low */
1-46 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
}

/* read in a byte of data from the prom */
void readByte(unsigned char *data)
{
#ifdef DEBUG_MODE

/* pretend reading using a file */
fscanf(in,"%c",data);

#endif
/**data=*xsvf_data++;*/

}

/* read the TDO bit from port */
unsigned char readTDOBit()
{
#ifdef DEBUG_MODE

static int i = 0;
if (i++ < 6)

return 0;
else {

i = 0;
return 1; /* garbage value for now; replace with real port read. */

}
#endif

#ifdef WIN95PP
in_word.value = (unsigned char) _inp((unsigned short) (base_port + STATUS_OFFSET)

);
if (in_word.bits.tdo == 0x1) {

return((unsigned char) 1);
}
return((unsigned char) 0);

/*#else

if(*(BYTE*)(void*)PORTE0&ISP_TDO)
return(1);

return(0);
*/

#endif
}

/* Wait at least the specified number of microsec. */
/* Use a timer if possible; otherwise estimate the number of instructions */
/* necessary to be run based on the microcontroller speed. For this example */
/* we pulse the TCK port a number of times based on the processor speed. */
void waitTime(long microsec)
{

long repeat;

#define CLOCK_RATE 150 /* set to be the clock rate of the system in kHz */
long clockRunTests=microsec*CLOCK_RATE/1000;

#ifndef DEBUG_MODE
for (repeat=0;repeat<clockRunTests;repeat++)
XAPP058 June 1999 (Version 2.0) 1-47

R

Xilinx In-System Programming Using an Embedded Microcontroller
pulseClock();
#endif
}

/***/
/* file: ports.h */
/* abstract: This file contains extern declarations */
/* for providing stimulus to the JTAG ports.*/
/***/

#ifndef ports_dot_h
#define ports_dot_h

#if 0
#define DEBUG_MODE /* this line and output the */

 /* TMS and TDI values on the rising edge of */
 /* the clock */

#endif

#ifdef WIN95PP
#define DATA_OFFSET (unsigned short) 0
#define STATUS_OFFSET (unsigned short) 1
#define CONTROL_OFFSET (unsigned short) 2

typedef union outPortUnion {
unsigned char value;
struct opBitsStr {

unsigned char tdi:1;
unsigned char tck:1;
unsigned char tms:1;
unsigned char zero:1;
unsigned char one:1;
unsigned char bit5:1;
unsigned char bit6:1;
unsigned char bit7:1;

} bits;
} outPortType;

typedef union inPortUnion {
unsigned char value;
struct ipBitsStr {

unsigned char bit0:1;
unsigned char bit1:1;
unsigned char bit2:1;
unsigned char bit3:1;
unsigned char tdo:1;
unsigned char bit5:1;
unsigned char bit6:1;
unsigned char bit7:1;

} bits;
} inPortType;
#endif
1-48 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
/* these constants are used to send the appropriate ports to setPort */
/* they should be enumerated types, but some of the microcontroller */
/* compilers don’t like enumerated types */
#define TCK (short) 0
#define TMS (short) 1
#define TDI (short) 2

/* set the port "p" (TCK, TMS, or TDI) to val (0 or 1) */
extern void setPort(short p, short val);

/* read the TDO bit and store it in val */
extern unsigned char readTDOBit();

/* make clock go down->up->down*/
extern void pulseClock();

/* read the next byte of data from the xsvf file */
extern void readByte(unsigned char *data);

extern void waitTime(long microsec);

#endif
XAPP058 June 1999 (Version 2.0) 1-49

R

Xilinx In-System Programming Using an Embedded Microcontroller
1-50 XAPP058 June 1999 (Version 2.0)

R

Xilinx In-System Programming Using an Embedded Microcontroller
Appendix D
Binary to Intel Hex Translator

This appendix contains C-code that can be used to convert
XSVF files to Intel Hex format for downloading to an
EPROM programmer. Most embedded processor code
development systems can output Intel Hex for included
binary files, and for those systems the following code is not
needed. However, designers can use the following C-code
if the development system they are using does not have
Intel Hex output capability.

Overview
The ISP controller described in this application note allows
designers to program and test XC9500/XL CPLDs from
information stored in EPROM. This information is saved in

a binary XSVF file that contains both device programming
instructions as well as the device configuration data. The
8051 microcontroller reads the EPROM (or EPROMs) that
contain the XSVF file, converts the binary information to
XC9500/XL compatible instructions and data, and outputs
the programming information to the XC9500/XL device
through a 4-wire test access port.

After an XC9500/XL design has been converted to XSVF
format, the XSVF information is converted to Intel hex for-
mat which is downloaded to an EPROM programmer. The
resulting EPROMs, containing the CPLD programming
information, can then be used in this ISP controller design.

/*
This program is released to the public domain. It

prints a file to stdout in Intel HEX 83 format.
*/

#include <stdio.h>

#define RECORD_SIZE0x10/* Size of a record. */
#define BUFFER_SIZE 128

/*** Local Global Variables ***/

static char *line, buffer[BUFFER_SIZE];
static FILE *infile;

/*** Extern Functions Declarations ***/

extern char hex(int c);
extern void puthex(int val, int digits);

/*** Program Main ***/

main(int argc, char *argv[])
{

int c=1, address=0;
int sum, i;
i=0;
/*** First argument - Binary input file ***/

if (!(infile = fopen(argv[++i],"rb"))) {
fprintf(stderr, "Error on open of file %s\n",argv[i]);
exit(1);

}

/*** Read the file character by character ***/
XAPP058 June 1999 (Version 2.0) 1-51

R

Xilinx In-System Programming Using an Embedded Microcontroller
while (c != EOF) {
sum = 0;
line = buffer;
for (i=0; i<RECORD_SIZE && (c=getc(infile)) != EOF; i++) {

*line++ = hex(c>>4);
*line++ = hex(c);
sum += c; /* Checksum each character. */

}
if (i) {

sum += address >> 8;/* Checksum high address byte.*/
sum += address & 0xff;/* Checksum low address byte.*/
sum += i; /* Checksum record byte count.*/
line = buffer; /* Now output the line! */
putchar(':');
puthex(i,2); /* Byte count. */
puthex(address,4); /* Do address and increment */
address += i; /* by bytes in record. */
puthex(0,2); /* Record type. */
for(i*=2;i;i--) /* Then the actual data. */

putchar(*line++);
puthex(0-sum,2); /* Checksum is 1 byte 2's comp.*/
printf("\n");

}
}
printf(":00000001FF\n");/* End record. */

}

/* Return ASCII hex character for binary value. */

char
hex(int c)
{

if((c &= 0x000f)<10)
c += '0';

else
c += 'A'-10;

return((char) c);
}

/* Put specified number of digits in ASCII hex. */

void
puthex(int val, int digits)
{

if (--digits)
puthex(val>>4,digits);

putchar(hex(val & 0x0f));
}

1-52 XAPP058 June 1999 (Version 2.0)

	Introduction
	Programming Xilinx CPLDs and FPGAs
	JTAG Instruction Summary
	Instructions supported by all devices:
	Instructions common to CPLD and some FPGAs:
	Instructions supported by XC4000/Spartan only:
	Instructions supported by Virtex only:
	Commands supported by CPLDs only:
	Instructions specific to CPLDs:
	Instructions specific to XC4000/Spartan
	Instructions specific to Virtex:

	EPROM Programming
	Software Limitations

	Hardware Design
	Hardware Design Description
	Estimated EPROM Memory Requirements
	Modifications for Other Applications
	Debugging Suggestions

	Firmware Design
	Memory Map
	Port Map
	TAP Timing
	TAP AC Parameters
	XC9500/XL/XV Programming Algorithm
	Exception Handling
	XC4000 and Spartan Programming Algorithm
	Virtex Programming Algorithm

	Conclusion

	Appendix A - SVF File Format for Xilinx Devices
	SVF Overview
	SVF Commands
	SDR, SIR
	RUNTEST

	SVF Commands

	Appendix B - XSVF File Format and Conversion Utilities
	XSVF Commands
	XTDOMASK
	XREPEAT
	XRUNTEST
	XSIR
	XSDR
	XSDRSIZE
	XSDRTDO
	XSDRB
	XSDRC
	XSDRE
	XSDRTDOB
	XSDRTDOC
	XSDRTDOE
	XSETSDRMASKS
	XSDRINC
	XCOMPLETE

	svf2xsvf File Conversion Utility
	xsvf2ascii File Conversion Utility

	Appendix C - C-Code Listing
	C-Code Files
	Header Files

	Appendix D - Binary to Intel Hex Translator
	Overview

