
TIME-TO-MARKET SILICON

By: Chad Nikoletich
Senior Engineer

JTA Research, Inc.

We’ve heard it all before. ASIC design cycles are shortening
due to time-to-market and product life-cycle demands. Add to the
mix shrinking geometries, increased gate counts, higher clock
frequencies and reduced power requirements, and engineers are
constantly searching for solutions to these formidable
challenges. Every ASIC designer is searching for the holy grail
of product design: the identification of proven design
methodologies that support these challenges. Therefore, the
intent of this article is to demonstrate an innovative
methodology that uses the Xilinx Virtex FPGA technology for ASIC
emulation. By the end of this article, engineers should have the
context to apply the methodology across a wide spectrum of
applications.

In the fall of 1998, a southern California company that
we’ll call XYZ was tasked with the development of a million gate
ASIC, yet their standard development cycle couldn’t support the
project’s stringent schedule requirements. After much
discussion, XYZ determined that significant schedule improvements
could occur if the embedded software developers were engaged
earlier into the design process. In order to do this, XYZ sought
to emulate the ASIC, through the use of multiple Field
Programmable Gate Arrays (FPGAs), allowing the software team an
opportunity to test and integrate the embedded software on real
hardware prior to receiving first silicon from the foundry.

XYZ engineers started by partitioning early RTL code into
multiple design blocks. The ASIC was originally targeted for
individual Altera FLEX 10KE parts, however, logic gate count
estimates and embedded RAM requirements exceeded the capacity of
the technology.

Meanwhile, Xilinx was developing a new FPGA family called
Virtex. In the fall of 1998, Xilinx knew it had a promising yet
unproven technology. When XYZ’s engineers discussed their needs
with the local sales team, it was apparent that Xilinx was
staring at exactly what it needed -- a large, real-world design
by which to target the new Virtex architecture and design
software.

Xilinx made their pitch, describing a new technology that
appeared to support XYZ’s requirements: up to one million system
gates, over 16K bytes of embedded dual port RAM, support for
multiple IO standards, four Delay Lock Loops (DLLs), and design
tools that supported both VHDL and Verilog. Based on these FPGA
qualities, XYZ took a chance on the yet unproven Virtex family.

Since the majority of the project staff was already engaged
in designing the ASIC, XYZ required an outsource solution to
perform the ASIC translation to Virtex. Xilinx recommended its
Southern California-based Xperts partner, JTA Research, Inc. to
perform the task. JTA, XYZ, and Xilinx were now on a path that
would exercise the breadth of the new Virtex architecture.

HOW WILL IT FIT?

JTA initially embarked on fully understanding the magnitude
of the design. The ASIC contained four internal special
processing nodes, three data interfaces (one of which was PCI),
one external memory interface, and a timing and control block.
The special processing nodes and interfaces were linked together
to the external memory through the timing and control block.
Each special processing node (SPN) contained an embedded 64-bit
sequencer along with input/output FIFOs, embedded RAM, and unique
data manipulation logic.

JTA partitioned the design and mapped the ASIC architecture
to Virtex. For example, the ASIC used a separate data bus for
each SPN and each data interface (IF). In order to conserve IO
pins, these busses were converted to a single, tri-state bus,
which was shared among the nodes and interfaces. The embedded
RAM was mapped to Virtex RAM while the IF and SPN functions were
combined based on Virtex gate capacity.

The final partitioning is shown in Figure 1. First, each
SPN was partitioned out to reside on a single Virtex FPGA.
Second, the interfaces were likewise mapped to individual Virtex
parts. Lastly, the timing and control block was combined with
one of interface units.

IF1
Timing and Control

IF3
Rate Buffer

IF2
PCI

SPN1
Special Processing

Node 1

SPN2
Special Processing

Node 2

SPN3
Special Processing

Node 3

PN2
Special Processing

Node 4

External RAM

Tri-state Bus

Timing & Control IF

Rate Buffer I/F

PCI I/F

Memory IF

Figure 1: Final Partitioning

TURN THE DESIGN CRANK

JTA is well versed in ASIC design and methodology flow. By
combining this design experience with its extensive use of FPGAs,
JTA took little time coming up to speed. XYZ supplied JTA with
VHDL RTL and supporting testbenches and expected FPGAs in return.
To deliver working FPGAs, JTA needed to answer the following two
questions: 1) What steps are required to convert the ASIC design
to Virtex FPGAs and 2) How does one validate the correctness of
such a conversion?

JTA developed a methodology based on prior design knowledge
to tackle the ASIC to FPGA conversion. Design activities
provided by JTA engineers included five areas: 1) replacing RAM
blocks using CORE Generator (Xilinx’s tool used to generate user
defined BlockRAM and other IP), 2) DLL insertion, 3) modifying
the internal ASIC data bus, 4) mapping ASIC IO pads to Virtex
IOs, and 5) creating RTL source for custom instantiated
components.

JTA’s RTL changes were to be verified through simulation of
each Virtex device. In addition, a system level testbench would
be created to check all the Virtex devices together. Once
completed, this methodology would validate three things: 1) that
the original ASIC had been partitioned correctly, 2) that the
connections between all Virtex devices were correct, and 3) the
interoperability of the integrated Virtex devices.

The JTA ASIC design flow was modified to support the ASIC
conversion to Virtex FPGAs. What emerged was a hybrid
methodology that combined the best of two worlds: standard ASIC
and FPGA flows. Figure 2 shows the combination of Unix and PC
tools used to perform the ASIC conversion to Virtex.

Re-map RAM,
IO & Unique
Components

Synthesize
Using Xilinx

FPGA Express

Place & Route
Using Xilinx

Design Manager

Static Tim ing
Analysis

Using Xi l inx T im ing
Analyzer

Analyze ID
Structure and

Unique
components

Compile &
Functional Sim
Using Cadence

Leapfrog

Update
System

Testbench

Sim ulate
Individual Virtex

Functions
Using Cadence Leapfrog

Constraint Mods

Sim ulate System
Level

Using Cadence
LeapFrog

Sun Workstation

PC

Figure 2: Tool/Conversion Flow

The flow initiated with each ASIC entity's code. It was
apparent at the onset that some analysis of the delivered source
code was required, identifying such things as size, complexity
missing source, and any unique or library component source
requirements. Multiple simultaneous deliveries of various ASIC
modules were commonplace; and a manual inspection of the source
threatened to take weeks. It was clear that some form of
automation was required to accelerate task execution while
reducing the effort of this portion of the design flow.

JTA eliminated the manual checking bottleneck by creating a
VHDL source analyzer, written in TCL, to perform the analysis
functions. The tool did not require compilation and only the
VHDL top module file needed to be identified. It identified all
components of the module including hierarchy. In addition, all
missing library components were identified automatically. As a
secondary benefit, the tool used hierarchical information to
create scripts which were used to compile the source for
Cadence's VHDL simulator, LeapFrog. Figure 3 illustrates a
sample output produced by this custom tool.

.top

.top.pn1

.top.pn1.ram1wrap

.top.pn1.ram1wrap.ram64x1k **library component**

.top.pn1.ram2wrap

.top.pn1.ram1wrap.ram32x256 **library component**

.top.pn1.sequnit

.top.pn1.sequnit.dec

.top.pn1.sequnit.wr

.top.pn1.sequnit.rd

.top.pn2

.top.pn2.ram1wrap

.top.pn2.ram1wrap.ram64x1k **library component**

...

...

Number of HDL source lines: 53682

Number of Components: 131

Number of Components without an associated entity: 46

Number of Instances: 2822

Number of Instances without an associated entity: 1990

Libraries used: ieee

work

gtech

Figure 3. VHDL Source Analyzer output

Once this report was generated, JTA engineers could create
RTL concurrently for the unique library components while
remapping the RAM and IO components. VHDL was then compiled and
functionally verified using LeapFrog and XYZ’s testbench.

RTL was synthesized using Xilinx’s Foundation Series
software, FPGA Express. The synthesized source was simulated and
the results compared with the outputs of XYZ’s RTL simulations.
In addition, the system level testbench was incrementally
developed to verify the concerted actions of multiple FPGAs.

After synthesis, it was on to place-and-route, using
Xilinx’s Design Manager software. Upon completion, a post layout
netlist was created and the place & route results were analyzed
using Design Manager's Timing Analyzer tool. The post layout
netlist was functionally simulated using Leapfrog and compared
with all prior simulation results.

The hybrid flow provided two distinct benefits:
1)Overlapping conversion activities, allowing fast turnaround
upon delivery of RTL and 2) Verifiable snapshots using simulation
throughout the design flow, thus validating the correctness of
the conversion.

It's Size and Speed that Matters

In the end, the ASIC’s million gates were converted to eight
Xilinx Virtex FPGAs (XCV1000-5 parts in BG560 packages) FPGAs.
Figure 4 summarizes the design attributes for each device.

Module Original
Gate
Count

Virtex
Gate
Count

CLB
Capacity

(%)

Block RAM
Capacity

IO
Capacity

(%)

Speed-5
(MHz)

SPN1 45K 94K 41 0 92 30.4

SPN2A 389K* 262K 99 12 98 28.8

SPN2B 548K 90 0 70 27.8

SPN3 157K 260K 98 12 45 27

SPN4 71K 112K 52 0 45 25.7

IF1 74K 215K 44 25 61 25.3

IF2 146K 276K 66 25 73 25.6

IF3 92K 301K 31 43 54 30.6

Figure 4. ASIC Stats

* original SPN2 gate count

The final partitioning required deviation from the original
plan in two areas. First, SPN2 was divided into two devices
SPN2A and SPN2B because the original module would not fit in a

single XCV1000 Virtex part. Second, the Timing and Control
module was combined with SPN1 instead of IF1, primarily because
SPN1 had achieved the highest speed after place & route of any
ASIC module and could afford the speed and area impact.

Originally, each converted ASIC module was targeted to run
at 33MHz. After several synthesis and place-and-route cycles on
each module, the Timing Analyzer tool helped determine that the
maximum, worst case speed was 25MHz (the worst case minimum
acceptable speed).

NOT ACCORDING TO PLAN

As in any new technology, minor technical hurdles needed to
be overcome during first deployment. Sometimes, kinks need to be
worked out and other times, the best approach is to either
rethink a process or develop a workaround until a fix is in
place. Despite hurdles such as preliminary tools, a modified
methodology and a new technology, JTA intended to meet its
commitments. In order to do so, JTA addressed problems in three
main areas: tool related, RTL source code problems, and
size/speed issues. Tool problems were directly attributed to
those typically found in beta code. JTA provided feedback to
Xilix’s R&D team to help them transform prereleased code into
robust, released code. The majority of RTL source code problems
were related to delivery of preliminary RTL in order to trial
build each SPN and IF function. Size/speed estimates were
validated with trial place & routes.

To mitigate further risk, JTA verified every step of the
design flow. Tools resided on both Unix and PC platforms,
requiring data to be passed between the platforms using JTA’s
heterogeneous network. A trial build was performed and passed
through each step of the design flow, revealing several minor
data problems that were easily corrected. An example would
include simply identifying the proper output of the place-and-
route tool such that the postlayout netlist could be simulated
with Leapfrog. Another would be the need to compile the Xilinx
SIMPRIM and UNISIM libraries in order to simulate the Xilinx
Design Manger tools output.

The first major problem occurred when attempting to insert
the DLL module into one of the PNs. FPGA Express produced a
constraints file that was incompatible with the Design Manager
software. Further exploration into the problem revealed that the
new DLL feature was only available within the Virtex
architecture, and subsequently, the synthesis tool had not yet
implemented this required feature. Again, Xilinx’s R&D team
responded to our request and the next release of FPGA Express
accounted for the DLLs, allowing us to continue moving forward.

It wasn’t long before we hit the next problem: a timing
problem surfaced in all the SPN sequencers. The problem was
attributed to the RTL that produced over 50 layers of CLB logic
between flip-flops. Since Virtex performance is heavily
predicated on the layers of CLBs between flip-flops, XYZ
responded to JTA’s request and delivered optimized source code to
reduce the logic to less than 20 layers, ultimately meeting the
required timing constraints, but more importantly, illustrating a
side benefit of ASIC emulation. By running into the upper limit
of the emulation implementation technology, potential ASIC timing
problems due to non-optimal RTL were identified and corrected
very early in the process.

Two of the modules delivered by XYZ reported port problems
during synthesis by FPGA Express, yet Cadence's LeapFrog reported
no error during simulation. Finding the source of the
discrepancy was proving to be difficult, so JTA Engineers
downloaded an evaluation copy of Synplify from the Synplicity
website. Using Synplify, JTA engineers found two problems: a
port mismatch and a multiple driven net. Using the Synplify RTL
Viewer, JTA screen captured the offending net and emailed the
picture to XYZ. Again, the conversion flow was robust enough to
identify long-term RTL issues that XYZ used to rectify.

By far the stickiest problems occurred after synthesizing
the PN2 module. Design Manager could not place-and-route this
module because it used 137% of the Virtex CLB and 212% of the
BlockRAM resources. Using Synplify for synthesis did reduce the
CLB usage by fifty percent, but the resulting 119% was still too
much to implement. Therefore, the only option left was to split
PN2 into two XCV1000 parts – a challenging task considering that
the data paths were 64 bits wide. In the end, PN2A was CLB and
IO bound with 99% and 98% usage respectively. PN2B turned out to
use 90% of the CLBs since SelectRAM (CLB RAM) was utilized
because PN2B required 200% of BlockRAM availability. The
problems did not end there. The split uncovered a bug in the
placer tool, which would not iterate enough times and increase
the router’s effort to the point where high-density designs would
not complete. Xilinx responded with an update of the Foundation
Series software that resolved the place-and-route problem of PN2A
and PN2B. The troublesome PN2 did uncover one gem for the JTA
engineers, though. High-density designs requiring a high
percentage of Virtex resources would route 100%!

Overall, the JTA engineers were impressed with Virtex's
capability to aid in ASIC emulation/rapid prototyping. As the
Virtex design tools mature, the future only looks brighter for
its use as "time-to-market silicon.”

Chad Nikoletich

Chad Nikoletich has a BSEE from California State University, Long
Beach. As a 21 year industry veteran, Chad has performed
numerous ASIC and FPGA designs for such companies as JPL, Hughes
Aircraft Company, and General Dynamics. An avid digital video
enthusiast, Chad enjoys spending his spare time in his home video
studio. He can be reached at cniko@jta.com.

