

February 28, 2000 Product Specification

X_JPEG CODEC
300-2908 South Sheridan Way
Oakville, ON
Canada, L6J 7J8
Phone: +1 905 829 8889
Fax: +1 905 829 0888
E-mail: sales@xentec-inc.com
URL: www.xentec-inc.com

Features
• Supports Virtex and VirtexTM-E devices
• 100% Baseline ISO/IEC 10918-1 JPEG compliant
• 8-bit/channel pixel depths
• Up to 4 quantization tables—programmable in RTL

version
• Single clock cycle Huffman coding and decoding
• 4 Huffman tables (two AC and two DC)—programmable

in RTL version
• Fully programmable MCU (Minimum Coded Unit)—

programmable in both RTL and netlist versions
• Encode/Decode support (non simultaneous)
• Single clock per pixel encode and decode
• Support for up to 4-channel/component color
• Simple external interface
• Stallable design
• Hardware support for restart marker insertion
• Support for single, grey-scale component
• Four-channel Interface: Pixel In, Compressed Out,

Compressed In, Pixel Out
• Internal registers interface
• Fully synchronous design
• Available as a fully functional and synthesizable VHDL

or Verilog core including a test bench

Applications
Typical applications for the JPEG CODEC include printers,
desktop video editing, digital still cameras, surveillance
systems, scanners, video conferencing, image archiving,
and other consumer products.

AllianceCORE™ Facts
Core Specifics

See Table 1
Provided with Core

Documentation
Datasheet

JPEG Codec
Programmer’s Guide

Design File Formats
EDIF netlist, VHDL RTL source

available extra
Constraints File Jp_chip.ucf
Verification Testbench, test vectors
Instantiation Templates VHDL, Verilog
Reference Designs and
Application Notes

JPEG Application Note

Additional Items Demo Board
Simulation Tool Used

ModelSim 5.3b
Support

Provided by Xentec, Inc.

Table 1: Core Implementation Data

Supported
Family

Device
Tested

CLB
Slices

Clock
IOBs1 IOBs1 Performance

(MHz)
Xilinx
Tools

Special
Features

Virtex-E V400E-8 3613 1 96 20 M2.1i
Block RAM,
Select ROM

Virtex V400-6 3618 1 96 18 M2.1i
Block RAM,
Select ROM

Notes:
1. Assuming all core I/Os are routed off-chip
February 28, 2000

X_JPEG CODEC

General Description
This core is a fully ISO/IEC 10918-1 compliant implementa-
tion of the JPEG baseline algorithm. The simplicity of the
design allows for high operational speed and makes it ideal
for multimedia and color printing applications. It offers high
performance and many features to meet your multimedia,
digital video and digital printing applications.

Functional Description
The core implements all the steps necessary to encode
image data and decode Entropy Coded Segments (ECS)
data according to the JPEG baseline algorithm as specified
in the ISO/IEC 10918-1 standard. The simplicity of the
design allows for high operational speed and makes it ideal
for multimedia and color printing applications.

The core is designed to accelerate ECS encoding and
decoding, which form the most computing intensive part of
the baseline JPEG algorithm.

During compression, the core accepts blocks of 8x8 pixel
data and generates valid ECSs. If enabled, restart markers
can also be inserted. Restart markers are the only markers
that are generated by the core; parsing and generation of
other JPEG markers can be performed with an additional
device or in software, if a processor is part of the designed
system. Please contact Xentec for more information. Dur-
ing decoding, the core accepts ECSs and outputs pixel
data. If enabled, restart markers are recognized and acted
upon.

The core supports up to four color components (with asso-
ciated quantization tables) and up to two DC and two AC
Huffman tables.

As shown in Figure 1, some blocks are shared by both the
encoding and decoding processes; however, because pro-
cessing never happens at the same time, there is no con-
flict.

Control Registers

The core is fully controlled and programmed through the
Register Programming. Data specified on the DIN bus is
written synchronously in the register indicated by the
address ADDR, when the write enable signal WE is high.
The content of the registers indicated by the bus ADDR is
read asynchronously from port DOUT.

Minimum Coding Unit (MCU)

The MCU data instructs the codec on which quantization
and Huffman tables to use during the data processing for
each color component. As part of the MCU description, the
number of 8x8 blocks (data units) per color component can
also be specified. The composition of the Minimum Coding
Unit (MCU) is fully programmable and the details are avail-
able in the JPEG Codec Programmer’s Guide.

In the case of a single color component, the MCU coincides
with an 8x8-pixel block. In the case of multiple color compo-
nents, the MCU is composed by at least one block per com-
ponent. However, in some cases, such as for color spaces
like YUV in video applications, the MCU can be formed by 4

Control

Registers

PIXO_VLD

DCT/IDCT

Processor

OVER
PIXOUT<7:0]

ENC_VLD
ENC<7:0>PIXIN<7:0>

PIXIN_REQ

SW_RES
RESET

CLK

DEC_REQ

DEC<7:0>

ADDR<2:0>
DIN<25:0>

DOUT25:0>

Unstuffing

Block

Huffman

Decoder

Tables

Huffman

Decoder

Zig/zag

Encoder/

Decoder

FIFO

Quantizer/

Dequantizer

Huffman

Encoder

Huffman

Decoder

Table

DCT/IDCT

Block RAM

Zig/zag

Encoder/

Decoder

Block RAM

Quantization

Tables

WE

EN

X9105

Figure 1: X-JPEG Block Diagram
February 28, 2000

Xentec, Inc.

Y pixel blocks, 2 U blocks and 2 V blocks. Full MCU pro-
grammability allows to encode and decode color compo-
nents with different sampling factors, such as 4Y+2U+2V,
4Y+U+V, R+G+B, C+M+Y+K, and many others.

This allows great flexibility in the interleaving the color com-
ponents with different sub-sampling rates as required by
different applications, such as color printing and video edit-
ing.

Stalling

The core can be stalled at any time by lowering the EN sig-
nal. This will cause the core to suspend the encoding or
decoding process. Operations will resume as soon as the
EN signal is set to high. Control Registers also allow the
start and stop of the codec through set/reset of the least
significant bit in the Register ‘0’.

The codec output can be stalled only by stalling the entire
core using the EN signal. In this case, input data pixels or
ECS data must be stopped as well.

Encoding Process

The encoding process compresses 8x8-pixel blocks (data
units) into valid ECSs. See Figure 2.

Before starting the encoding process, a description of the
MCU must be programmed in the core’s internal registers.
This information will be used by the core to correctly
encode the incoming pixel blocks. Please refer to the JPEG
Codec Programmer’s Guide for detailed information on reg-
ister and table programming.

The encoding process is started by writing any value with
the least significant bit set in the register 0. The encoding
process can be stopped at any time by writing any value
with the least significant bit reset in the register 0. The
encoding process starts on the cycle immediately after writ-
ing a valid starting value into register 0. However, the core
can be started when the value of the EN signal is low. This
allows the core to start and wait for the first valid pixel (indi-
cated by EN going high) to actually begin the encoding pro-
cess. As previously noted, the core is stallable from the
input side, so if EN is invalid, encoding is suspended until
the next valid pixel.

As mentioned before, the core can also be stopped, regard-
less of the value of the EN signal, by resetting the register

0. This allows aborting the encoding process at any time.
Pixels belonging to a data unit (8x8 block) are expected in
rows. This means that input samples must be provided in
the order X00, X01, ..., X07, X10, ..., X70, ..., X77.

No pause is necessary between two different blocks and
encoding can proceed at the rate of one pixel per clock.

The encoder expects data units in the order specified by
the MCU composition. For example, in the case of JFIF
images, with MCU=4Y+U+V, the core expects 4 luminance
data units, followed by the U and V data units.

Each incoming pixel is level shifted before being trans-
formed with the Discrete Cosine Transform (DCT). The lat-
ter is performed by the DCT/IDCT processor, (see Fig. 1)
which uses the dual port BlockRAM (64x14 bits) to store
intermediate results.

The coefficients of the transformed 8x8 block are then rear-
ranged in zig-zag order. This is performed by the Zig-Zag
Encoder/Decoder (see Fig. 1) with the help of the Zig-zag
Encoder/Decoder block RAMs (Two, single ported 64x11
bits).

The rearranged coefficients are then quantized by the
Quantizer/Dequantizer (see Fig. 1) according to the appro-
priate quantization table. Each data unit is quantized
according to the color component to which it belongs . The
quantization coefficients are stored in the Quantization
Tables. The Huffman Encoder (see Fig. 1) then performs
the last two steps of the encoding algorithm: generation of
the run length/amplitude pairs and their encoding using
Huffman codes.

The Huffman codes are stored in the Huffman Encoder
Table. This is a single ported, 384x12 bits RAM.

The Huffman Encoder also uses a small FIFO shown in
Fig.1.

The output of the Huffman Encoder is ECS data. A valid
ECS byte from the port ENC is indicated by the signal
ENC_VLD. The end of the encoding process is indicated by
the OVER signal going high.

Decoding Process

The decoding process decompresses valid ECSs into 8X8
pixel blocks (data units). See Figure 3.

DCT Coefficient
Quantization

Zig-Zag
Run Length
Encoding

Huffman
Encoding

ECS
Data

Pixel
Data

X9102

Figure 2: JPEG Codec Encoding Process
February 28, 2000

X_JPEG CODEC

Before starting the decoding process, a description of the
MCU must be programmed in the core’s internal registers,
as mentioned above. This information will be used by the
core to decode incoming ECS data correctly.

Please refer to the JPEG Code Programmer’s Guide for
detailed information on register and table programming.

The decoding process is started by writing any value with
the least significant bit set in the register 0. The encoding
process can be stopped at any time by writing any value
with the least significant bit reset in the register 0. The
decoding process starts on the cycle immediately after writ-
ing a valid starting value into register 0.

The DEC_REQ output will go high, indicating that it
requires 8 bits of ECS data at the DEC input. The
requested data is captured by the core at the next clock
edge. A request for ECS data from the core cannot be
ignored, unless the entire core is stalled by lowering the EN
input.

In fact, it is possible to start the core when the value of the
EN signal is low. This allows the core to start and wait for
the external process to be ready (indicated by EN going
high) to actually begin the decoding process.

As previously noted, the core is stallable from the input
side, so if EN is low, decoding is suspended until EN is
raised again.

As the core can turn the DEC_REQ signal high at any time,
it is recommended that the process that feeds the core pro-
duce the next ECS data as soon as the requested one is
clocked into the core. By having the next data ready, unnec-
essary stalling of the core will be avoided.

Each ECS data at the input of the core is passed to the
Unstuffing Block (see Fig. 1). This block strips the incoming
data of restart markers (in order for them to be processed
by the next stage). It also detects any non-restart marker
that indicates the end of ECS data and the end of decoding.
The Unstuffing Block uses the same small FIFO used by
the encoding process (see Fig. 1).

The Huffman Decoder (see Fig. 1) extracts run length/
amplitudes pairs from the incoming ECS data. This is
achieved with the help of the Huffman Decoder Tables (a
group of 3 single ported memories, 4x100 bits, 64x9 bits
and 336x8 bits). The Huffman Decoder will use the appro-

priate AC or DC table according to the MCU description
contained in the core register. This module will also expand
run length/amplitude pairs into a stream of coefficients in
zig-zag order.

These coefficients are then passed to the Quantizer/
Dequantizer (see Fig. 1). Each coefficient will be dequan-
tized according to the appropriate quantization table.

The coefficients are then passed to the Zig-Zag Encoder/
Decoder (see Fig. 1), where the zig-zag order is reversed.

Finally, the Inverse Discrete Cosine Transform (IDCT) is
applied on the resulting block of data by the DCT/IDCT Pro-
cessor (see Fig. 1).

The IDCT output is then level shifted before it arrives at the
PIXOUT output. Each valid pixel is indicated by a high
PIX_VLD signal. Pixels appear at the output row by row, in
the same order as expected at the input for encoding (as
described above).

Provided that the code is not stalled by the EN signal, the
core will produce a valid pixel per clock without any inter-
ruptions or gaps between data units.

When the core has finished decoding the PIX_VLD signal
will go low and the OVER signal will pulse for one cycle.

Core Modifications
All encoding/decoding tables in this version are fixed, but
can be modified upon the user’s request. Please contact
Xentec for further information.

Pinout
The pinout of the JPEG CODEC core has not been fixed to
specific FPGA I/O, thereby allowing flexibility with a user’s
application. Signal names are shown in Figure 1 and
described in Table 2.

Huffman
Decoding

Coefficient
Dequantization

Zig-Zag
Run Length
Expansion

IDCT Pixel
Data

ECS
Data

X9103

Figure 3: JPEG Codec Decoding Process

Table 2: Core Signal Pinout

Signal
Signal

Direction
Description

CLK Input Clock
RESET Input Reset, active high

SW_RES Input Soft reset, active high
EN Input Core enable

PIXIN_REQ Output Pixel input data request
February 28, 2000

Xentec, Inc.

Verification Methods
Extensive functional (pre-synthesis) and timing (post-syn-
thesis) simulation has been performed, using the Model
Technology ModelSim simulator. Simulation scenarios
(including data files) and the test bench used for design
verification are provided with the core.

Recommended Design
Experience
Good knowledge of the ISO/IEC 10918-1 specification for
the baseline algorithm, as well as its terminology, is recom-
mended. Users should be familiar with Verilog or VHDL
synthesis and simulation and Xilinx design flows as well.

Ordering Information
The X_JPEG CODEC core is provided under license by
Xentec for use in Xilinx programmable logic devices. RTL
synthesizable source code is also available. Please contact
Xentec for information about pricing, terms and conditions
of sale.

Xentec reserves the right to change any specification
detailed in this document at any time without notice, and
assumes no responsibility for any error in this document.

Related Information
Xilinx Programmable Logic

For information on Xilinx programmable logic or develop-
ment system software, contact your local Xilinx sales office,
or:

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
Phone:+1 408-559-7778
Fax: +1 408-559-7114
URL: www.xilinx.com

For general Xilinx literature, contact:

Phone: +1 800-231-3386 (inside the US)
+1 408-879-5017 (outside the US)
E-mail: literature@xilinx.com

For AllianceCORE™ specific information, contact:

Phone: +1 408-879-5381
E-mail: alliancecore@xilinx.com
URL: www.xilinx.com/products/logicore/alliance/
tblpart.htm

PIXIN<7:0> Input Pixel input data

DEC_REQ Output
Decoder input
data request

DEC<7:0> Output Decoder input data
ADDR<2:0> Input Internal register address

DIN<25:0> Input
Internal register input

data

DOUT<25:0> Input
Internal register output

data
WE Input Pixel input data request

PIXO_VLD Output Pixel output data valid
OVER Output End of decoding signal

PIXOUT<7:0> Output Pixel output data
ENC_VLD Output Encoder output data valid
ENC<7:0> Output Encoder output data

Table 2: Core Signal Pinout

Signal
Signal

Direction
Description
February 28, 2000

	X_JPEG CODEC
	Features
	Applications
	General Description
	Functional Description
	Core Modifications
	Pinout
	Verification Methods
	Recommended Design Experience
	Ordering Information
	Related Information

