
tri-state

Summary High-performance designs can be successfully implemented in the XCR3960 with a general
understanding of its architecture and guiding the compilation and fitting processes with a
control file. This document provides an overview of the XCR3960 architecture, compiler and
fitter options along with an example to provide a resource for high-performance system
designers.

Introduction With any programmable device of significant density, an understanding of the architecture and
software controls is required to achieve the highest possible performance of the device. The
Xilinx CoolRunner™ XCR3960 is the highest density CPLD available on the market, combining
high-performance with ultra-low power. It is a 960 macrocell SRAM based device that supports
multiple configuration modes with 384 I/Os in a 492-pin BGA package. This document will
explain the architecture of XCR3960 device, list software parameters for controlling the
partitioning and placement of a design, and provide an example design using these features.

XCR3960
Architecture

Figure 1 shows a representation of the XCR3960 architecture. The XCR3960 consists of 12
Fast Modules interconnected by a Global Zero-Power Interconnect Array (ZIA). Each Fast
Module consists of 80 macrocells, has 64 inputs and 64 outputs to the global ZIA, and is
connected to 32 I/O pins. The delay across the global ZIA between adjacent Fast Modules is
slightly faster than the global ZIA delay for non-adjacent modules. Fast Modules in the top row
are numbered 0:5 left to right and Fast Modules on the bottom row are numbered 6:11 right to
left. For example, Fast Modules 0, 1, 10, and 11 are considered adjacent.

Each Fast Module consists of four logic blocks with 20 macrocells interconnected by a local ZIA
as shown in Figure 2. Each logic block has a fan-in of 36 from the local ZIA. The 32 I/O pins for
the Fast Module are equally distributed – eight per logic block. Therefore, eight macrocells from
each logic block are bonded-out to pins, the other remaining 12 macrocells are buried.

Achieving High Performance in a
CoolRunner™ XCR3960

XAPP313 (v1.0) October 22, 1999 Application Note

R

L
o

ca
l Z

IA

L
o

ca
l Z

IA

L
o

ca
l Z

IA

L
o

ca
l Z

IA

L
o

ca
l Z

IA

L
o

ca
l Z

IA

L
o

ca
l Z

IA

L
o

ca
l Z

IA

L
o

ca
l Z

IA

L
o

ca
l Z

IA

L
o

ca
l Z

IA

L
o

ca
l Z

IA
Global ZIA

Figure 1: XCR3960 Architecture

Application Note: CoolRunner™ CPLD
XAPP313 (v1.0) www.xilinx.com 1
October 22, 1999 1-800-255-7778

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

Each logic block consists of a PAL (programmable AND, fixed OR) and a PLA (programmable
AND, programmable OR) array as shown in Figure 3. The PAL provides four dedicated product
terms per macrocell. The PLA provides an additional pool of 32 product terms that can be used
across all 20 macrocells in the logic block. Note that there is also a two-input hardware XOR
gate with an input from the PAL and an input from the PLA for each macrocell. This allows for
more efficient implementation of adders, parity functions, and checksum functions.

64 64

36

36

36

36

Local
ZIA

Global ZIA

Figure 2: XCR3960 Fast Module Architecture
2 www.xilinx.com XAPP313 (v1.0)
1-800-255-7778 October 22, 1999

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

XCR3960
Timing Model

TPD_PAL is the pin-to-pin delay through the combinatorial PAL array and is incurred when an
equation is four product terms or less. When an equation requires more than four product
terms, additional product terms are utilized from the PLA array and the time delay becomes
TPD_PLA. If the XOR gate is utilized, the delay is then TPD_XOR. When a signal traverses the
global ZIA from the input pin to the output pin, an additional delay is incurred, TGZIA. The same
type of model applies for registered signals, if the input to a register requires four product terms
or less, the setup time is TSU_PAL. If the input equation utilizes additional product terms from the
PLA, the setup time is TSU_PLA and if the XOR gate is utilized, the setup time becomes
TSU_XOR. Again, if the signal traverses the global ZIA from the input pin to the D input of the
register, an additional TGZIA delay is incurred. This is shown in Figure 4.

Table 1 gives values for these parameters for a commercial XCR3960. These numbers should
be used for example only, refer to the data sheet for the XCR3960 for accurate timing
parameters.

(32)

4

8

MC0

4

MC1

4

MC2

4

MC19

PAL
Array

PLA
Array

Control

36 LZIA
Inputs

Figure 3: XCR3960 Logic Block
XAPP313 (v1.0) www.xilinx.com 3
October 22, 1999 1-800-255-7778

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

XCR3960
Architectural
Features

Fast Modules and Global ZIA Delays
As seen in Table 1, the delay across the global ZIA can be 3 ns or 4 ns depending on the
location of the source and target Fast Modules. It is therefore important to minimize the global
ZIA delays for critical signals by locating the source and targets of these signals in the same
Fast Module. When a global ZIA delay can not be avoided, it is important to place the source
and target registers or pins in adjacent Fast Modules to achieve the minimum global ZIA delay.

Each Fast Module has 64 fan-in and 64 fan-out to the global ZIA. In complex designs where the
fan-in to equations are quite high, it may become necessary to co-locate the target equation
with the fan-in signals in the same Fast Module so that the fitter is not limited by the fan-in/
fan-out connections to the global ZIA.

To locate signals in the same Fast Module, the FM_GROUP property is specified either in a
control file or in a PHDL/ABEL source file. This property does not specify a particular Fast
Module for the group, it just instructs the placement algorithm to place these signals in the
same Fast Module. To assign the group of signals to a particular Fast Module, assign at least

Table 1: XCR3960 Timing Parameters

Timing
Parameter Description Min (ns) Max (ns)

TPD_PAL Input to Output Delay through PAL 7.5

TPD_PLA Input to Output Delay through PLA 9.0

TPD_XOR Input to Output Delay through XOR 10

TSU_PAL PAL setup time to Global clock 4.0

TSU_PLA PLA setup time to Global clock 5.5

TSU_XOR XOR setup time to Global clock 6.5

TFZIA Global ZIA delay for adjacent Fast Modules 3.0

TGZIA Global ZIA delay for non-adjacent Fast
Modules

4.0

TCF Global clock to registered feedback 2.5

TCO Global clock to output 6.0

clock

Tpin_pin = Tpd_pal + GZD or
Tpd_pla + GZD or
Tpd_xor + GZD

Input Pin Output Pin
Tsu = Tsu_pal + GZD or
 Tsu_pla + GZD or
 Tsu_xor + GZD

Registered
Tco

D Q Output PinInput Pin

Figure 4: XCR3960 Timing Model
4 www.xilinx.com XAPP313 (v1.0)
1-800-255-7778 October 22, 1999

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

one of the signals in the group to a pin in the Fast Module. This will force the entire group of
signals to this Fast Module.

PAL and PLA Product Terms
Each pass through the PAL or PLA in an equation adds the PAL or PLA delay to the path timing.
The absolute fastest timing is achieved when equation has four product terms or less. However,
if an equation has more than four product terms, allowing all additional product terms to be
implemented in the PLA minimizes the overall path delay. The additional delay incurred by
using product terms in the PLA is 1.5 ns, which is significantly less than the delay incurred by
allowing another pass through the PAL.

Usage of the PLA product terms is controlled by the compiler option, Max P-terms per
Equation. When this number is set to 36, the compiler is allowed to use four PAL product terms
and all 32 PLA product terms for one equation if necessary. While this yields the fastest timing
for complex equations, please note that this can restrict the utilization of the device. This can
also increase the fan-in required by the equation such that the 36 fan-in to the logic block is
violated. Setting this parameter to a lower number forces the compiler to create intermediate
nodes for those equations requiring large number of product terms. These intermediate nodes
are then fed back to the PAL/PLA arrays as required until the equation is implemented. Each
pass through the array incurs additional delay, so the total delay for the equation may be quite
large. The recommended approach is to first compile and fit the design with this parameter set
to 36 and see if utilization or fan-in problems occur. If no problems occur, then this setting
provides the fastest timing through the device. If there are problems fitting the design, note
which signals require large number of product terms and/or fan-in. If these are not timing
critical, or additional passes through the PAL/PLA still meet the required timing, then reducing
this parameter may allow the design to fit. Note that this parameter can be set per equation in
a control file.

Hardware XOR
The XCR3960 includes a two-input hardware XOR gate for each macrocell. This allows
efficient implementation of arithmetic functions such as parity generators and checkers,
checksum generation and verification, adders, and subtractors by reducing the number of
product terms required by these equations.

The path through the XOR gate is slightly slower than the path through the PAL or PLA. The
equations that are performing XOR functions should be reviewed by the designer to determine
if the number of product terms to implement the XOR function can be taken from the PAL and
PLA for the fastest time possible. Note, however, that the designer should also take into
account the requirements for PLA product terms by other functions in the design to insure that
there are enough resources in the device for the XOR function to use the PLA product terms. If
the design is such that it is not possible to use a high number of product terms to implement the
XOR function, the path delay through the XOR is still less than multiple passes through the PAL
and PLA arrays. In this case, the best performance is achieved by allowing use of the hardware
XOR gate.

Use of the XOR gate is controlled by the compiler option, XOR Manipulation. This option can be
set to All, Explicit, or None. Setting this option to All means that the compiler will use the XOR
gate in all cases where it recognizes the product terms for the XOR function. Explicit instructs
the compiler to use this gate only when explicitly specified in the input source file (PHDL/ABEL
source files only). The XOR gate will not be utilized when this option is set to None.

Global Reset and Global Tri-state Signals
In designs where a single input signal is used to reset or tri-state the entire device, the
XCR3960 provides a global reset input and a global tri-state input. Note that these signals must
be input signals, they can not be results of combinatorial or registered equations within the
device. Use of the global reset and global tri-state functions utilize special routing within the
XCR3960, therefore not utilizing fan-in and fan-out connections that may be required for actual
signals. This allows full utilization of the XCR3960 in high-density designs.
XAPP313 (v1.0) www.xilinx.com 5
October 22, 1999 1-800-255-7778

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

Specification of the global reset and global tri-state signals are done via pin assignments. The
global reset signal must be active Low and assigned to pin N23. Likewise the global tri-state
signal must be active Low and assigned to pin N5. These pin assignments can be done in the
control file or in the Pin Assignment File. The Pin Assignment File (PAF) can be created
manually using an editor or by using the graphical pin editor.

Controlling the
Compilation
and Fitting
Processes to
Achieve High
Performance

Compiler and Fitter Options
All of the compiler and fitter options can be set in a control file. Workstation users will use a
control file to specify all options and properties. PC users can set compiler and fitter options
(with the exception of Max signal Fan-in) in the Properties window of XPLA Professional as
shown Figure 5. Since XPLA properties such as FM_GROUP can not be set in this window, a
control file can be specified. Control files will be discussed later in this document.

Max P-term per Equation controls how many product terms can be used to implement the
equation. For the XCR3960, the number of product terms per equation can range from 4 to 36.
There are four dedicated product terms per macrocell in this device, therefore setting this
parameter to a number > 4 indicates that the compiler can use PLA product terms for the
macrocells. As discussed above, utilizing many PLA product terms reduces the path delay of
the equation since multiple paths through the PAL are reduced. However, allowing many
product terms per equation can increase the fan-in required by the equation and may cause
fitting problems with the fan-in to the logic block and/or to the Fast Module. The designer should
also be aware of the number of equations in a complex design that need a large number of
product terms when setting this parameter so that there are enough PLA product terms to
satisfy the requirements of the design.

Optimizing effort can be set to Fast or Exhaust to control execution time for the compiler. This
parameter specifies the optimizing algorithm to the compiler.

XOR Manipulation field can be set to None, All or Explicit indicating how the compiler should
use the hardware XOR gate in these devices. As discussed above, utilizing the XOR gate in the
XCR3960 reduces the number of product terms required to implement arithmetic functions.

Activate D/T register synthesis, if checked, allows the compiler to optimize the design by
choosing either D-type or T-type registers. If this is not checked, the compiler will only use the
register types explicitly called out in the design.

Figure 5: XPLA Professional Properties Window
6 www.xilinx.com XAPP313 (v1.0)
1-800-255-7778 October 22, 1999

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

Auto Node Collapse Mode, if checked, allows the compiler to automatically collapse internal
nodes. Both of these options should be selected when optimizing the performance of a design
in the XCR3960.

The pin assignment of a design can be specified in a Pin Assignment File (PAF) or in a PHDL/
ABEL file if the PHDL/ABEL file is the top-level file of the design. The Pin Assignment: field can
be set to Try, Keep, or Ignore and the Pin Assignment Source: can be set to PHD or PAF.
Setting Pin Assignment: to Try instructs the fitter to try the current pin assignment specified in
the Pin Assignment Source:. If the pin assignment can not be kept, a warning is generated and
a new pin assignment is made, creating a new PAF file. If Pin Assignment: is set to Keep, the
fitter uses the pin assignment from the file specified in the Pin Assignment Source:. If the pin
assignment can not be kept, the fitter stops execution. If Pin Assignment: is set to Ignore, then
the fitter ignores all previous pin assignments and creates a new pin assignment and a new
PAF file.

It is possible to have both a VHDL and Verilog timing model produced by the design by setting
Generate Timing Model: to All, VHDL, Verilog, or None. These models can be used for timing
simulations in other CAE tools.

Setting Max Signal Fan-in for synthesis determines the allowed fan-in used per equation to
guide the compiler in forming equations. If the fan-in of the logic block or Fast Module is being
violated, this parameter can be used to force the compiler to reduce the fan-in to complex
equations by creating internal nodes. Likewise, the fitter can be instructed to use additional fan-
in resources to each logic block by setting Max Signal Fan-in for the fitter. Max Signal Fan-in is
set by using Ctrl-Alt-Z to bring up the window shown in Figure 6.

Properties
Properties can be set in the PHDL/ABEL source file or can be input into a control file. Table 2
lists the supported properties for CoolRunner CPLDs. Of most importance for achieving
performance in the XCR3960 as discussed above is the FM_GROUP property. In cases where
more placement control is required, the LB_GROUP properties can also be used to group
signals, however, in most cases, grouping signals within a Fast Module achieves the desired
performance.

Figure 6: Setting Max Signal Fan-In
XAPP313 (v1.0) www.xilinx.com 7
October 22, 1999 1-800-255-7778

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

The properties that specify the 960 configuration modes denote the required configuration pins
to the fitter so that these pins are allocated as a last resort. This prevents the designer from
having to reserve these pins. Board layout and design are much simpler when the configuration
pins do not also function as I/O pins for the design.

The syntax for setting these properties in a PHDL/ABEL source file is shown in Figure 7.

Table 2: XPLA Professional Properties

Property Description

dut off Disable global tri-state function (default)

dut on Enable global tri-state function (GTS pin is now active)

isp on Reserve TCK, TMS, TDI , and TDO pins for ISP usage (default)

isp off Disable ISP capability of the device – allow TCK, TMS , TDI, and
TDO to be used as general purpose I/O

maxpt Specify the maximum product terms for a specific pin or node

keep Specify the keep attribute for a specific signal

retain Specify the retain attribute for a specific signal

tri-state all Disable the weak pull-down on unused I/O (all devices except 32
macrocells)

fm_group Group the specified signals within a Fast Module (XPLA2)

lb_group Group the specified signal within a logic block

slow_slew_rate Assign slow attribute to output buffers to specify the slow slew
rate, default is fast slew rate

config_master_serial
config_master_parallel
config_slave_serial
config_slave_parallel
config_sync_peripheral

Specify the configuration mode so that the fitter will not use the
pins required by this mode unless it is necessary to fit the design
(XPLA2)

xpla property ‘<property>’;

Figure 7: Property Syntax
8 www.xilinx.com XAPP313 (v1.0)
1-800-255-7778 October 22, 1999

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

Format of the Control File
The contents of a control file can contain three sections, the command section, the property
section, and the pin assignment section. Each section starts with the section keyword enclosed
in square brackets. A control file can contain any combination of these sections as desired, i.e.,
not all sections have to be included in the control file. Comments in the control file are
designated with a "#". An example control file is shown in Figure 8.

Command Section ([command])
The command section of the control file sets the compiler and fitter options. Workstation users
will need this section of the control file to set compiler and fitter options. This section is not
needed for designers using XPLA Professional since all compiler and fitter options can be set
using the GUI. The commands for setting these options are shown in Table 3.

Table 3: Supported Commands in a Control File

this is a comment

[command]

-bfi 36

-th 20

[property]

maxpt bit0:12 bit1:14

dut on

fm_group a b c d

[pin_assignment]

bit0:4,

bit1:5,

bit2:6

Figure 8: Control File Format

Command Arguments Description

-i <design name>.[edf | v | phd] PHDL, Verilog, or EDIF input file.

-it <edif | verilog | phdl> Input file type.

-th <5 – 37> Max product terms per equation
– default is 11.

-fi <5 – 37> Max fan-in per equation – default is 36.

-bfi <36 – 40> Max fan-in per logic block – default is 36.

-v <module name> Generate delay-annotated Verilog simulation
model with module name specified – default
module name is design name.

-vho <entity name> Generate delay-annotated VHDL simulation
with entity name specified - default entity
name is the design name.

-reg Perform D/T register synthesis.

-co <best | none> Collapsing method – default is best.
XAPP313 (v1.0) www.xilinx.com 9
October 22, 1999 1-800-255-7778

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

Property Section ([property])
This section is used to specify XPLA Properties when the source file is not a PHDL/ABEL file.
XPLA Properties are specified in Table 2. If the source file for the design is a PHDL/ABEL file,
these properties can be specified directly in that file or in a control file, however, the properties
specified in the control file will overwrite the properties in the PHDL/ABEL file. This section is
denoted by [property] and contains properties and their values as shown in Figure 9.

Pin Assignment Section ([pin_assignment])
The format of a pin assignment consists of the signal name followed by a 13:" followed by the
desired pin number. To make the fitter use the pin assignments specified in the control file when
using XPLA Professional, the Pin preassignment option must be set to Keep and the Pin
assignment source must be set to .phd. If the Pin assignment source is set to .paf, then the
pin assignments in the Pin Assignment File (<design>.paf) will be used (Figure 10).

PCI Design
Example

A 33 MHz, 32-bit PCI target design was done in VHDL for the XCR3960. This design utilized
218 macrocells in four Fast Modules within the device. The fitter algorithm is such that adjacent
Fast Modules are used first, therefore, the fitter placed the PCI design in Fast Modules 0, 1, 10,
and 11. This minimized the global ZIA delay to TFZIA instead of TGZIA.

The compiler options were set as shown in Figure 5. The Pin Pre-assignment was set to Ignore,
because pin assignments did not need to be kept. Max Pterms per Equation was set to 36 to
achieve the fastest timing possible. There were no fan-in issues with this design, therefore it
was not necessary to adjust the Max Signal Fan-in for either synthesis or fitting.

-effort <exhaust | fast > Optimizing effort – default is fast.

-xor <all | exp | none > xor synthesis mode – default is none.

-dev <device> Target device.

-pre <keep | try | ignore> Pin assignment effort – default is try.

[property]
maxpt BIT0:12 BIT1:12

keep BIT0
retain BIT1
delay_mode BIT2
dut on
isp off
tri-state all
fm_group a b
lb_group c d o1..o3
slow_slew_rate o1 o2
config_master_serial

Figure 9: Properties

[pin_assignment]

BIT0:4, BIT1:5

Figure 10: Pin Assignment File

Command Arguments Description
10 www.xilinx.com XAPP313 (v1.0)
1-800-255-7778 October 22, 1999

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

PCI Control File
To meet all of the PCI timing specifications, a control file was used to control the fitting process.
This control file is shown in Figure 11 and will be explained in the following paragraphs. This
control file simply grouped signals together in Fast Modules. It was not necessary to assign
signals to specific Fast Modules, therefore a pin assignment section of the control file was not
included. A command section was not needed either since the compiler options were set from
the XPLA Professional GUI ().

Input Setup Time
The PCI Specification requires a 7 ns setup time on PCI interface signals as shown in Table 4.

In a XCR3960, the input setup time is determined not only by the equation involving the input
signal as the D input of a register, but the placement of this input signal and the register as well.
In general, input setup time is minimized by locating the input pin and the register using the
input signal in the same Fast Module. If this is not possible, the input pin and the register should
be placed in adjacent Fast Modules to reduce the delay through the global ZIA. The input setup
time is further reduced by simplifying the equation to four product terms or less making the
delay TSU_PAL.

[property]

group state machine with PCI interface signals to minimize input setup time

fm_group frame_n tar_sm__2 tar_sm__1 tar_sm__0 irdy_n

group the parity checking functions together

fm_group perr_n perr_oe par_check serr_n serr_oe pc_node0..pc_node5 perr_bit_i

group PCI_OE with PCI output signals to minimize output time (nx5406)

fm_group local_dis trdy_n stop_n nx5406

group the parity with its OE

fm_group par par_oe

#specify the 960 configuration mode so the fitter will not use these pins unless absolutely
necessary

config_master_serial

Figure 11: PCI Control File
XAPP313 (v1.0) www.xilinx.com 11
October 22, 1999 1-800-255-7778

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

For most of the PCI interface signals, only four product terms were needed and therefore
grouping was not necessary because TFZIA + TSU_PAL was < 7 ns. However, for some
equations, the number of product terms required use of the PLA and thus the delay through the
Global ZIA and the delay through the PLA is > 7 ns. These signals were therefore grouped into
the same Fast Module using the FM_GROUP property so the only delay on the PCI interface
signals was the delay through the PLA. This enables the setup requirement of the PCI
specification to be met for all PCI interface signals (Figure 12).

Clock Frequency
The clock frequency for the PCI design is specified as 33 MHz. The internal clock frequency of
a design can be maximized by minimizing the delay between registers. Again, co-locating the
source and target register within the same Fast Module to eliminate global ZIA delays
minimizes the delay between registers. In cases where this is not possible, locating these
registers in adjacent Fast Modules will decrease this delay. Designers should also reduce the
complexity of the D equations so that multiple passes through the PAL and PLA arrays are not
required, therefore minimizing the internal path delay to:

The checking of the incoming parity with the incoming data on the PCI AD and CBE_N busses
must be accomplished in one 33 MHz clock cycle. Calculation of this 36-bit parity was the most
complex function in the PCI design. By examining the 36-bit parity function, it was determined
that the fastest implementation of this function in the XCR3960 was to use a combination of
PAL/PLA product terms with the hardware XOR gate. A 3-bit XOR function can be
accomplished with four product terms, therefore four PAL product terms were used to XOR
three bits and four PLA product terms were used to XOR another three bits. The hardware XOR
gate takes a PAL input and a PLA input, so the resulting XOR from the PAL (pc_xor0) and the
resulting XOR from the PLA (pc_xor1) were then input into the hardware XOR gate. This
produced six internal nodes (pc_node0 – pc_node5) that were then fed back into the PAL and
PLA arrays for XORing via four PAL product terms (pc_nodex1) and four PLA product terms
(pc_nodex2). Again, these results provided the inputs to the final XOR gate that finally
produced the parity function. This is shown in the VHDL code below. Note that nodes pc_xor0
– pc_xor11, pc_nodex1, and pc_nodex2 were all collapsed (Figure 13).

Table 4: PCI Input Setup Time Requirements

Signal Setup Time (ns)

FRAME_N 7

IRDY_N 7

IDSEL 7

PAR 7

AD[31:0] 7

CBE_N[3:0] 7

group state machine with PCI interface signals to minimize input setup time
fm_group frame_n tar_sm__2 tar_sm__1 tar_sm__0 devsel_n irdy_n

Figure 12: Grouping of PCI Interface Signals Meet Input Setup Times

TCF + TSU_PAL, TCF +TSU_XOR, or TCF +TSU_PLA.
12 www.xilinx.com XAPP313 (v1.0)
1-800-255-7778 October 22, 1999

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

pc_xor0 <= (adi(0) and not (adi(1)) and not (adi(2)))

 or (adi(0) and adi(1) and adi(2))

 or (not (adi(0)) and adi(1) and not (adi(2)))

 or (not (adi(0)) and not (adi(1)) and adi(2));

pc_xor1 <= (adi(3) and not (adi(4)) and not (adi(5)))

 or (adi(3) and adi(4) and adi(5))

 or (not (adi(3)) and adi(4) and not (adi(5)))

 or (not (adi(3)) and not (adi(4)) and adi(5));

pc_xor2 <= (adi(6) and not (adi(7)) and not (adi(8)))

 or (adi(6) and adi(7) and adi(8))

 or (not (adi(6)) and adi(7) and not (adi(8)))

 or (not (adi(6)) and not (adi(7)) and adi(8));

…

…

…

pc_xor10 <= (adi(30) and not (adi(31)) and not (cbe_n_i(0)))

 or (adi(30) and adi(31) and cbe_n_i(0))

 or (not (adi(30)) and adi(31) and not (cbe_n_i(0)))

 or (not (adi(30)) and not (adi(31)) and cbe_n_i(0));

pc_xor11 <= (cbe_n_i(1) and not (cbe_n_i(2)) and not (cbe_n_i(3)))

 or (cbe_n_i(1) and cbe_n_i(2) and cbe_n_i(3))

 or (not (cbe_n_i(1)) and cbe_n_i(2) and not (cbe_n_i(3)))

 or (not (cbe_n_i(1)) and not (cbe_n_i(2)) and cbe_n_i(3));

pc_node5 <= pc_xor10 xor pc_xor11;

pc_node4 <= pc_xor8 xor pc_xor9;

pc_node3 <= pc_xor6 xor pc_xor7;

pc_node2 <= pc_xor4 xor pc_xor5;

pc_node1 <= pc_xor2 xor pc_xor3;

pc_node0 <= pc_xor0 xor pc_xor1;

pc_nodex1 <= (pc_node0 and not (pc_node1) and not (pc_node2))

 or (pc_node0 and pc_node1 and pc_node2)

 or (not (pc_node0) and pc_node1 and not (pc_node2))

 or (not (pc_node0) and not (pc_node1) and pc_node2);

pc_nodex2 <= (pc_node3 and not (pc_node4) and not (pc_node5))

 or (pc_node3 and pc_node4 and pc_node5)

 or (not (pc_node3) and pc_node4 and not (pc_node5))

 or (not (pc_node3) and not (pc_node4) and pc_node5);

par_check <= pc_nodex1 xor pc_nodex2 after LOGIC_DELAY;

Figure 13: Coding of Parity Function Utilizing XCR960 Architecture
XAPP313 (v1.0) www.xilinx.com 13
October 22, 1999 1-800-255-7778

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

By using this combination of PAL/PLA product terms with the hardware XOR gate, this 36-bit
parity function was accomplished with only two passes through the XOR gate, therefore
meeting the PCI timing specification. To eliminate global ZIA delays, these signals were
grouped within the same Fast Module (Figure 14).

Clock-to-Output Timing
Clock-to-output delays are specified at 6 ns as shown in Table 5.

Clock-to-output time can vary based on if the output signal is registered or combinatorial. The
fastest clock-to-output time is achieved for registered outputs and is simply TCO. When the
output pin is simply the output of a register, the output pin and the register will be placed in the
same macrocell, so no global ZIA delays are possible. For high-performance CPLD designs
and systems, it is highly recommended that outputs be registered.

In cases where the output pin is combinatorial function using the Q output of a register, the
complexity of the combinatorial function determines the timing parameters involved. Designers
should locate the register feeding this function and the output pin in the same Fast Module to
avoid global ZIA delays and minimize the product terms of this equation so that multiple passes
through the PAL or PLA arrays are not required. For equations with four or less product terms,
the clock-to-output timing is TCF + TPD_PAL or TCF + TPD_XOR. In cases where the system will
allow slightly longer output delays, additional product terms can be implemented in the PLA. In
this case, the clock-to-output timing is TCF + TPD_PLA. Pipelining may be required if it is not
possible to reduce the product terms in the equation or the device is so heavily utilized that PLA
product terms are all used.

For tri-statable outputs or bidirectional signals, designers should note the output enable delay.
In some cases, it may be necessary to group the output enable signal with the outputs it
controls to eliminate global ZIA delays.

All outputs in the PCI design were registered, therefore the clock-to-out delay was TCO (6 ns)
and the specification was met without any grouping. The output enable signals for the tri-
statable PCI control signals were grouped with these signals so that once enabled, the output
buffer would drive as quickly as possible. Note that the output enable for the PCI control signals
obtained a machine generated name through the synthesis process. Depending on the

group the parity checking functions together

fm_group perr_n perr_oe par_check serr_n serr_oe pc_node0..pc_node5 perr_bit_i

Figure 14: Grouping of Parity Signals

Table 5: PCI Output Timing Requirements

Signal TCO (ns)

TRDY_N 6

DEVSEL_N 6

PAR 6

AD[31:0] 6

PERR_N 6

SERR_N 6

STOP_N 6
14 www.xilinx.com XAPP313 (v1.0)
1-800-255-7778 October 22, 1999

http://www.xilinx.com

Achieving High Performance in a CoolRunner™ XCR3960
R

synthesis tool used, this name can vary. To easily identify this signal, the pci.ph1 file was
searched after a successful compilation and to find the equation for the output enable for any of
the PCI control signals. For example, the equation:

indicated that the output enable for the TRDY_N signal is NX5406. This signal name was then
used in the FM_GROUP property as shown in Figure 15.

Revision
History

© 1999 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents,
and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and
registered trademarks are the property of their respective owners.

 trdy_n.OE = nx5406.Q; "--- [PT=1, FI=1, LVL=1] ---

group PCI_OE with PCI output signals to minimize output time (nx5406)
fm_group local_dis trdy_n stop_n nx5406

group the parity with its OE
fm_group par par_oe

Figure 15: Grouping Outputs and Output Enables

Date Version # Revision

10.22.99 1.0 Initial release.
XAPP313 (v1.0) www.xilinx.com 15
October 22, 1999 1-800-255-7778

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

	Achieving High Performance in a CoolRunner™ XCR3960
	Summary
	Introduction
	XCR3960 Architecture
	XCR3960 Timing Model
	XCR3960 Architectural Features
	Fast Modules and Global ZIA Delays
	PAL and PLA Product Terms
	Hardware XOR
	Global Reset and Global Tri-state Signals

	Controlling the Compilation and Fitting Processes to Achieve High Performance
	Compiler and Fitter Options
	Properties
	Format of the Control File
	Command Section ([command])
	Property Section ([property])
	Pin Assignment Section ([pin_assignment])

	PCI Design Example
	PCI Control File
	Input Setup Time
	Clock Frequency
	Clock-to-Output Timing

	Revision History

