

Summary This document details the VHDL implementation of an I2C controller in a Xilinx CoolRunner™
128 macrocell CPLD. CoolRunner CPLDs are the lowest power CPLDs available and thus are
the perfect target device for an I2C controller. The VHDL code described in this document can
be obtained by contacting Xilinx Technical Support.

Introduction The I2C bus is a popular serial, two-wire interface used in many systems because of its low
overhead. The two-wire interface minimizes interconnections so ICs have fewer pins, and the
number of traces required on printed circuit boards is reduced. Capable of 100 KHz operation,
each device connected to the bus is software addressable by a unique address with a simple
Master/Slave protocol.

The CoolRunner I2C Controller design contains an asynchronous microcontroller (µC) interface
and provides I2C Master/Slave capability. It is intended to be used with a microcontroller (µC) or
microprocessor (µP) as shown in Figure 1.

I2C Background This section will describe the main protocol of the I2C bus. For more details and timing
diagrams, please refer to the I2C specification.

The I2C bus consists of two wires, serial data (SDA) and serial clock (SCL), which carry
information between the devices connected to the bus. The number of devices connected to the
same bus is limited only by a maximum bus capacitance of 400 pF. Both the SDA and SCL lines
are bidirectional lines, connected to a positive supply voltage via a pull-up resistor. When the
bus is free, both lines are High. The output stages of devices connected to the bus must have
an open-drain or open-collector in order to perform the wired-AND function.

Each device on the bus has a unique address and can operate as either a transmitter or
receiver. In addition, devices can also be configured as Masters or Slaves. A Master is the
device which initiates a data transfer on the bus and generates the clock signals to permit that
transfer. Any other device that is being addressed is considered a Slave. The I2C protocol

Implementing an I2C Bus Controller in a
CoolRunner™ CPLD

XAPP315 (v1.0) October 25, 1999 Application Note

R

Address

Data

Control
Microcontroller Microcontroller

Interface

I2C Master/
Slave

Interface

CoolRunner I2C Bus Controller SCL

SDA

X315_01_091999

Figure 1: CoolRunner I2C Bus Controller

Application Note: CoolRunner™ CPLD
XAPP315 (v1.0) October 25, 1999 www.xilinx.com 1
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

defines an arbitration procedure that insures that if more than one Master simultaneously tries
to control the bus, only one is allowed to do so and the message is not corrupted. The
arbitration and clock synchronization procedures defined in the I2C specification are supported
by the CoolRunner I2C Controller.

Data transfers on the I2C bus are initiated with a START condition and are terminated with a
STOP condition. Normal data on the SDA line must be stable during the High period of the
clock. The High or Low state of the data line can only change when SCL is Low. The START
condition is a unique case and is defined by a High-to-Low transition on the SDA line while SCL
is High. Likewise, the STOP condition is a unique case and is defined by a Low-to-High
transition on the SDA line while SCL is High. The definitions of data, START, and STOP insure
that the START and STOP conditions will never be confused as data. This is shown in Figure 2.

Each data packet on the I2C bus consists of eight bits of data followed by an acknowledge bit
so one complete data byte transfer requires nine clock pulses. Data is transferred with the most
significant bit first (MSB). The transmitter releases the SDA line during the acknowledge bit and
the receiver of the data transfer must drive the SDA line low during the acknowledge bit to
acknowledge receipt of the data. If a Slave-receiver does not drive the SDA line Low during the
acknowledge bit, this indicates that the Slave-receiver was unable to accept the data and the
Master can then generate a STOP condition to abort the transfer. If the Master-receiver does
not generate an acknowledge, this indicates to the Slave-transmitter that this byte was the last
byte of the transfer.

Standard communication on the bus between a Master and a Slave is composed of four parts:
START, Slave address, data transfer, and STOP. The I2C protocol defines a data transfer format
for both 7-bit and 10-bit addressing. The implementation of the I2C controller in the Xilinx
CoolRunner CPLD supports the seven-bit address format. After the START condition, a Slave
address is sent. This address is seven bits long followed by an eighth-bit which is the read/write
bit. A "1" indicates a request for data (read) and a "0" indicates a data transmission (write). Only
the Slave with the calling address that matches the address transmitted by the Master
responds by sending back an acknowledge bit by pulling the SDA line Low on the ninth clock.

Once successful Slave addressing is achieved, the data transfer can proceed byte-by-byte as
specified by the read/write bit. The Master can terminate the communication by generating a
STOP signal to free the bus. However, the Master may generate a START signal without
generating a STOP signal first. This is called a repeated START.

CoolRunner I2C
Controller

The CoolRunner CPLD implementation of the I2C Controller supports the following features:

• Microcontroller interface
• Master or Slave operation
• Multi-master operation
• Software selectable acknowledge bit

SDA MSB

Start
Condition

S

1 2 3 7 8 9SCL

x315_10_101599

Stop
Condition

P

ACK

Figure 2: Data Transfer on the I2C Bus
2 www.xilinx.com XAPP315 (v1.0) October 25, 1999
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

• Arbitration lost interrupt with automatic mode switching from Master to Slave
• Calling address identification interrupt with automatic mode switching from Master to Slave
• START and STOP signal generation/detection
• Repeated START signal generation
• Acknowledge bit generation/detection
• Bus busy detection
• 100 KHz operation

Signal
Descriptions

The I/O signals of the CoolRunner I2C controller are described in Table 1. Pin numbers have
not been assigned to this design, this can be done to meet the system requirements of the
designer.

Table 1: CoolRunner I2C Controller Signal Description

Name Direction Description

SDA Bidirectional I2C Serial Data.

SCL Bidirectional I2C Serial Clock.

ADDR_BUS[23:0] Input µC Address Bus.

DATA_BUS[7:0] Bidirectional µC Data Bus.

AS Input Address Strobe. Active Low µC handshake signal
indicating that the address present on the address
bus is valid.

DS Input Data Strobe. Active Low µC handshake signal
indicating that the data present on the data bus is
valid or that the µC is no longer driving the data bus
and the I2C Controller can place data on the data
bus.

R_W Input Read/Write. "1" indicates a read, "0" indicates a
write.

DTACK Output Data Transfer Acknowledge. Active Low µC
handshake signal indicating that the I2C Controller
has placed valid data on the data bus for a read cycle
or that the I2C Controller has received the data on
the bus for a write cycle.

IRQ Output Interrupt Request. Active Low.

MCF Output Data Transferring Bit. While one byte of data is
being transferred, this bit is cleared. It is set by the
falling edge of the ninth clock of a byte transfer. This
bit is used to signal the completion of a byte transfer
to the µC.

CLK Input Clock. This clock is input from the system. The
constants used in generating a 100 KHz SCL signal
assumes the frequency to be 1.832 MHz. Different
clock frequencies can be used, but the constants in
the VHDL source code must be recalculated.
XAPP315 (v1.0) October 25, 1999 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

Block Diagram The block diagram of the CoolRunner I2C Controller, shown in Figure 3 was broken into two
major blocks, the µC interface and the I2C interface.

A
D

D
R

_B
U

S
[2

3:
0]

IR
Q

S
C

L

S
D

A

M
C

F

D
A

T
A

_B
U

S
[7

:0
]

D
T

A
C

K

D
S

A
S

R
_W

RESET

SYS_CLK

ADDR_DECODE/Bus Interface

Control Register
MBCR

X315_02_101599

Status Register
MBSR

Data Register
MBDR

µC Interface

I2C Interface

Address Register
MADR

Address
Compare

I2C Header
Register

I2C Data
Register

Arbitration and
START/STOP

Detection

Main State Machine

START/
STOP
SCL

Generation

I2C Status
Register

Figure 3: CoolRunner I2C Controller
4 www.xilinx.com XAPP315 (v1.0) October 25, 1999
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

µC Interface
Logic

The µC interface for the I2C controller design supports an asynchronous byte-wide bus
protocol. This protocol is the method in which the µC reads and writes the registers in the
design and is shown in Figure 4.

Address Decode/Bus Interface Logic
The µC bus protocol is implemented in the CoolRunner I2C Controller in the state machine
shown in Figure 5.

µC

Address the Device

1. Set R/W to indicate direction of data transfer

2. Place Address on A23 - A1

3. Assert Address Strobe (AS)

4. Place data on D7 - D0 (if write)

5. Assert Data Strobe (DS)

Terminate Transfer

1. Latch data (if read)

2. Negate DS

3. Negate AS

4. Remove data from bus (if write)

I2C Controller

Input the Data

1. Decode Address

2. Latch data on D7 - D0 (if write)

or Place data on D7 - D0 (if read)
3. Assert Data Transfer Acknowledge (DTACK)

Terminate the Cycle

1. Remove data from D7- D0 (if read)

2. Negate DTACKStart Next Cycle

Figure 4: µC Read/Write Protocol

IDLE

AS Asserted
RESET Negated

SS Asserted
ADDRESS_MATCH Asserted

ADDR

DATA_TRS

ASSERT_DTACK

X315_03_091999

DS
Negated

RESET
Asserted

AS Asserted
DS Asserted

ADDRESS_MATCH
Negated

AS Negated
DS Negated

Figure 5: µC Bus Interface State Machine
XAPP315 (v1.0) October 25, 1999 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

In the first cycle, the µC places the address on the address bus, sets the read/write line to the
correct state, and asserts address strobe (AS) and data strobe (DS). Address strobe indicates
that the address present on the address bus is valid. If this is a write cycle, the µC also places
the data on the data bus and DS indicates that valid data is present on the data bus. If this is a
read cycle, the µC tri-states the data bus and DS indicates that the CoolRunner I2C Controller
can place data on the data bus.

Upon the assertion of AS, the CoolRunner I2C Controller transitions to the ADDR state to
decode the address and determine if it is the device being addressed. The enables for the
internal registers are set in this state. If the CoolRunner I2C Controller is being addressed and
DS is asserted, the CoolRunner I2C controller progresses to the DATA_TRS state. If this is a
read cycle, the requested data is placed on the bus and if this is a write cycle, the data from the
data bus is latched in the addressed register. The CoolRunner I2C Controller automatically
progresses to the ASSERT_DTACK state and asserts DTACK indicating that the data
requested is ready if a read cycle or that the data has been received if a write cycle.

Upon the assertion of DTACK, the µC either removes data from the bus if this is a write cycle,
or latches the data present on the bus if this is a read cycle. The read/write line is set to read
and AS and DS are negated to indicate that the data transfer is complete. The negation of AS
and DS causes the CoolRunner I2C Controller to negate DTACK and transition to the IDLE
state.

CoolRunner I2C Controller Registers
The base address used for address decoding is set in the VHDL code via the constant
BASE_ADDRESS. The base address is the upper 16 bits of the address bus. The lower
address bits determine which register is being accessed.

The registers supported in the CoolRunner I2C Controller are described in the Table 2. The µC
interface logic of the CoolRunner I2C Controller handles the reading and writing of these
registers by the µC and supplies and/or retrieves these bits to/from the I2C interface logic.

Address Register (MADR)
This field contains the specific Slave address to be used by the I2C Controller. This register is
read/write. (Table 3)

Table 2: I2C Controller Registers

Address Register Description

MBASE + $141 MADR I2C Address Register

MBASE + $145 MBCR I2C Control Register

MBASE + $147 MBSR I2C Status Register

MBASE + $149 MBDR I2C Data I/O Register

Table 3: Address Register Bits

Bit
Location Name µC Access Description

7-1 Slave Address Read/Write Address used by the I2C controller when in
Slave mode.

0 Unused
6 www.xilinx.com XAPP315 (v1.0) October 25, 1999
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

Control Register (MBCR)
This register contains the bits to configure the I2C controller. (Table 4)

Table 4: Control Register Bits

Bit
Location Name µC Access Description

7 MEN Read/Write I2C Controller Enable. This bit must be set before
any other MBCR bits have any effect

- "1" enables the I2C controller
- "0" resets and disables the I2C controller

6 MIEN Read/Write Interrupt Enable.

- "1" enables interrupts. An interrupt occurs if
MIF bit in the status register is also set

- "0" disable interrupts but does not clear any
currently pending interrupts

5 MSTA Read/Write Master/Slave Mode Select. When the µC changes
this bit from "0" to "1", the I2C controller generates
a START condition in Master mode. When this bit is
cleared, a STOP condition is generated and the I2C
controller switches to Slave mode. If this bit is
cleared, however, because arbitration for the bus
has been lost, a STOP condition is not generated.

4 MTX Read/Write Transmit/Receive Mode Select. This bit selects
the direction of Master/Slave transfers.

- "1" selects an I2C transfer
- "0" selects an I2C receive

3 TXAK Read/Write Transmit Acknowledge Enable. This bit specifies
the value driven onto the SDA line during
acknowledge cycles for both Master and Slave
receivers

- "1" - ACK bit = "1" - no acknowledge
- "0" - ACK bit = "0" - acknowledge

Since Master receivers indicate the end of data
reception by not acknowledging the last byte of the
transfer, this bit is the means for the µC to end a
Master receiver transfer.

2 RSTA Read/Write Repeated Start. Writing a "1" to this bit generates
a repeated START condition on the bus if the I2C
controller is the current bus Master. This bit is
always read as "0". Attempting a repeated START
at the wrong time if the bus is owned by another
Master results in a loss of arbitration.

1 - 0 Reserved
XAPP315 (v1.0) October 25, 1999 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

Status Register (MBSR)
This register contains the status of the I2C controller. This status register is read-only with the
exception of the MIF and MAL bits, which are software clearable. All bits are cleared upon reset
except the MCF and RXAK bits. (Table 5)

Table 5: Status Register Bits

Bit
Location Name µC Access Description

7 MCF Read Data Transferring Bit. While on byte of data is being
transferred, this bit is cleared. It is set by the falling
edge of the ninth clock of a byte transfer.

- "1" transfer is complete
- "0" transfer in progress

Note that in the CoolRunner I2C controller, this bit is
also an output pin so that a register read cycle is not
required to determine that a transfer is complete.

6 MAAS Read Addressed as Slave Bit. When the address on the
I2C bus matches the Slave address in the MADR
register, the I2C controller is being addressed as a
Slave and switches to Slave mode.

5 MBB Read Bus Busy Bit. this bit indicates the status of the I2C
bus. This bit is set when a START condition is
detected and cleared when a STOP condition is
detected.

- "1" indicates the bus is busy
- "0" indicates the bus is idle

4 MAL Read
Software
Clearable

Arbitration Lost Bit. This bit is set by hardware when
arbitration for the I2C bus is lost. This bit must be
cleared by the µC software writing a "0" to this bit.

3 Reserved

2 SRW Read When the I2C controller has been addressed as a
Slave (MAAS is set), this bit indicates the value of the
read/write bit sent by the Master. This bit is only valid
when a complete transfer has occurred and no other
transfers have been initiated.

- "1" indicates Master reading from Slave
- "0" indicates Master writing to Slave

1 MIF Read
Software
Clearable

Interrupt Bit. This bit is set when an interrupt is
pending, which causes a processor interrupt request
if MIEN is set. This bit must be cleared by the µC
software writing a "0" to this bit in the interrupt
service routine.

0 RXAK Read Received Acknowledge Bit. This bit reflects the value
of the SDA signal during the acknowledge cycle of
the transfer.

- "1" indicates that no acknowledge was received
- "0" indicates that an acknowledge was received
8 www.xilinx.com XAPP315 (v1.0) October 25, 1999
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

Data Register (MBDR)
This register contains data to/from the I2C bus. Physically, this register is implemented by two
byte-wide registers at the same address, one for the I2C transmit data and one for the I2C
received data. This eliminates any possible contention between the µC and the CoolRunner I2C
Controller. Since these registers are at the same address they appear as the same register to
the µC and will continue to be described as such. In transmit mode, data written into this
register is output on the I2C bus, in receive mode, this register contains the data received from
the I2C bus. Note that in receive mode, it is assumed that the µC will be able to read this register
during the next I2C transfer. The received I2C data is placed in this register after each complete
transfer, the I2C interface logic does not wait for an indication from the µC that this register has
been read before proceeding with the next transfer. (Table 6)

I2C Interface
Logic

The I2C bus interface logic consists of several different processes as seen in Figure 3. Control
bits from the µC interface registers determine the behavior of these processes.

Arbitration
Arbitration of the I2C bus is lost in the following circumstances:

• The SDA signal is sampled as a "0" when the Master outputs a "1" during an address or
data transmit cycle

• The SDA signal is sampled as a "0" when the Master outputs a "1" during the acknowledge
bit of a data receive cycle

• A start cycle is attempted when the bus is busy
• A repeated start cycle is requested in Slave mode
• A STOP condition is detected when the Master did not request it
If the CoolRunner I2C Controller is in Master mode, the outgoing SDA signal is compared with
the incoming SDA signal to determine if control of the bus has been lost. The SDA signal is
checked only when SCL is High during all cycles of the data transfer except for acknowledge
cycles to insure that START and STOP conditions are not generated at the wrong time. If the
outgoing SDA signal and the incoming SDA signals differ, then arbitration is lost and the MAL
bit is set. At this point, the CoolRunner I2C Controller switches to Slave mode and resets the
MSTA bit.

The CoolRunner I2C design will not generate a START condition while the bus is busy,
however, the MAL bit will be set if the µC requests a START or repeated START while the bus
is busy. The MAL bit is also set if a STOP condition is detected when this Master did not
generate it.

If arbitration is lost during a byte transfer, SCL continues to be generated until the byte transfer
is complete.

START/STOP Detection
This process monitors the SDA and SCL signals on the I2C bus for START and STOP
conditions. When a START condition is detected, the Bus Busy bit is set. This bit stays set until
a STOP condition is detected. The signals, DETECT_START and DETECT_STOP are
generated by this process for use by other processes in the logic. Note that this logic detects
the START and STOP conditions even when the CoolRunner I2C Controller is the generator of
these conditions.

Table 6: I2C Data Register Bit

Bit
Location Name µC Access Description

7 - 0 D7 - D0 Read/Write I2C Data
XAPP315 (v1.0) October 25, 1999 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

Generation of SCL, SDA, START and STOP Conditions
This process generates the SCL and SDA signals output on the I2C bus when in Master mode.
The clock frequency of the SCL signal is ~100 KHz and is determined by dividing down the
input clock. The number of input clock cycles required for generation of a 100 KHz SCL signal
is set by the constant CNT_100 KHZ and is currently calculated for a system clock of 1.832
MHz. This constant can easily be modified by a designer based on the clock available in the
target system. Likewise, the constants START_HOLD and DATA_HOLD contain the number of
system clock cycles required to meet the I2C requirements on hold time for the SDA lines after
generating a START condition and after outputting data.

The state machine that generates SCL and SDA when in Master mode is shown in Figure 6.
Note that SCL and SDA are held at the default levels if the bus is busy. This state machine
generates the controls for the system clock counter.

IDLE

MASTER = 1
BUS_BUSY = 0

GEN_START = 1

CLK_CNT = START_HOLD

CLK_CNT = LOW_CNT

SCL_INT = 1

START

SCL_LOW_EDGE

SCL_LOW

SCL_HI_EDGE

SCL_HI

X315_04_091999

CLK_CNT < START_HOLD

CLK_CNT < LOW_CNT

CLK_CNT < HIGH_CNT

SCL_INT = 0

GEN_STOP = 1
CLK_CNT = HIGH_CNT/2

REP_START = 1
CLK_CNT = HIGH_CNT/2

CLK_CNT = HIGH_CNT

ARB_LOST = 1
BIT_CNT > 9

Figure 6: SCL, SDA, START, and STOP Generation State Machine
10 www.xilinx.com XAPP315 (v1.0) October 25, 1999
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

The internal SDA signal output from this design is either the SDA signal generated by this state
machine for START and STOP conditions or the data from the MBDR register when the
CoolRunner I2C Controller is in transmit mode. Note that both SCL and SDA are open-collector
outputs, therefore, they are only driven to a "0". When a "1" is to be output on these signals, the
CoolRunner I2C Controller tri-states their output buffers. The logic in the design will set internal
SDA and SCL signals to "1" or "0". These internal signals actually control the output enable of
the tri-state buffer for these outputs.

In the IDLE state, SCL and SDA are tri-stated, allowing any Master to control the bus. Once a
request has entered to generate a start condition, the CoolRunner I2C Controller is in Master
mode, and the bus is not busy, the state machine transitions to the START state.

The START state holds SCL High, but drives SDA Low to generate a START condition. The
system clock counter is started and the state machine stays in this state until the required hold
time is met. At this point, the next state is SCL_LOW_EDGE.

The SCL_LOW_EDGE state simply creates a falling edge on SCL and resets the system clock
counter. On the next clock edge, the state machine moves to state SCL_LOW. In this state, the
SCL line is held Low and the system clock counter begins counting. If the REP_START signal
is asserted then the SDA signal will be set High, if the GEN_STOP signal is asserted, SDA will
be set Low.

When the SCL low time has been reached, the state machine will transition to the IDLE state if
arbitration has been lost and the byte transfer is complete to insure that SCL continues until the
end of the transfer. Otherwise the next state is the SCL_HI_EDGE state.

The SCL_HI_EDGE state generates a rising edge on SCL by setting SCL to "1". Note, however,
that the state machine will not transition to the SCL_HI state until the sampled SCL signal is
also High to obey the clock synchronization protocol of the I2C specification. Clock
synchronization is performed using the wired-AND connection of the SCL line. The SCL line will
be held Low by the device with the longest low period. Devices with shorter low periods enter
a high wait state until all devices have released the SCL line and it goes High. Therefore the
SCL_HI_EDGE state operates as the high wait state as the SCL clock is synchronized.

The SCL_HI state then starts the system clock counter to count the high time for the SCL
signal. If a repeated START or a STOP condition has been requested, the state machine will
transition to the appropriate state after half of the SCL high time so that the SDA line can
transition as required. If neither of these conditions has been requested, then the state machine
transitions to the SCL_LOW_EDGE state when the SCL high time has been achieved.
XAPP315 (v1.0) October 25, 1999 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

I 2C Interface Main State Machine
The main state machine for the I2C Interface logic is shown in Figure 7. This state machine is
the same for both Slave and Master modes. In each state, the mode is checked to determine
the proper output values and next state conditions. This allows for immediate switching from
Master to Slave mode if arbitration is lost or if the CoolRunner I2C Controller is addressed as a
Slave.

This state machine utilizes and controls a counter that counts the I2C bits that have been
received. This count is stored in the signal BIT_CNT. This state machine also controls two shift
registers, one that stores the I2C header that has been received and another that stores the I2C
data that has been received or is to be transmitted.

Note: This state machine and the associated counters and shift registers are clocked on the falling
edge of the incoming SCL clock. If the load is heavy on the SCL line, the rise time of the SCL
signal may be very slow which can cause susceptibility to noise for some systems. This can be
particularly dangerous on a clock signal. The designer is strongly encouraged to investigate
the signal integrity of the SCL line and if necessary, use external buffers for the SCL signal.

When a START signal has been detected, the state machine transitions from the IDLE state to
the HEADER state. The START signal detection circuit monitors the incoming SDA and SCL
lines to detect the START condition. The START condition can be generated by the CoolRunner
I2C controller or another Master - either source will transition the state machine to the HEADER
state.

The HEADER state is the state where the I2C header is transmitted on the I2C bus from the
MBDR register if in Master mode. In this state, the incoming I2C data is captured in the I2C
Header shift register. In Master mode, the I2C Header shift register will contain the data that

IDLE

DETECT_START = 1

Master
SDA = 1

BIT_CNT = 8

HEADER

ACK_HEADER

BIT_CNT = 8

RCV_DATA

ACK_DATA

BIT_CNT = 8

XMIT_DATA

GET_ACK_DATA

STOP

X315_05_091999

BIT_CNT < 8

RESET
Asserted

SDA = 0

Master Rcv
SDA = 0

Slave Rcv
ADDR_MATCH = 1

Master Xmit
SDA = 0

Slave Xmit
ADDR_MATCH = 1

DETECT_STOP = 1 DETECT_STOP = 1

SDA = 1

Figure 7: I2C Interface Main State Machine
12 www.xilinx.com XAPP315 (v1.0) October 25, 1999
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

was just transmitted by this design. When all eight bits of the I2C header have been shifted in,
the state machine transitions to the ACK_HEADER state.

In the ACK_HEADER state, the CoolRunner I2C design samples the SDA line if in Master mode
to determine whether the addressed I2C Slave acknowledged the header. If the addressed
Slave does not acknowledge the header, the state machine will transition to the STOP state
which signals the SCL/START/STOP generator to generate a STOP. If the addressed Slave has
acknowledged the address, then the LSB of the I2C header is used to determine if this is a
transmit or receive operation and the state machine transitions to the appropriate state to either
receive data, RCV_DATA, or to transmit data, XMIT_DATA.

The I2C Header shift register is constantly compared with the I2C address set in the MADR
register. If these values match in the ACK_HEADER state, the CoolRunner I2C Controller has
been addressed as a Slave and the mode immediately switches to Slave mode. The MAAS bit
is then set in the MBSR status register. The SDA line will be driven as set in the TXAK register
to acknowledge the header to the current I2C bus Master. Again, the LSB of the I2C header is
used to determine the direction of the data transfer and the appropriate state is chosen.

The RCV_DATA state shifts the incoming I2C data into the I2C shift register for transfer to the
µC. When the whole data byte has been received, the state machine transitions to the
ACK_DATA state and the value of the TXAK register is output on the SDA line to acknowledge
the data transfer. Note that in Master mode, the indication that the Slave has transmitted the
required number of data bytes is to not acknowledge the last byte of data. The µC must negate
the TXAK bit to prohibit the ACK of the last data byte. The state machine exits this pair of states
when a STOP condition has been detected, otherwise, the transition between these two states
continues. In Master mode, the µC requests a STOP condition by negating the MSTA bit.

The XMIT_DATA state shifts the data from the I2C data register to the SDA line. When the
entire byte has been output, the state machine transitions to the GET_ACK_DATA state. If an
acknowledge is received, the state machine goes back to the XMIT_DATA to transmit the next
byte of data. This pattern continues until either a STOP condition is detected, or an
acknowledge is not received for a data byte.

Note that the data transfer states of this state machine assume that the µC can keep up with the
rate at which data is received or transmitted. If interrupts are enabled, an interrupt is generated
at the completion of each byte transfer. The MCF bit is set as well providing the same
indication. Data is transferred to/from the I2C data register to/from the µC data register during
the acknowledge cycle of the data transfer. The state machine does not wait for an indication
that the µC has read the received data or that new data has been written for transmission. The
designer should be aware of the effective data rate of the µC to insure that this is not an issue.

The STOP state signals the SCL/START/STOP generator to generate a STOP condition if the
CoolRunner I2C design is in Master mode. The next state is always the IDLE state and the I2C
activity is completed.
XAPP315 (v1.0) October 25, 1999 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

Operational
Flow Diagrams

The flow of the interface between the µC and the CoolRunner I2C Controller is detailed in the
following flow charts. These flow charts are meant to be a guide for utilizing the CoolRunner I2C
Controller in a µC system.

Initialization
Before the CoolRunner I2C Controller can be utilized, certain bits and registers must be
initialized as shown in Figure 8.

BEGIN

END

Enable I2C Interface
Logic by Setting MEN

X315_06_101599

Define I2C Slave
Address to Respond

to in MADR

Modify MBCR to
Enable Interrupts

Figure 8: CoolRunner I2C Controller Initialization Flow Chart
14 www.xilinx.com XAPP315 (v1.0) October 25, 1999
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

Master Transmit/Receive
The flow charts for transmitting data and receiving data while I2C bus Master are shown in
Figure 9 and Figure 10. The major difference between transmitting and receiving is the
additional step in the Master Receive flow chart of turning off the acknowledge bit on the
second to last data word.

Figure 9: Master Transmit Flow Chart

BEGIN

END

No

YesBus Busy?
(MBB = 1)

Write I2C Header
in MBDR

X315_07_091999

Set MSTA in MBCR
to Generate START

Yes

NoTransfer
Complete?
(MCF = 1)

Write Data
to MBDR

Yes

NoTransfer
Complete?
(MCF = 1)

Yes

No
Last Word?

Negate MSTA in MBCR
to Generate STOP
XAPP315 (v1.0) October 25, 1999 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

BEGIN

END

No

YesBus Busy?
(MBB = 1)

Write I2C Header
in MBDR

X315_08_101799

Set MSTA in MBCR
to Generate START

Yes

NoTransfer
Complete?
(MCF = 1)

Read Data
to MBDR

Yes

NoTransfer
Complete?
(MCF = 1)

Yes

No
Last Word - 1?

Set TXAK in MBCR
to Turn Off ACK

Yes

NoTransfer
Complete?
(MCF = 1)

Yes

Read Data from
MBDR

Negate MSTA in MBCR
to Generate STOP

Figure 10: Master Receive Flow Chart
16 www.xilinx.com XAPP315 (v1.0) October 25, 1999
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

Slave Flow Chart
The flow chart for receiving or transmitting data in Slave mode is shown in Figure 11. If in
receive mode, the first read from the MBDR register is a dummy read because data has not yet
been received. Since the CoolRunner I2C Controller is in Slave mode, the only way to know that
the transaction is complete is to check that the bus is busy and that the Addressed as Slave bit
is still set.

BEGIN

END

No

YesAddressed
as Slave?

Check SRW Bit in
MSBR for Xmit/Rcv

X315_09_091999

Read/Write Data
in MBDR

Yes

Yes

NoTransfer
Complete?
(MCF = 1)

No

Bus Busy?
MAAS = 1?

Figure 11: Slave/Transmitter Flow Chart
XAPP315 (v1.0) October 25, 1999 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

CoolRunner
Implementation

The design of the CoolRunner I2C Controller was implemented in VHDL and synthesized using
Exemplar Galileo V4.2.2. The EDIF file generated by Exemplar was imported into XPLA
Professional for compilation and fitting into a CoolRunner CPLD. The design was targeted to a
3V, 128 macrocell, enhanced clocking CoolRunner CPLD in a 100-pin TQFP package
(XCR3128A-7VQC).

Notes:1. Since the system clock frequency was 1.832 MHz, the speed of the design was not critical
and any speed grade part could have been used.

2. The I2C SCL line is used as a clock input into the CoolRunner I2C Controller. If there are

many loads on the I2C bus, the rise time of the SCL line can be quite slow. The CoolRunner
CPLD for this design requires a rise time no greater than 100 nS, therefore, the designer is

strongly encouraged to examine the characteristics of the SCL signal in the I2C system. If the

rise time of the I2C signals are greater than 100 ns, external buffers can be used between the

actual I2C bus connections and the CoolRunner CPLD.

The XPLA Professional compiler and fitter properties were set as shown in Figure 12. Pin
assignments were not set on the CoolRunner I2C Controller design prior to compiling and fitting
the design.

Figure 12: XPLA Professional Compiler/Fitter Properties
18 www.xilinx.com XAPP315 (v1.0) October 25, 1999
1-800-255-7778

http://www.xilinx.com

Implementing an I2C Bus Controller in a CoolRunner™ CPLD
R

Due to the complexity of the CoolRunner I2C design, the fan-in parameters for the compiler
(synthesis) and fitter had to be adjusted as shown in Figure 13. Adjusting the Synthesis fan-in
instructs the compiler as to how many signals are allowed as fan-in to each equation. Reducing
this number to 16 forced the compiler to create some internal nodes and therefore reduced the
total fan-in required for each logic block. The Fitter fan-in was increased to utilize additional
hardware routing resources to each logic block present in a CoolRunner CPLD. This menu can
be opened by typing Ctrl-Alt-Z while in the XPLA Professional GUI.

Design Verification
The XPLA Professional software package outputs a timing VHDL model of the fitted design.
This post-fit VHDL was simulated with the original VHDL test benches to insure design
functionality. Also, the CoolRunner I2C Controller design was simulated with an independently
generated VHDL model of an I2C Slave design to verify that the interface specifications were
implemented correctly. Please note that all verification of this design has been done through
simulations.

Revision
History

© 1999 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents,
and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and
registered trademarks are the property of their respective owners.

Figure 13: Adjusting Compiler and Fitter Fan-in

Date Version # Revision

10.225.99 1.0 Initial Xilinx release.
XAPP315 (v1.0) October 25, 1999 www.xilinx.com 19
1-800-255-7778

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

	Implementing an I2C Bus Controller in a CoolRunner™ CPLD
	Summary
	Introduction
	I2C Background
	CoolRunner I2C Controller
	Signal Descriptions
	Block Diagram
	mC Interface Logic
	Address Decode/Bus Interface Logic
	CoolRunner I2C Controller Registers
	Address Register (MADR)
	Control Register (MBCR)
	Status Register (MBSR)
	Data Register (MBDR)

	I2C Interface Logic
	Arbitration
	START/STOP Detection
	Generation of SCL, SDA, START and STOP Conditions
	I2C Interface Main State Machine

	Operational Flow Diagrams
	Initialization
	Master Transmit/Receive
	Slave Flow Chart

	CoolRunner Implementation
	Design Verification

	Revision History

