
Summary

The use of the internal IOB three-state control register can significantly improve output enable and disable time. This
application note shows you how to use hard macros to implement this register in both HDL and schematic based designs.

Xilinx Family

XC4000XLA, XC4000XV, SpartanXL

Introduction
It is common design practice to drive the enable signal of a
three-state output or bi-directional I/O with a registered sig-
nal. In earlier FPGA devices (e.g. 4000XL), the signal is
usually driven by a flip-flop contained within a CLB, whose
output must be routed to each IOB that is to be controlled.
Output enable and disable times are directly related to the

delays associated with the routing from this CLB flip-flop to
each IOB. (See Figure 1.)

New for the XC4000XLA, XV, SpartanXL, and Virtex
devices, Xilinx has added a flip-flop directly inside the IOB
that can be utilized to drive the three-state enable signal.
Since the flip-flop is local to the IOB, the enable and disable
delays are very short. (See Figure 2.)

.

Using Three-State Enable Registers
in XLA, XV, and SpartanXL FPGAs

XAPP123 December 2, 1998 (Version 1.0) 1 Application Note by: Davin Lim and Paul Glover



Figure 1: IOB Configuration of an XL Device Without the Three-State Enable Register

APPLICATION NOTE
XAPP123 December 2, 1998 (Version 1.0) 1-1

Using Three-State Enable Registers in XLA, XV, and SpartanXL FPGAs
Process Overview
Under the current implementation software (F1.5i or A1.5i),
the mapping algorithms do not automatically utilize this
three-state enable register (Virtex designs are the excep-
tion and do not have this restriction). The best way to utilize
this flip-flop is to instantiate a hard macro into the design.

Xilinx provides a PERL script which can be used to help
you create a hard-macro for each IOB configuration
desired. You can then instantiate the hard macro as a
“black-box” into the source HDL code (or schematic). The
design is then processed as normal through the Xilinx
implementation tools, where the hard macro (.nmc file) is
automatically integrated during the netlist translation and
mapping process.

As is the case with all Xilinx FPGA designs, you can
choose to have the implementation tools produce a Verilog
or VHDL netlist representation of the implemented design.
An associated SDF file is also created, which will contain
the delays associated with the three-state enable register.
This netlist (and SDF file) can be used within your simula-
tion test bench to verify that the timing paths containing the
three-state enable registers are in fact meeting timing goals
for your design.

The following sections will explain how to generate the hard
macro, and then implement the hard macro into a design.

System Setup
Support for three-state enable flip-flop was added in F1.5i
and A1.5i releases. This software must be installed for the
hard-macro implementation to work.

The make_macro.pl script is written using PERL which
can be run in the PC or UNIX environment. PERL also
comes with the Xilinx tool set so there is no need to install
PERL. To verify if PERL has been setup correctly, go to a
DOS shell or xterm and type “perl -h”. The system
should return a list of options available to PERL. If the
options menu is not returned, verify that the path variable
points to $XILINX\bin\nt for the PC and $XILINX/bin/sol for
UNIX. If this is correct, verify that the PERL executable is
located in the directory just referenced.

Hard Macro Creation

Obtaining the Script
The make_macro.pl script is available on the Xilinx FTP
site.

For PCs:

ftp://ftp.xilinx.com/pub/utilities/fpga/make_macro.zip

Figure 2: IOB Configuration of an XLA Device With the Three-State Enable Register
1-2 XAPP123 December 2, 1998 (Version 1.0)

/techdocs/htm_index/utils_fpga.htm

Using Three-State Enable Registers in XLA, XV, and SpartanXL
For Unix:

ftp://ftp.xilinx.com/pub/utilities/fpga/make_macro.tar.Z

Both files should be extracted in the $XILINX directory.

Executing the PERL Script
Open a DOS shell or xterm and “cd” to the project directory.
Execute the script by typing, perl $XIL-
INX\bin\nt\make_macro.pl. You will be asked several
questions about the type of IOB hard macro you wish to
create. When the script has completed it will create two
files. A text file with the same name as the component just
created. This file contains information about the component
like inputs and outputs, polarity of clocks, clock enables,
resets, etc. The second file is the script file to be executed
in EPIC. This file will create the hard macro.

Executing the EPIC Script
At the DOS shell or xterm type “EPIC”. The ‘Epic Start’ dia-
log box will come up. Select “Create new macro...” and
click on “Ok”. The ‘New Macro’ dialog box now opens.
Select the ‘Architecture:’, ‘Device:’, ‘Package:’, and
‘Speed:’. The dialog also asks for a Macro File name. This
file name is used later in instantiations and black-box sym-
bols. Click on ‘Ok’ to close the dialog and EPIC will con-
tinue to load.

In EPIC, select ‘Scripts -> Playback’. The ‘Script Playback’
dialog box opens and allows the user to browse for the
script file created by the PERL script. Once the file has
been selected, click on ‘Ok’ which executes the script file.
Now verify that the macro was created correctly, select
‘Tools -> DRC’, there should be 0 warnings and 0 errors.

Save the macro, click on ‘File -> Save’. This creates a .nmc
hard macro file used by NGDBUILD. The .nmc file must be
moved to the directory containing the top level .edn or .xnf
netlist.

Things to Note About Hard Macros
When the PERL script is executed, one of the questions
asked of the user is “Pin Number”. The “Pin Number” is
only a reference used for creation of the hard macro. It
does not lock the hard macro to the specified pin. This
leads to another benefit of the hard macros. If the user has
an 8-bit bus, there is no reason to create 8 unique macros.
One macro can be used multiple times. The only reason for
multiple macros is to vary the configuration of the macros.

General Flow
There are two main flows available, HDL and schematic.
The HDL flow will discuss Verilog and VHDL using FPGA
Express, Symplicity, Exemplar, and Design Compiler. The
schematic flow will focus on Foundation.

The main topics of discussion will be coding examples (Fig-
ures 3 and 4), schematic macro creation, function simula-
tion, constraints and timing. Timing simulation is not
affected by the use of hard macros and will not be dis-
cussed. Table 1 explains the input and output pins possi-
ble, but not required, in the hard macro. The pin names
must be used exactly when creating black-boxes.

Table 1: Hard Macro Pin Description and names

Pin Input/Output Description

T Input Tri-State Enable

EC Input Clk enable for OFD, IFD,
ILFFX

O Input Output to Pad

OK Input Output Clk and Latch Gate

IK Input Input Clk

I2 Output Input from Pad
XAPP123 December 2, 1998 (Version 1.0) 1-3

/techdocs/htm_index/utils_fpga.htm

Using Three-State Enable Registers in XLA, XV, and SpartanXL FPGAs
HDL Coding Examples

VHDL:

--Declaration of Hard Macro----

component XXXXX

port (IK : in std_logic

OK:in std_logic

O:in std_logic

I2:out std_logic

T:in std_logic

EC:in std_logic)

end component

-- Instantiation of Hard Macro -----

-- (port_map_name=>signal_name)

U1:XXXXX port map (IK=>clk_in, OK=>clk_out, O=>flop_out, I2=>input, T=>tri_en_input, EC=>ff_en)

Figure 3: VHDL Coding Example

Verilog:

-- Declaration of Hardmacro. Implemented as a separate module -----

module XXXXX (OK, O, IK, I2, T, EC)

input OK

input O

input IK

output I2

input T

input EC

-- Instantiation of Hardmacro -----

XXXXX U1(.IK(clk_in), .OK(clk_out), .O(flop_out), .I2(input), .T(tri_en_input), .EC(flop_enable))

Note: The XXXXX represents the macro name. This is the name of the file created by EPIC (XXXXX.nmc).

Figure 4: Verilog Coding Example
1-4 XAPP123 December 2, 1998 (Version 1.0)

Using Three-State Enable Registers in XLA, XV, and SpartanXL
When using Simplicity, the following attributes need to be added:

For VHDL add the following after the component declaration.

This set of attributes tells the compiler that XXXXX is a black box:

This set of attributes tells the compiler that XXXXX should
not be trimmed. This attribute is only necessary when there
are no outputs from the macro.

For Verilog add the following on the module declaration.

When using Design Compiler, the following parameter
needs to be added to the design script file:

dont_touch “XXXXX”

When using Exemplar, only bi-directional macros can be
synthesized. Macros that have inputs only will be removed
during synthesis. This is a known issue and will be resolved
by Exemplar.

HDL Functional Simulation
This section will outline the steps necessary to generate a
VHDL or Verilog file for use in a behavioral simulator.

1. Run the design through NGDBUILD. This can be done
with the design manager or on the command line This
will generate a NGD file, which is a flattened netlist con-
taining all of the levels of design information.

2. Now change directories to the directory containing the
NGD file just created. If the Design Manager was used,
the file will be in the project directory /xproj/ver#/rev#
just run.

3. Run “ngd2vhdl design.ngd” or “ngd2ver design.ngd”.
This will create a VHDL or Verilog functional simulation
netlist.

Note: Since the hard macros contain IOB components, the
VHDL or Verilog netlist will contain ports specific to the hard
macro. They will not be represented as internal nodes.

Schematic Macro Symbol Creation
Open the Foundation Project Manager on the project using
the hard macro. From the Schematic Editor menu options,

select “Hierarchy -> New Symbol Wizard...”. The Design
Wizard dialog box will open. Click on “Next”. Now fill in the
Symbol Name, this is the same name as the EPIC hard
macro created (.nmc file). The contents section should
have “Empty” checked. Click on “Next”.

Click on the “New” button and type in the port name. These
are the names in Figure 3 on page 4. Enter the port names
used in the hard macro you created. Click on “Next”. This
will create the symbol and add it to the project library for
use.

Schematic Functional Simulation
This section will outline the steps necessary to generate an
edif file for functional simulation in Foundation.

1. Implement the design through NGDBUILD.

2. In the Project Manager, select “Tools -> Simulation/Veri-
fication -> Checkpoint Gate Simulation Control...”.

3. The Checkpoint Simulation dialog box opens and lists
all of the ver#/rev# run for the current project. Select the
ver#/rev# just run and click on “Ok”.

4. This will load the Simulator for functional simulation.

Timing and Constraints
There are three issues associated with applying timing con-
straints to the hard macro.

1. TRCE/TA does not evaluate Flip-Flops in an IOB. See
solution 1867 for further explanation located at
http://www.xilinx.com/techdocs/1867.htm

2. TRCE/TA does not evaluate EPIC hard macros.

attribute black_box : boolean;

attribute black_box of XXXXX : component is true;

attribute synthesis_noprune : boolean;

attribute synthesis_noprune of XXXXX : component is true;

XXXXX U1(.IK(clk_in), .OK(clk_out), .O(flop_out), .I2(input), .T(tri_en_input),

.EC(flop_enable)) /* synthesis black_box .noprune=1 */
XAPP123 December 2, 1998 (Version 1.0) 1-5

/techdocs/1867.htm

Using Three-State Enable Registers in XLA, XV, and SpartanXL FPGAs
3. Period constraints created with the Constraints Editor
will not be evaluated. (Figure 5)

Here are several suggestions of how to work around these
issues. Both of these methods, when used correctly, will
report the setup time for the output flop and tri-state flop.

1. For general constraining of paths leading to the hard
macro use NET PERIOD constraints.

For Example:

NET “clk_out” PERIOD = 20.0ns;

2. For advanced path constraining, the user must hand
edit the PCF file. This text must be added after the sche-
matic start section in the PCF file (Figure 6)

Explanation of the PCF syntax:

TIMEGRP “FLOPS” = FFS (“*”); — Creates a group
named FLOPS containing all of the flip-flops in the design.

PIN “iobenff” = NET “tri_en_input” COMP
“u1/xxxxx”; — The PIN is defined by the user. The
“tri_en_input” is the name of the net connected to the
D input of the tri-state or output flop. The COMP is the hier-
archical name of the IOB macro. The user can create mul-
tiple members of a group by keeping the PIN name the
same, and varying the NET and COMP names.

TIMEGRP “sync_1” = PIN “iobenff”; — Creates a
group based upon the PIN “iobenff”;

TS03 = MAXDELAY FROM TIMEGRP “FLOPS” TO
TIMEGRP “sync_1” 25; — Creates a timespec labeled
TS03. TS03 specifies the source, destination, and the
allowed time.

Pin Locking the Hard Macro.

Pin assignments for the hard macro can easily be done
using the following syntax:

INST U1 LOC = P14;

Simply use the instance name of the macro including the
hierarchy.

.

NET “clk_out” TNM_NET = “clk_out”;

TIMESPEC “TS_clK_OUT” = PERIOD “clk_out” 20.0ns’;

Figure 5: Timing and Constraints

TIMEGRP “FLOPS” = FFS (“*”);

PIN “iobenff” = NET “tri_en_input” COMP “u1/xxxxx”;

TIMEGRP “sync_1” = PIN “iobenff”;

TS03 = MAXDELAY FROM TIMEGRP “FLOPS” TO TIMEGRP “sync_1” 25;

Figure 6: Advanced Path Constraining
1-6 XAPP123 December 2, 1998 (Version 1.0)

	Introduction
	Process Overview
	System Setup
	Hard Macro Creation
	Obtaining the Script
	Executing the PERL Script
	Executing the EPIC Script
	Things to Note About Hard Macros

	General Flow
	HDL Coding Examples

	HDL Functional Simulation
	Schematic Macro Symbol Creation
	Schematic Functional Simulation
	Timing and Constraints
	Explanation of the PCF syntax
	Pin Locking the Hard Macro

