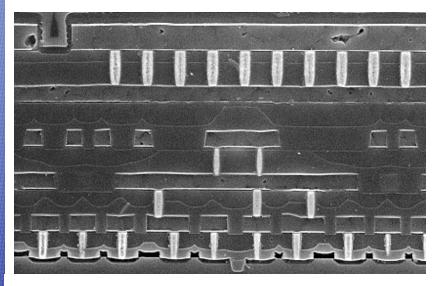

Redefining the FPGA

New FPGA platform first to offer system designers powerful board-level I/O, clock, and memory functions on a chip for under \$10



Virtex FPGAs Shipping Now

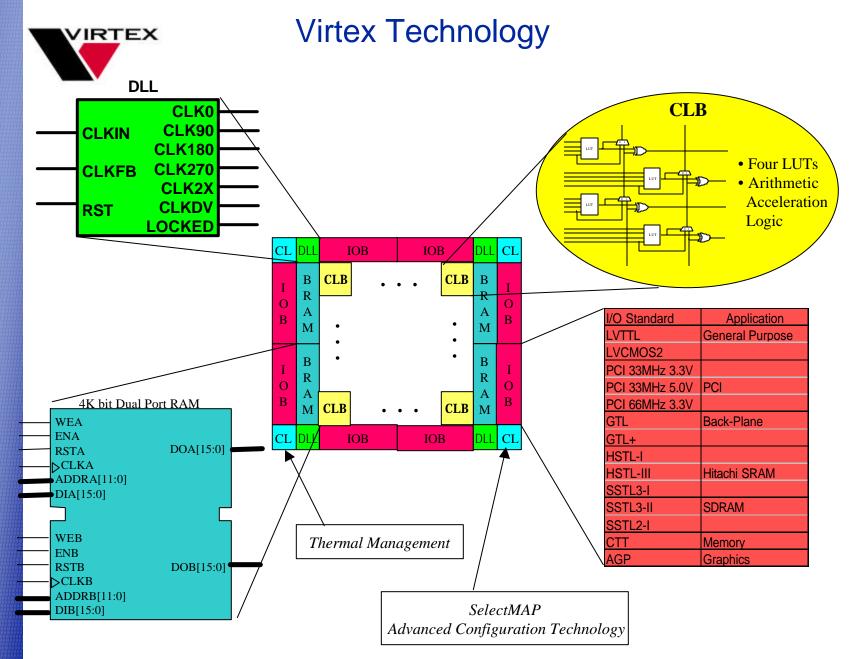
Process Leadership Delivers New Records

0.22 micron process

- One Million Gates
 - Four times nearest competitor
- 27,648 Logic Cells
 - More than double nearest competitor
- 75 million transistors
 - More than 10 times complexity of Pentium II

Five Metal Layers

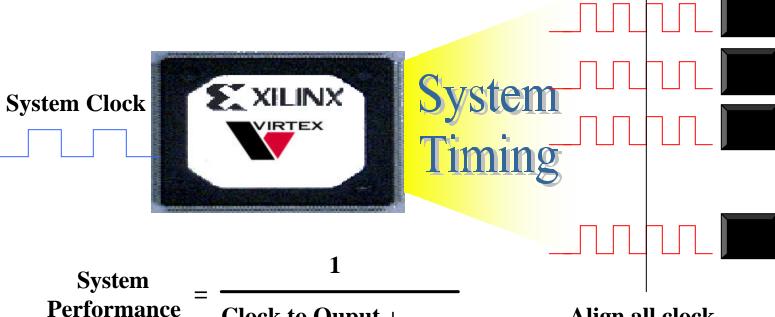
- Massive Segmented Routing
 - predictably fast design



Virtex Architecture Designed to Solve System Level Design Problems

Extensive customer interviews exposed design challenges

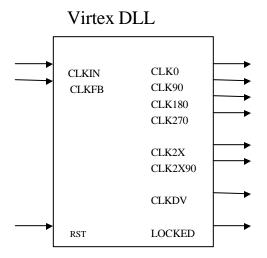
- System Timing
 - Chip to chip performance limits system speeds
 - Clock skew is the number one killer of system speed
- System Memory
 - Memory bandwidth is always key
 - Memory requirements vary in size and depth
- System Interfaces
 - Process technology leads to mixed voltage systems
 - High performance, low power signal standards emerging
- System Integration
 - Intellectual property is critical for high density design
 - Intellectual property must drop in easily



Pumping up System Performance

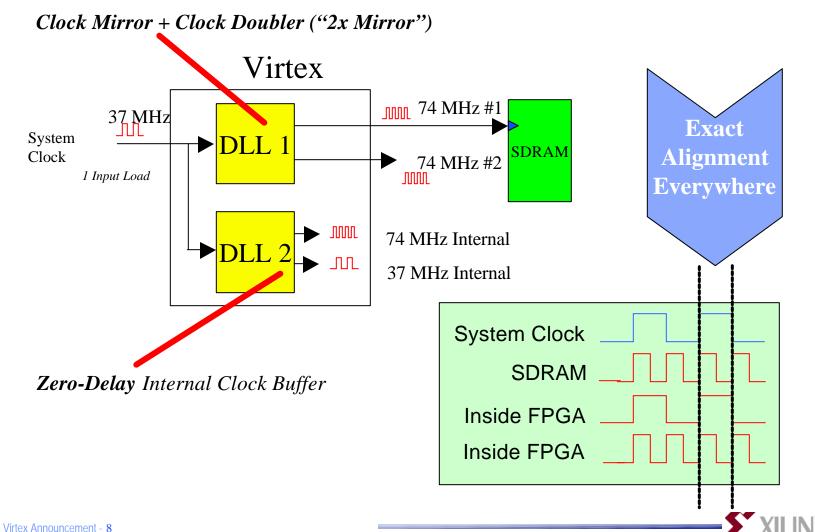
Clocks Generated by Virtex Device

Clock to Ouput +
Input Setup +
Clock Skew

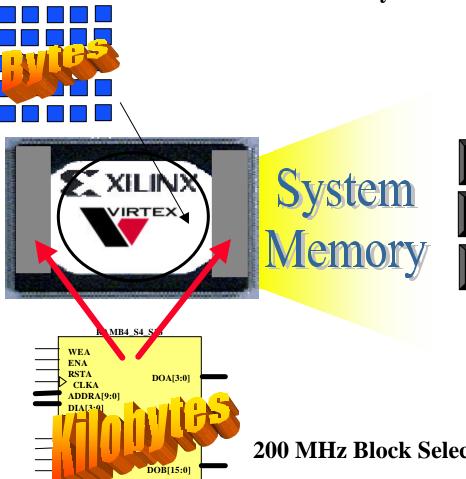

Align all clock edges across the system

Virtex Delay Locked Loop (DLL)

- Remove skew of multiple system clocks
 - 4 DLLs on every Virtex FPGA
 - Multiple outputs from each DLL
- Drive System Performance over 160 MHz
 - 2.5 ns Setup Time on all device
 - Ons Hold Time on all devices
 - 3.5 ns Clock-to-Out on all devices
 - Less than 500ps skew across FPGA
- Make clocks you need
 - Multiply clock frequency by 2
 - Divide clock frequency
 - Shift clock phase
- Generate clocks to other devices
 - Use multiple DLLs to remove internal and external clock skew



DLL Customer Design Example

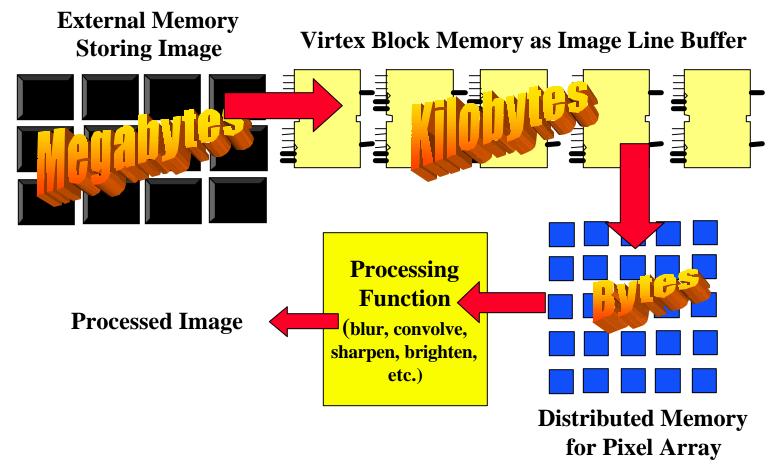

HDTV Broadcast System

Building a Hierarchical Memory System

200 MHz Distributed SelectRAM+ Memory

166 MHz Access to **External Memory**

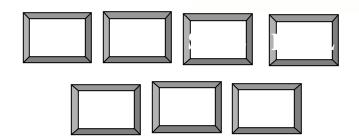
200 MHz Block SelectRAM+ Memory



DIB[15:0]

Memory Hierarchy Design Example

Photoshop Accelerator



Interface to any Device for Deep Sub-micron Era

Connect directly to external signals of varied voltages and swing points

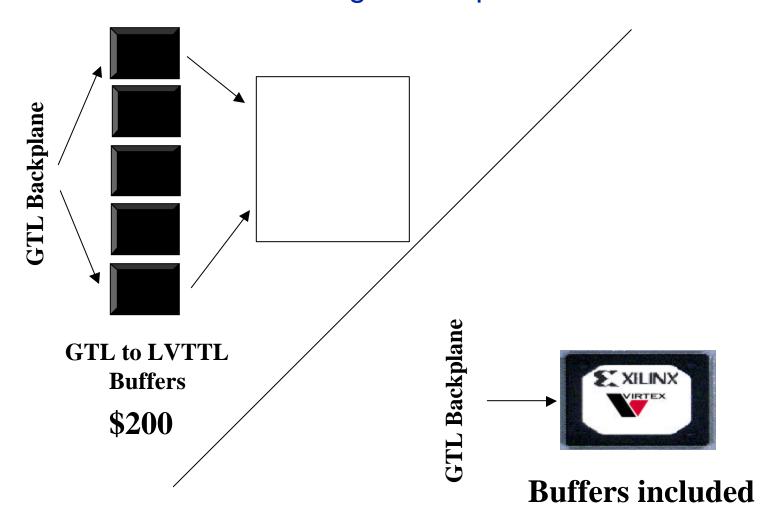
System Interfaces

GTL GTL+ AGP

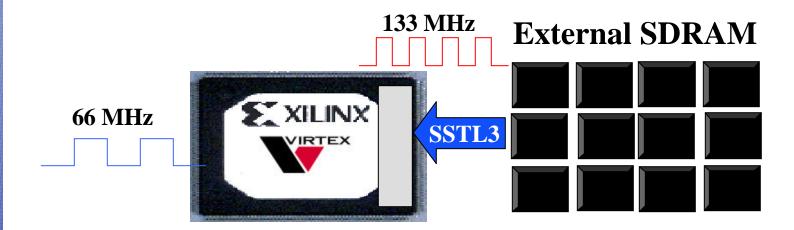
Backplanes

External Devices

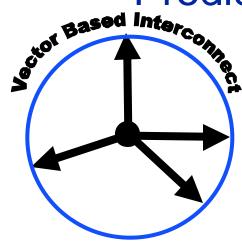
Directly Interface to Virtex FPGA


Standard	Voh	Swing	Application
LVTTL	3.3	na	General purpose
LVCMOS2	2.5	na	General purpose
PCI 33MHz 3.3V	3.3	na	PCI
PCI 33MHz 5.0V	3.3	na	PCI
PCI 66MHz 3.3V	3.3	na	PCI
GTL	na	0.80	Backplane
GTL+	na	1.00	Backplane
HSTL-I	1.5	0.75	High Speed SRAM
HSTL-III	1.5	0.90	High Speed SRAM
HSTL-IV	1.5	0.75	High Speed SRAM
SSTL3-I	3.3	0.90	Synchronous DRAM
STTL3-II	3.3	1.50	Synchronous DRAM
SSTL2-I,II	2.5	1.10	Synchronous DRAM
AGP	3.3	1.32	Graphics
CTT	3.3	1.5	High Speed Memory

- Every I/O supports every standard
- Device support multiple standards simultaneously

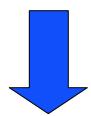

VIRTEX

SelectI/O Technology Cost Savings Design Example


Combining System Level Features for High Speed Cache Memory

- Virtex DLL for 133 MHz clock synchronization of FPGA and SDRAM
- SSTL3 Interface to 133 MHz Fast SDRAM
- Virtex Block Memory for System Cache

Drop in Intellectual Property with Predictably Fast Performance



VIRTEX

Delays are predictable as the straight line distance from source to destination

Core Friendly Architecture

Available Virtex Cores

Building Blocks

Multiplexers

Counters

Registers

Adders/Subtractors

Accumulators

Shift Registers

Comparators

Complementors

Memory

Asynchronous FIFO
Synchronous FIFO
DMA controller
Dual Port Block RAM
Single Port Block RAM

Complex Cores

Filters

Reed Solomon - Encoder

Reed Solomon - Decoder

HDLC

622 MBPS SONET

JPEG Encoder

Video Streaming Core

SDRAM Controller

UART

82xx cores

Consistent performance across all devices

Virtex FPGA Family

Available now

Available now

Device	XCV50	XCV100	XCV150	XCV200	XCV300	XCV400	XCV600	XCV800	XCV1000
System Gates Logic Cells Block RAM Bits	50,000 1728 32,768	100,000 2700 40,960	150,000 3888 49,152	200,000 5292 57,344	300,000 6912 65,536	400,000 10800 81,920	600,000 15552 98,304	800,000 21168 114,688	1,000,000 27648 131,072
Packages 0.8mm CSP VQ100			>						
TQ144 PQ/HQ240 BG352		<			1				
BG432 BG560 1.0mm BGA									

Industry Leading Price Points

Device \	Volume Price	9
----------	--------------	---

XCV50 \$9.50

XCV300 \$50.00

XCV1000 \$350.00

End of 1999 pricing based on 100,000 units

Summary

- Virtex FPGAs shipping now and customers are completing designs today with it
- A powerful, unmatched combination of a robust feature set and expert technology to solve designers' challenges throughout the system—at industry leading price points
- Virtex FPGAs enable increased programmable content in existing and new applications

