
Summary

This application note shows how to achieve low-cost, efficient serial configuration for Spartan FPGA designs. The approach
recommended here takes advantage of unused resources in a design, thereby reducing the cost, part count, memory size,
and board space associated with the serial configuration circuitry. As a result, neither processor nor PROM needs to be fully
dedicated to performing Spartan configuration.

In particular, information is provided on how the idle processing time of an on-board controller can be used to load
configuration data from an off-board source. As a result, it is possible to upgrade a Spartan design in the field by sending the
bitstream over a network.

A brief summary of Spartan slave serial configuration, its protocol and signals, lays the groundwork for a discussion on ways
to reduce bitstream storage and processing requirements. A detailed example illustrates how these techniques can be put
into practice. Finally, different formats for configuration data are described along with instructions for their use.

Xilinx Family

Spartan and SpartanXL families

Introduction
In today’s markets for electronic products, the designer
strives for the continuous improvement of products.
Cheaper components must be used to create more func-
tionality with less board space. The low-cost, feature-rich
Spartan series of FPGAs, consisting of the 5-Volt Spartan
family and the 3.3-Volt SpartanXL family, plays a major role
in helping the designer achieve these goals. This role is
considerably enhanced when FPGAs are configured with-
out the use of dedicated storage and processing resources.

This application note describes a number of techniques for
achieving low-cost, efficient serial configuration. Extra
room in on-board RAM or in a hard drive off the board can
be used to store the configuration data. The idle time of a
controller, whose primary purpose lies in executing other
tasks, can be used to coordinate the loading of the bit-
stream into the Spartan device. Unused register bits acces-
sible to the processor can be used for holding control, data
and status bits. As a result, it is possible to configure Spar-
tan FPGAs without the use of a PROM. Board space and
component costs are saved. Besides these benefits, there
are numerous others, including the following:

• The Spartan serial configuration protocol can be
integrated with other initialization activities as part of the
controller’s general program. This makes board reset
and initialization easier to coordinate.

• As part of the controller’s program, the Spartan
configuration protocol can be modified with relative
ease. This can be useful not only for prototype
development, but also product upgrades. For example,
consider the case where, for a product under
development, a new member is added to a daisy chain

of existing Spartan devices.
• The Spartan bitstream can be embedded into the

processor’s program. Fewer separate code files are
easier to manage.

This application note begins with some preliminary back-
ground on the serial configuration mode for Spartan
FPGAs, including a description of the pertinent signals and
their respective timing. Next, instructions show how an on-
board controller can be used to program Spartan FPGAs
without a dedicated PROM. Finally, information is provided
on how to make the Spartan bitstream suitable for handling
by the processor.

Spartan Serial Configuration
There are a number of different modes for configuring
Spartan devices, including Slave Serial, Master Serial,
JTAG, and Express (for SpartanXL only). Among these, the
two serial modes, employing the least number of interface
signals (a minimum of four), are the easiest to implement.
In the present application, a controller, writing configuration
data, plays the controlling role of “master”, whereas the
Spartan FPGA, receiving the data, serves as a “slave”. For
these reasons, this application note considers only the
case of slave serial configuration.

As many as nine pins on the Spartan device may be used
in Slave Serial Configuration: MODE, DIN, DOUT, CCLK,
PROGRAM, INIT, DONE, HDC and LDC. A minimum of
four signals, PROGRAM, INIT, DATA and CCLK are
required. The principal functions of the nine signals are
described in Table 1. Refer to the Spartan data sheet for
more detailed information.

The Low-Cost, Efficient Serial
Configuration of Spartan FPGAs

XAPP098 November 13, 1998 (Version 1.0) Application Note by Kim Goldblatt

APPLICATION NOTE
XAPP098 November 13, 1998 (Version 1.0) 1

/partinfo/spartan.pdf

Steps in the Configuration Process
The Slave Serial mode consists of four steps:

1. Clearing Configuration Memory

2. Initialization

3. Configuration

4. Start-Up

Let’s have a look at each of these steps so that we may
understand how the nine configuration signals work
together to program a Spartan device. Refer to the Spartan
datasheet for more details.

Clearing Configuration Memory

On power-up, once VCC reaches the Power-On-Reset
threshold, the device automatically begins clearing the con-
figuration memory. It is also possible to begin the clearing
operation by applying a Low-level pulse to the PROGRAM
input.

This line makes reconfiguration possible at any time during
device operation. It is particularly useful when the controller
needs to initiate Spartan configuration at a specific point in
the power-up sequence.

As long as PROGRAM is Low, the device continues to
cycle through the clearing step. After each pass through
the configuration memory, PROGRAM is sampled. If PRO-
GRAM is High, then one last clearing pass takes place,
which concludes with a Low-to-High transition on INIT.

Do not hold PROGRAM LOW for more than 500µs. There-
fore, PROGRAM should not be used to delay the configu-
ration process for periods of this magnitude. Hold INIT Low
instead.

Initialization

Since INIT is an open-drain output, it requires a pull-up
resistor to achieve a High level. Now that INIT has gone

High, the internal memory is completely clear. At this point,
the device identifies the selected configuration mode by
sampling the level on the mode pins, after which it activates
the appropriate configuration logic. The device is ready to
begin the configuration step. Note that holding INIT Low
can be used to delay the entry to the configuration step.

To select slave serial mode (which is required for the
approach discussed in this application note) for the Spartan
family, the MODE pin is tied High; for the SpartanXL family,
the M0 and M1 pins are tied High.

Configuration

After INIT goes High, it is necessary for the controller to
wait for a period between 55 µs and 275 µs before driving
the CCLK input with the clock signal that transfers the bit-
stream.

DIN is the input for serial configuration data. DOUT is used
when more than one device is connected in a daisy chain.
See Figure 2 for an example. The bitstream, having filled
the first device in the chain, will exit its DOUT line, which
leads to the DIN line of the next device where configuration
continues. The data exiting DOUT is clocked on the falling
edge of CCLK. The data entering DIN is clocked on the ris-
ing edge of CCLK as shown in Figure 1. The clock oscilla-
tor internal to the device is not used in Slave Serial Mode to
transfer data; it is only used during Initialization.

Start-Up

The Start-Up step provides a smooth transition from config-
uration to user operation. Three major events occur during
Start-Up: The DONE output goes High, the I/Os go active
and the GSR (Global Set/Reset) Net is released. Start-Up
takes place over a period of four cycles labeled C1, C2, C3
and C4. Options in BitGen, the bitstream generation pro-
gram in the Xilinx development software, determine which
event takes place in which cycle. The menu for these
options can be located as follows:

Table 1: Signals for Spartan Configuration

Signal Type Direction Description

MODE (Spartan)
M0, M1 (SpartanXL)

Mode select Input To select Slave Serial mode on Spartan devices, tie Mode
High; on SpartanXL devices, tie both M0 and M1 High.

DIN Data Input Write configuration data into the Spartan device

DOUT Data Output Read configuration data from the Spartan device

CCLK Clock Input Synchronizes data on the rising edge

PROGRAM Control Input Begin clearing the Spartan configuration memory

INIT Status Open-drain output A transition from Low to High indicates that the Spartan con-
figuration memory is clear and ready to receive the bitstream

DONE Status Open-drain output A High indicates that the configuration process is complete

HDC Status Output High throughout configuration, until the I/Os go active

LDC Status Output Low throughout configuration, until the I/Os go active

(

2 XAPP098 November 13, 1998 (Version 1.0)

/partinfo/spartan.pdf

1. Open the Design Manager.

2. Select Implement from under the Design menu.

3. Choose the Options button.

4. Click on Edit Template for Configuration.

5. Select the Startup tab. A menu will appear that permits
the three events to be assigned to different cycles.

As an alternative, BitGen options can also be selected
using Template Manager, which is found under the Utili-
ties menu of the Design Manager.

The customary default option, known as CCLK_NOSYNC,
is the most practical, since DONE goes High in C1, discon-
necting the data source; I/Os go active in C2, avoiding con-
tention; GSR released in C3, ensuring stable internal
conditions. The CCLK is used to measure out the four start-
up cycles. This application note only considers the default
option.

There are two conditions that determine when the Start-Up
step begins: (1) length count match and a (2) full configura-
tion memory. The 24-bit length count is part of the bitstream
header, that, once written to the Spartan device, is stored in
a register. (See “The Anatomy of a Spartan Bitstream” on
page 7.) From the time INIT goes High, a counter within the
device begins counting, incrementing by one for each
CCLK rising edge and comparing the result to the length
count. Once the counter’s contents match length count, the
first condition is met. Meeting the second condition occurs
when all the configuration data for a given Spartan device
has been loaded into configuration memory.

A High on DONE is a result of the Start-Up process. While
this transition on DONE indicates the completion of the
configuration step, the configuration process, as a whole,
ends with the last cycle of the Start-Up step, C4. It is impor-
tant to provide CCLK rising edges for all four start-up
cycles. This amounts to clocking the entire bitstream, from
the first bits of the header to the last bit of the post-amble.
Note that the total number of CCLK cycles required to write

the bitstream equals the length count plus the four start-up
cycles.

DONE is an optional signal, since the master knows how
many bits of configuration bits need to be written. DONE’s
failure to go High generally indicates a problem with config-
uration (i.e. a bit error or incomplete loading of configura-
tion data).

Like DONE, the HDC and LDC outputs provide status on
the device’s progress to user operation. HDC is High during
configuration and takes on whatever I/O function is
assigned to it at the time when all I/Os go active, in the
Start-up step. Similarly, LDC is Low during configuration
and takes on its respective I/O function when the I/Os go
active as well.

The Controller Interface
By following three simple techniques, it is possible to imple-
ment serial configuration without adding any dedicated
logic to a design.

1. Store the Spartan configuration data either in unused on-
board memory or at an off-board location.

2. Use the idle time of an on-board controller for coordinat-
ing configuration.

3. A free register on-board (e.g., in a CPLD or an I/O port)
can be used as a synchronous interface between the
controller and the Spartan device.

These techniques can also be used independently. They
are discussed in the sections that follow.

Storing the Spartan Bitstream
Storing the Spartan bitstream in unused on-board memory
or downloading it from an off-board source means that
additional memory components (i.e. PROMs) for storing
configuration are unnecessary. This saves component
costs and board space.

In the on-board case, a form of nonvolatile memory, such
as ROM, is used to hold the configuration data. Generally,

TCCH

Bit n Bit n + 1

Bit nBit n - 1

TCCO

TCCLTCCDTDCC

DIN

CCLK

DOUT
(Output)

X5379_a

Figure 1: Loading and Readback of the Bitstream in Slave Serial Mode
XAPP098 November 13, 1998 (Version 1.0) 3

the data will be embedded in the processor’s firmware. See
“Embedding the Bitstream in Firmware” on page 8 for infor-
mation on how to prepare configuration data for inclusion in
C code.

As an alternative to the embedded approach, a free portion
of on-board ROM can be set aside to store the bitstream in
a table that is independent from the firmware. During board
initialization, the firmware can then instruct the processor to
access the table.

In the case of off-board storage, the Spartan bitstream can
be downloaded from a number of different locations, includ-
ing a hard drive (or floppy drive) within the product as well
as outside of the product (i.e., belonging to a workstation).
In just one of many possible scenarios, a company can per-
mit their customers to perform their own updates to a Spar-
tan-based product simply by downloading a new version of
the bitstream via the internet. There is no need for the com-
pany to ship PROM replacements. The customer takes the
bitstream and stores it on a hard drive that is accessible to
a controller in the Spartan-based product.

Controlling Configuration
An on-board controller can use its idle processing time to
supervise Spartan configuration. By having the controller
do double duty, no dedicated processing components are
required. The controller supervises serial configuration by
monitoring status signals, issuing control signals, manipu-
lating the bitstream, and providing for synchronization to a
clock.

For most designs, sufficient processing time will be avail-
able during board initialization. As an example, the serial
configuration of the largest Spartan devices presently avail-
able, the XCS40 and XCS40XL, would require 329,312
cycles and 330,696 cycles respectively. If CCLK is toggling
at the maximum allowable frequency of 10 MHz, then serial
configuration would take about 33 ms.

If insufficient continuous processing time is available for
configuration, then the task of writing the bitstream may be
interrupted so the controller can attend to other tasks, only
to be resumed at a later point in time. In this case, the task
of writing the bitstream exists as firmware subroutine, to
which an interrupt priority can be assigned.

In brief, the INIT line on the Spartan device can be used to
drive the interrupt line on the controller. A suitably low prior-
ity level can be assigned to this interrupt to ensure that the
controller spends sufficient time servicing its primary tasks.
As previously described, the processor initiates slave serial
configuration by pulling PROGRAM Low. Once all the
Spartan devices are clear, INIT goes High, requesting an
interrupt of the controller. When the controller has no
requests of higher priority than that of the Spartan device, it
begins accessing configuration data from memory and writ-
ing them to the DIN input, bit-by-bit. While the controller will

break away from configuration to attend to any higher prior-
ity requests, as soon as these are complete, it will continue
with configuration until the DONE signal, monitored at the
interface register, goes High.

When using interrupts, it is important to use a unique
address for the Spartan device (or daisy chain). This avoids
potential address conflicts when switching tasks. See “The
Interface Register” on page 4 for how this is accomplished.

The Interface Register
A free register can be used to establish a synchronous
interface between the controller and the Spartan device(s).
The interface register is composed of two parts: the output
register and the input register, which store Spartan config-
uration signals each time the processor does a read or
write to the port. In order to support the set of signals com-
monly used for the slave serial mode (PROGRAM, DATA
and CCLK, INIT and DONE), the output register will be
three bits wide for write operations and the input register
will be two bits wide for read operation. More bits can be
added for other control signals. For example, when using
the readback feature, add two bits for the READ_DATA and
READ_TRIGGER signals.

Ideally, this register will come from the unused flip-flops of a
CPLD enabled by a unique address. Typically, the CPLD
will have been placed on the board for the original purpose
of decoding address lines. The unique address ensures
that the configuration data on the processor’s bus goes
only to the register and nowhere else. It also ensures that
data on the bus intended for other purposes cannot be writ-
ten to the interface register. The nonvolatile nature of the
CPLD is important, since, the interface register needs to be
ready to support FPGA configuration on power-up.

A Practical Example
The techniques for low cost, efficient serial configuration of
Spartan FPGAs, as presented in this application note, are
commonly used in a wide variety of electronic products.
Figure 2 shows a block diagram of a multi-board, multi-pro-
cessor system with an ethernet connection to a host com-
puter (external to the product). This kind of system is
commonly used in automated test equipment. The ethernet
connection makes it possible to download FPGA configura-
tion data from a host computer, making changes to the
Spartan design easy to implement. Since the configuration
data does not require on-board, non-volatile storage, com-
ponent costs and board area are saved. As an alternative
to ethernet, other kinds of WAN or LAN (e.g., the internet)
can be used.

Our system consists of several boards, each board with a
number of processors. There is one supervisor processor
on each board to manage general administrative tasks,
including board initialization on reset as well as top-level
4 XAPP098 November 13, 1998 (Version 1.0)

functional coordination throughout operation. The
supervisor serves as the master for serial configuration,
receiving a download of the bitstream file, preparing it, and

coordinating the act of configuration. The three Spartan
FPGAs serve as slaves, so MODE is tied High to select the
slave serial configuration mode.

Figure 2 shows one of the boards within the system in
detail (surrounded by the dashed line). For the sake of clar-

ity, only the supervisor processor is shown, from here on
referred to simply as “the processor”. Its data and address
buses, Dn and An respectively, permit access to the Boot
ROM, RAM, a network interface and a CPLD. The firmware
for the processor resides in Boot ROM. On reset or power-
up, the processor begins reading its instructions from here.

The Spartan configuration data is stored on the hard drive
of the host computer. When configuring the Spartan design

In
 -

R
eg

O
u

t-
R

eg

Spartan
FPGA

DOUTDIN
MODE

INIT

CCLK
PROGRAM

DONE

Spartan
FPGA

DOUTDIN
MODE

INIT

CCLK
PROGRAM

DONE

Host

Storage for Spartan
configuration file

RAM Boot ROM

CPLD

Spartan
FPGA

Ethernet

Figure 2: Configuring Spartan FPGAs from an Off-Board Location

PROGRAM

DATA

CCLK

DONE

Dn

An

DOUTDIN
MODE

Temporary storage
for configuration file
after downloading

System Clock

INIT

INIT

CCLK
PROGRAM

DONE VCC

Processor

Supervisor

470

SUBSYSTEM
BOARD

Bridge

Bridge

PCI System Bus

VCC

470

VCC

OPEN

470

Note: To select the Slave Serial mode on a Spartan device, MODE is tied High. On a SpartanXL device, both M0 and M1 are tied
High.
XAPP098 November 13, 1998 (Version 1.0) 5

is desired, the bitstream is downloaded from the host,
transferred from ethernet to the ATE system’s internal PCI
bus and, from there, passed onto the board’s local data bus
(Dn). Prompted by an interrupt request, the processor
receives the configuration data file from the PCI bus and
copies it into consecutive bytes of RAM for temporary hold-
ing.

The CPLD contains the interface register that holds the bit
values of the serial configuration signals. This example
employs the minimum required number of signals: PRO-
GRAM, CCLK, DATA, INIT and DONE. The interface regis-
ter consists of two parts, one called Out-Reg and the other
called In-Reg. The processor writes bit values for PRO-
GRAM, DATA and CCLK into Out-Reg, which, in turn,
applies those values to the corresponding inputs of the
Spartan device(s). Also, on a regular basis, In-Reg sam-
ples INIT and DONE from the Spartan device(s) and makes
those bit values available on Dn for monitoring by the pro-
cessor. During serial configuration, the processor takes
turns writing control bits to Out-Reg one instruction cycle
and reading status bits from In-Reg the next. The three val-
ues contained in the control bits provide the logic levels that
drive Out-Reg’s PROGRAM, DATA and CCLK signals. The
values of the status bits communicate to the processor the
levels of In-Reg’s INIT and DONE signals.

A sample sequence of control bits is shown in Table 2.
Each row in the table shows the bit values in the interface
register at a given point in time. This is just one of a number
of different possible sequences. The full sequence, from
start to finish, passes through the four steps of Spartan
serial configuration: Memory Clear, Initialization, Configu-
ration and Start-up. The processor initiates memory clear-
ing by issuing control bits with PROGRAM set Low. If INIT
is not already Low, it will go Low at this time. During this
step, CCLK can be High or Low, so long as there’s no rising
transition. Dummy bits occupy the DATA position. The pro-
cessor monitors the In-Reg until it detects INIT at a High
level. At this point, initialization takes place. With the begin-
ning of the configuration step, the processor begins to write
control bits with “real data” while, at the same time, contin-
ues to monitor In-Reg. Finally, according to the customary
default order for events, as selected in BitGen (see “Start-
Up” on page 2), the Start-up step readies the Spartan
device for user operation over a series of four CCLK cycles:
In C1, DONE goes High. In C2, the I/Os become active. In
C3, the GSR net is released. With C4, user operation
begins. It is important that a rising transition on CCLK be
provided for C1, C2, C3 and C4. The bits clocked during
those cycles, Bn-3 through Bn, are dummy bits belonging to
the post-amble.

We last left the configuration data stored in RAM. Before
the processor can send this data to the Spartan devices, it
is necessary to format them into control bits. The processor
can accomplish this real-time by reading a byte of configu-
ration data from RAM and distributing the eight bits of

Table 2: State Sequence for the Interface Register

Configuration
Step

Contents of Interface Register
Control Bits in

Out-Reg
Status Bits
in In-Reg

PROGRAM CCLK DATA INIT DONE
Memory

Clear
1 NRT1 X2 03 04

0 NRT X 03 04

 INIT goes Low (if not already Low).
1 NRT X 0 0

Wait for a period between 55 µs and
275 µs after INIT goes High

Initialization 1 NRT X 1 0
Configuration 1 0 b0

5 1 0

1 1 b0 1 0

1 0 b1 1 0

1 1 b1 1 0

1 0 b2 1 0

1 1 b2 1 0

Continue writing bits. When the length
count match occurs and configuration
memory is full, then Start-Up begins.

Start-Up6 1 0 bn-3 1 0

1 1 (C1) bn-3 1 0

DONE goes High.
1 0 bn-2 1 1

1 1 (C2) bn-2 1 1

I/Os become active.
1 0 bn-1 1 1

1 1 (C3) bn-1 1 1

GSR is released.

1 0 bn 1 1

1 1 (C4) bn 1 1

Begin User Operation
Notes: 1. NRT means No Rising Transition.

2. X is a “don’t care” input.
3. The logic level shown is for configuration after

power up. For configuration during operation,
prior to driving PROGRAM Low, DONE will be
High.

4. The logic level shown is for configuration after
power up. For configuration in mid-operation,
prior to driving PROGRAM Low, INIT may be an
active I/O, in which case, it will be driving either a
High or a Low.

5. bi represents the sequence of configuration bits
i = 0 through n, starting with the first bit of the
preamble, b0, and ending with the last bit of the
post-amble, bn.

6. This example shows the Start-Up events ordered
according to the customary default settings for
CCLK_NOSYNC in BitGen.
6 XAPP098 November 13, 1998 (Version 1.0)

which it is composed among control bits. Each bit needs to
be placed in the DATA bit-position. Furthermore, the pro-
cessor needs to provide the appropriate logic levels for the
PROGRAM and CCLK positions. (As an alternative, the
workstation can format the configuration data into control
bits, which it then downloads to the board.)

The bit values for all three signals need to be chosen in
compliance with the protocol summarized in “Steps in the
Configuration Process” on page 2 as well as the timing
requirements described in the Spartan datasheet. For
example, note in Table 2 that during the configuration step,
each data bit is repeated for two consecutive writes to Out-
Reg. CCLK is Low for the first occurrence and High for the
second. This ensures that the setup time for DATA with
respect to CCLK is met.

It is important that the order of the control bits, as written to
the Out-Reg, preserve the bit order of the original configu-
ration data file. The first bit of the header (just after the title
declaration) needs to be the first bit written to the Spartan
FPGA.

Figure 2 shows three Spartan devices connected in a daisy
chain, though any number of Xilinx FPGAs can easily be
accommodated in such a loop. The DATA line applies the
bitstream to the DIN pin of the left-most FPGA first. After
this device is configured, its DOUT pin drives the middle
FPGA’s DIN pin with the bitstream. Only after this second
device is configured, does its DOUT pin pass the bitstream
onto the right-most device. For a daisy chain, the configu-
ration files for the individual Spartan devices need to be
combined into a single bitstream. For details, see “Bit-
stream Considerations” on page 7 for more information.

If the same bitstream is to be loaded into more than one
Spartan device, then those devices can be connected with
their configuration signals in parallel. See the Spartan
datasheet for more information on daisy chain and parallel
configuration.

Bitstream Considerations
The BitGen utility within Xilinx development software pro-
duces configuration data files in a number of different for-
mats. The ones that are most useful for configuring Spartan
FPGAs with a controller are: the rawbits file (.RBT), the hex
file (.HEX), and the bit (.BIT) file. Table 3 summarizes the
distinguishing characteristics of these files.

The Anatomy of a Spartan Bitstream
A distinct benefit of the rawbits file is that the bitstream can
be easily viewed using a common text editor. Figure 3
shows the internal organization of a Spartan bitstream.
Note that for the same design, the data frames for Spartan
and SpartanXL devices will contain a different number of
bits. Nevertheless, the internal organization of the bit-
stream, as described below, applies to both Spartan fami-
lies. At the top of the file is a title declaration, which
provides information about the configuration data such as:

• Configuration data file format
• Version of Xilinx development system in use
• The name of the design
• The target device
• The date the file was created
• The number of bits of actual configuration data

Following the title declaration, the actual bitstream begins
tion with a 40-bit header, the beginning and end of which
are shown in bold. It consists the following parts:

• A minimum of eight dummy bits, all High
• A preamble code of ‘0010’
• A 24-bit length count
• At least four more dummy bits, all High

Following the header is the first data frame, which, like all
data frames, begins with a 0 and ends with a four-bit CRC
code (the default option). The file ends with the post-amble
code 0111111 (shown in bold at the bottom of the figure),
followed by eight start-up bits (all High). Note that the title
declaration is never loaded into the Spartan FPGA, only the
header and the data frames that follow go into the device
during configuration.

The Rawbits File
When applying the techniques for efficient serial configura-
tion discussed in this application note, a rawbits file will typ-
ically be stored in free on-board RAM or in an off-board
location (i.e., the floppy disk or hard drive of a workstation).
Before the configuration data can be written to the Spartan
device, it is necessary to first strip off the title declaration,
then convert the header and data frames from ASCII to
binary. This can be accomplished by the on-board control-
ler if the file is stored in RAM. Alternatively, if stored on a
hard drive, the workstation can perform the translation prior
to downloading. This latter strategy is especially useful if

Table 3: Configuration Data Files

File Format
File

Extension
Title

Declaration Description
Rawbits .RBT Yes Bitstream is coded in ASCII, one byte for each configuration data bit
Hex .HEX No Each group of four consecutive configuration data bits is represented as one Hex

digit (i.e., 0 through F) which, in turn, is coded as one ASCII byte

Binary .BIT Yes Bitstream is coded in binary, one configuration bit after the next
XAPP098 November 13, 1998 (Version 1.0) 7

/partinfo/spartan.pdf
/partinfo/spartan.pdf

on-board RAM is scarce, since the rawbits file takes up
eight times the space of the binary version.

The Hex File
The hex file is handled in a similar fashion. It has an advan-
tage over the rawbits file in that it is more compact, there-
fore taking up less space in memory. On the other hand, the
hex file requires more processing to convert it into the
binary that is used to configure the Spartan device. The
Hex file does not have a text title declaration. Before config-
uration, it is necessary to convert ASCII to hex (i.e., each
byte becomes a single hex digit), and then from hex to
binary (i.e., each hex digit becomes a nibble).

The Binary File
A binary format has two benefits over the other two file
types. First, it is the most compact of all, taking up half the
storage space of a hex file and one eighth the space of a
rawbits file. As a result, the format is ideal for storage on
board. Second, once in binary form, the header and data
frames require no further translation and can be written
directly to the device.

Because of the difficulty in identifying and removing the title
declaration, the binary (.bit) file created by BitGen is not
recommended for use. Instead, one should use BitGen to
create a hex file, which, in turn, is converted to binary as
described in the preceding section.

Embedding the Bitstream in Firmware
As an alternative to storing the configuration file in on-
board RAM or on the hard drive of a workstation, it is also
possible to embed it in the controller’s firmware. To perform
this task, use a utility called makesrc which is available for
free downloading from the Xilinx web site, WebLINX. The
file can be found as follows:

1. Visit WebLINX at www.xilinx.com.

2. Perform a Xilinx site search by selecting Search.

3. In the blank denoted by the words “Search for:”, type the
name of the utility you are looking for followed by an
asterisk. (In this instance, type makesrc*.) The asterisk
is a wild card character that will allow for any file exten-
sion the utility may have. Press enter to begin the
search.

4. The browser will report the results of the search. Click on
any of the hypertext links found. This takes you to a page
from where the utility can be downloaded.

5. Click the file name (i.e., makesrc.zip for PCs) to down-
load the file.

6. De-compress using an unzip program (e.g., PKZip) and
it is ready to use.

There are actually a host of useful utilities for managing
configuration data files, more of which will be described in
the next section. They can all be downloaded from
WebLINX using the same procedure.

Perform a search for the file name (followed by an asterisk
for any extension). It is available in both a tar file for a
UNIX-based workstation and a PKZip file for PCs. This util-
ity accepts only the MCS PROM format as an input. The
first step for embedding configuration data in firmware is to
generate a configuration data file in MCS format using
PromGen in the Xilinx development software. The pconfig
utility available on WebLINX converts .bit, .rbt, and .hex
files to MCS format. The MCS file is used as an input to
makesrc, which produces a HEX file with formatting cus-
tomized to suit the needs of different assemblers and com-
pilers. Consult the read-me file that accompany the utility
for more details.

Combining Files for a Spartan Daisy Chain

The integrated bitstream used for configuring a Spartan
daisy chain is not a simple concatenation of the
configuration files for the individual devices. PromGen, a
utility in the Xilinx development software, must be used to
join the files. This utility only combines binary (.bit) files,
which the BitGen utility readily supplies. PromGen takes
the binary files for the different devices, strips off the title
declarations and the headers, merges the data frames,
and, finally, adds a new header at the top. The output file is
a hex file (no title declaration). If a rawbits file is desired,

Xilinx ASCII Bitstream
Created by Bitstream M1.5
Design name: cntlogix.ncd
Architecture:spartan
Part: s30pq240
Date: Tue Sep 29 16:40:13 1998
Bits: 247968
1111111100100000001111001000100110011111
0101011111111111110111101011111110101111111
0101111111010111111101011111110101111111010
1111111010111111101011111110101111111010111
1111011011111110101111111010111111101011111
1101011111110101111111010111111101011111110
1011111110101111111010111111101011111110111
11110010

.

.

.
0111111111111110111111101011111110101111111
0101111111010111111101011111110101111111010
1111111010111111101011111110101111111010111
1111011011111110101111111010111111101011111
1101011111110101111111010111111101011111110
1011111110101111111010111111101011111110011
011100100111111111111111

Figure 3: Spartan Rawbits Configuration File
8 XAPP098 November 13, 1998 (Version 1.0)

then use the utility hex2bits available on WebLINX to
convert the hex file. Hex2bits is available in both zip and
tar versions. Consult the accompanying read-me file.

Verifying Configuration
Successful loading of the bitstream into the Spartan device
can be verified by reading back the configuration data in
serial. This is accomplished by instantiating readback sym-
bols into the Spartan design. Refer to the Spartan

datasheet and XAPP015 for directions on how to use this
feature.

Bibliography
The Xilinx Spartan Series Datasheet

(www.xilinx.com/partinfo/spartan.pdf)

The Xilinx Programmable Logic Data Book 1998
(www.xilinx.con/partinfo/databook.htm)

XAPP015: Using the XC4000 Readback Capability
(www.xilinx.com/xapp/xapp015.pdf)

The Programmable Logic CompanySM

© 1998 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the Pro-
grammable Logic Company is a service mark of Xilinx, Inc. All other trademarks and registered trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described herein; nor does it convey any license under its patent, copy-
right or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described other than circuitry entirely embodied in its prod-
ucts. Products are manufactured under one or more of the following U.S. Patents: (4,847,612; 5,012,135; 4,967,107; 5,023,606; 4,940,909; 5,028,821; 4,870,302;
4,706,216; 4,758,985; 4,642,487; 4,695,740; 4,713,557; 4,750,155; 4,821,233; 4,746,822; 4,820,937; 4,783,607; 4,855,669; 5,047,710; 5,068,603; 4,855,619;
4,835,418; and 4,902,910. Xilinx, Inc. cannot assume responsibility for any circuits shown nor represent that they are free from patent infringement or of any other
third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.

Headquarters

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.

Tel: 1 (800) 255-7778
or 1 (408) 559-7778

Fax: 1 (408) 559-7114

Net: hotline@xilinx.com
Web: http://www.xilinx.com

North America

Irvine, California
Tel: (949) 727-0780

Englewood, Colorado
Tel: (303) 220-7541

Sunnyvale, California
Tel: (408) 245-9850

Schaumburg, Illinois
Tel: (847) 605-1972

Nashua, New Hampshire
Tel: (603) 891-1098

Raleigh, North Carolina
Tel: (919) 846-3922

West Chester, Pennsylvania
Tel: (610) 430-3300

Dallas, Texas
Tel: (972) 960-1043

Europe

Xilinx Sarl
Jouy en Josas, France
Tel: (33) 1-34-63-01-01
Net: frhelp@xilinx.com

Xilinx GmbH
München, Germany
Tel: (49) 89-93088-0
Net: dlhelp@xilinx.com

Xilinx, Ltd.
Byfleet, United Kingdom
Tel: (44) 1-932-349403
Net: ukhelp@xilinx.com

Japan

Xilinx, K.K.
Tokyo, Japan
Tel: (81) 3-3297-9191
Net: jhotline@xilinx.com

Asia Pacific

Xilinx Asia Pacific
Hong Kong
Tel: (852) 2424-5200
Net: hongkong@xilinx.com
XAPP098 November 13, 1998 (Version 1.0) 9

/partinfo/spartan.pdf
/partinfo/databook.htm
/xapp/xapp015.pdf

	Introduction
	Spartan Serial Configuration
	Table 1: Signals for Spartan Configuration

	Steps in the Configuration Process
	Clearing Configuration Memory
	Initialization
	Configuration
	Start-Up
	Figure 1: Loading and Readback of the Bitstream in Slave Serial Mode

	The Controller Interface
	Storing the Spartan Bitstream
	Controlling Configuration
	The Interface Register
	A Practical Example
	Figure 2: Configuring Spartan FPGAs from an Off-Board Location

	Bitstream Considerations
	The Anatomy of a Spartan Bitstream
	Table 3: Configuration Data Files

	The Rawbits File
	Figure 3: Spartan Rawbits Configuration File

	The Hex File
	The Binary File

	Embedding the Bitstream in Firmware
	Combining Files for a Spartan Daisy Chain
	Verifying Configuration
	Bibliography

