

Linear Feedback Shift Registers in Virtex Devices

XAPP 210, August 6, 1999 (Version 1.0)

Application Note by Maria George and Peter Alfke

Summary

This application note describes the implementation of Linear Feedback Shift Registers (LFSR) using the Virtex SRL macro. One half of a CLB can be configured to implement a 15-bit LFSR, one CLB can implement a 52-bit LFSR, and with two CLBs a 118-bit LFSR is implemented.

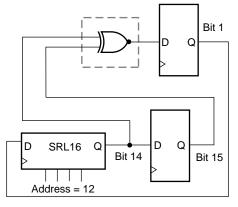
Xilinx Family

Virtex Series: XCV000

Introduction

The Virtex family of devices have a macro called SRL (Shift Register LUT). This macro implements very efficient shift registers varying in length from one to sixteen bits as determined by the address lines. The length can be either set to a static value or it can be changed dynamically. This application note describes the use of the SRL to implement Linear Feedback Shift Registers. The configurable elements in the Virtex series of devices are called Configuration Logic Blocks (CLBs). Each CLB in a Virtex device contains four logic cells, organized into two slices. A logic cell includes a four input look-up table, carry logic, and a storage element.

LFSR


Linear Feedback Shift Registers sequence through $(2^n - 1)$ states, where n is the number of registers in the LFSR. At each clock edge, the contents of the registers are shifted right by one position. There is feedback from predefined registers or taps to the left most register through an exclusive-NOR (XNOR) or an exclusive-OR (XOR) gate. A value of all '1's is illegal in the case of a XNOR feedback. A count of all '0's is illegal for an XOR feedback. This state is illegal because the counter would remain locked-up in this state. The LFSR in this application note is implemented with XNOR feedback.

A 4-bit LFSR sequences through $(2^4 - 1) = 15$ states (the state 1111 is in the lock-up/illegal state). From Table 1 the feedback taps are 4,3. On the other hand, 4-bit binary up-counter would sequence through $2^4 = 16$ states with no illegal states. LFSR counters are very fast since they use no carry signals. However, the dedicated carry in Virtex devices is rarely a speed-limiting factor because it is intrinsically fast. LFSRs can replace conventional binary counters in performance critical applications where the count sequence is not important (e.g., FIFOs). LFSRs are also used as pseudo-random bit stream generators. They

are important building blocks in the implementation of encryption and decryption algorithms.

Implementation

The implementation of the 15-bit LFSR, using just one slice of a CLB is illustrated in Figure 1. One logic cell in this slice is used for a two input XNOR function and the first register of the 15-bit LFSR. The other logic cell in this slice is used for the implementation of the 13-bit SRL and the fifteenth register of the 15-bit LFSR. By assigning a static value of decimal 12 to the address lines, the output length of the SRL is set to 13. The taps for the 15-bit LFSR are 14 and 15. Table 1 lists the appropriate taps for all LFSRs up to 168 bits.

x210_01_080599

Figure 1: 15-bit LFSR Implemented Using Half of a CLB (one slice)

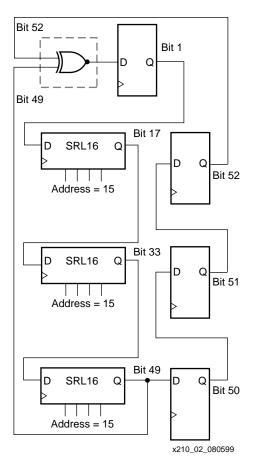


Figure 2: 52-bit LFSR Implemented Using One CLB

Figure 2 is a 52-bit LFSR implementation using one CLB. The first logic cell in the CLB is used for the two input XNOR function and the first register of the 52-bit LFSR. The second logic cell is used to implement the 16-bit SRL and the 52nd register of the 52-bit LFSR. The connection structure shown is required to give access to the 49th register as one of the taps required for the 52-bit LFSR. The output length of the SRL is set to 16 by assigning a static value of decimal 15 to the address lines. From Table 1, the taps for the 52-bit LFSR are 49 and 52. A 118-bit LFSR implementation using two CLBs is shown in Figure 3. The taps for the 118-bit LFSR are 85 and 118 are taken from Table 1.

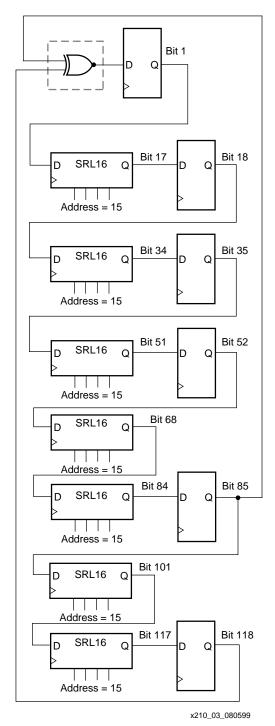


Figure 3: 118-bit LFSR Implemented Using Two CLBs

Linear Feedback Shift Register Taps

Table 1 lists the appropriate taps for maximum-length LFSR counters of up to 168 bits. The outputs are designated one through n with one as the first stage.

Table 1: Taps for Maximum-Length LFSR Counters

n	XNOR from	n	XNOR from	n	XNOR from	n	XNOR from
3	3,2	45	45,44,42,41	87	87,74	129	129,124
4	4,3	46	46,45,26,25	88	88,87,17,16	130	130,127
5	5,3	47	47,42	89	89,51	131	131,130,84,83
6	6,5	48	48,47,21,20	90	90,89,72,71	132	132,103
7	7,6	49	49,40	91	91,90,8,7	133	133,132,82,81
8	8,6,5,4	50	50,49,24,23	92	92,91,80,79	134	134,77
9	9,5	51	51,50,36,35	93	93,91	135	135,124
10	10,7	52	52,49	94	94,73	136	136,135,11,10
11	11,9	53	53,52,38,37	95	95,84	137	137,116
12	12,6,4,1	54	54,53,18,17	96	96,94,49,47	138	138,137,131,130
13	13,4,3,1	55	55,31	97	97,91	139	139,136,134,131
14	14,5,3,1	56	56,55,35,34	98	98,87	140	140,111
15	15,14	57	57,50	99	99,97,54,52	141	141,140,110,109
16	16,15,13,4	58	58,39	100	100,63	142	142,121
17	17,14	59	59,58,38,37	101	101,100,95,94	143	143,142,123,122
18	18,11	60	60,59	102	102,101,36,35	144	144,143,75,74
19	19,6,2,1	61	61,60,46,45	103	103,94	145	145,93
20	20,17	62	62,61,6,5	104	104,103,94,93	146	146,145,87,86
21	21,19	63	63,62	105	105,89	147	147,146,110,109
22	22,21	64	64,63,61,60	106	106,91	148	148,121
23	23,18	65	65,47	107	107,105,44,42	149	149,148,40,39
24	24,23,22,17	66	66,65,57,56	108	108,77	150	150,97
25	25,22	67	67,66,58,57	109	109,108,103,102	151	151,148
26	26,6,2,1	68	68,59	110	110,109,98,97	152	152,151,87,86
27	27,5,2,1	69	69,67,42,40	111	111,101	153	153,152
28	28,25	70	70,69,55,54	112	112,110,69,67	154	154,152,27,25
29	29,27	71	71,65	113	113,104	155	155,154,124,123
30	30,6,4,1	72	72,66,25,19	114	114,113,33,32	156	156,155,41,40
31	31,28	73	73,48	115	115,114,101,100	157	157,156,131,130
32	32,22,2,1	74	74,73,59,58	116	116,115,46,45	158	158,157,132,131
33	33,20	75	75,74,65,64	117	117,115,99,97	159	159,128
34	34,27,2,1	76	76,75,41,40	118	118,85	160	160,159,142,141
35	35,33	77	77,76,47,46	119	119,111	161	161,143
36	36,25	78	78,77,59,58	120	120,113,9,2	162	162,161,75,74
37	37,5,4,3,2,1	79	79,70	121	121,103	163	163,162,104,103
38	38,6,5,1	80	80,79,43,42	122	122,121,63,62	164	164,163,151,150
39	39,35	81	81,77	123	123,121	165	165,164,135,134
40	40,38,21,19	82	82,79,47,44	124	124,87	166	166,165,128,127
41	41,38	83	83,82,38,37	125	125,124,18,17	167	167,161
42	42,41,20,19	84	84,71	126	126,125,90,89	168	168,166,153,151
43	43,42,38,37	85	85,84,58,57	127	127,126		
44	44,43,18,17	86	86,85,74,73	128	128,126,101,99		

Conclusion

Virtex devices can implement very efficient Linear Feedback Shift Registers. LFSRs are especially useful for generating pseudo-random serial bit streams.

References:

Wayne Stahnke, *Primitive Polynomials Modulo Two*, private communication in 1970.

Woody Johnson, FreeCore, *Linear Feedback Shift Register*, 1997

Peter Alfke, *Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random Sequence Generators, Xilinx application note XAPP 052*

Revision History

Date	Revision	Activity
8/6/99	1.0	Initial Release

The Programmable Logic Companys™

Headquarters	North America	Europe	Japan	
Xilinx, Inc. 2100 Logic Drive	Irvine, California Tel: (949) 727-0780	Xilinx Sarl Jouy en Josas, France	Xilinx, K.K. Tokyo, Japan	
San Jose, CA 95124 U.S.A.	Englewood, Colorado Tel: (303) 220-7541	Tel: (33) 1-34-63-01-01 Net: frhelp@xilinx.com	Tel: (81) 3-3297-9191 Net: jhotline@xilinx.com	
Tel: 1 (800) 255-7778 or 1 (408) 559-7778 Fax: 1 (408) 559-7114	Sunnyvale, California Tel: (408) 245-9850	Xilinx GmbH München, Germany Tel: (49) 89-93088-0 Net: dlhelp@xilinx.com Xilinx, Ltd.	Asia Pacific	
Net: hotline@xilinx.com Web: http://www.xilinx.com	Schaumburg, Illinois Tel: (847) 605-1972		Xilinx Asia Pacific Hong Kong Tal: (452) 2424 5200	
	Nashua, New Hampshire Tel: (603) 891-1098	Byfleet, United Kingdom Tel: (44) 1-932-349401	Tel: (852) 2424-5200 Net: hongkong@xilinx.com	
	Raleigh, North Carolina Tel: (919) 846-3922	Net: ukhelp@xilinx.com		
	West Chester, Pennsylvania Tel: (610) 430-3300			
	Dallas, Texas Tel: (972) 960-1043			

© 1999 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the Programmable Logic Company is a service mark of Xilinx, Inc. Other Xilinx registered and non-registered trademarks are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners.

Xilinx products are manufactured under one or more of the patents listed at http://www.xilinx.com/legal.htm. Xilinx, Inc. does not assume any liability arising out of the application or use of any product described herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx., Inc. reserves the right to make changes, at any time, in order to improve reliability, function, or design and to supply the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described other than circuitry embodied in its products. No other circuit patent licenses are implied. Xilinx, Inc. will not assume responsibility for any circuits shown nor represent that they are free from patent infringement or of any other third-party right. Xilinx,. Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not be liable for the accuracy or correctness of any engineering or software support or assistance provided to a user.