
Revision 1.0 September, 1998 Printed in U.S.A.

Programming
Xilinx XC9500
CPLDs on IFR
4200 Series
Testers

Preface

Introduction

Creating SVF Files

Xilinx ISP Modules

Reference Material

ii Xilinx Development System

Preface

About This Manual
This manual describes how to program Xilinx XC9500 CPLDs on IFR
4200 series testers.

Before using this manual, you should be familiar with the operations
that are common to all Xilinx’s software tools: how to bring up the
system, select a tool for use, specify operations, and manage design
data.

Manual Contents
This manual covers the following topics.

• Chapter 1, “Introduction,” lays out the basic procedure for
programming an XC9500 CPLD in an IFR 4200 test environment.

• Chapter 2, “Creating SVF Files,” discusses how to create an SVF
files on PCs, and on Sun and HP workstations.

• Chapter 3, “Xilinx ISP Modules,” describes the In-System
programming of Xilinx XC9500 devices on a 4200 series tester.

• Chapter 4, “Reference Material” contains information about
.avf and .bvf files, and the VPROG module.

iii

Conventions

In this manual the following conventions are used for syntax clarifi-
cation and command line entries.

• Courier fon t indicates messages, prompts, and program files
that the system displays, as shown in the following example.

speed grade: -100

• Courier bol d indicates literal commands that you must enter in
a syntax statement.

rpt_del_net=

• Italic font indicates variables in a syntax statement. See also, other
conventions used on the following page.

xdela y design

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

xdelay [option] design

• Braces “{ }” enclose a list of items from which you choose one or
more.

xnfpre p designname ignore_rlocs={true|false}

• A vertical bar “|” separates items in a list of choices.

symbol editor [bus|pins]

v Xilinx Development System

Other conventions used in this manual include the following.

• Italic font indicates references to manuals, as shown in the
following example.

See the Development System Reference Guide for more information.

• Italic font indicates emphasis in body text.

If a wire is drawn so that it overlaps the pin of a symbol, the two
nets are not connected.

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that the preceding can be
repeated one or more times.

allow bloc k blockname loc1 loc2 .. . locn ;

1-1

Chapter 1

Introduction

Process Flow
Xilinx XC9500 series parts can be programmed on IFR 4200 series
testers using SVF (serial vector files – .svf) generated from JTAG
Programmer.

For the 4200 Series the vector files have to be converted to a form that
is usable by the system (a binary vector file – .bvf). This .bvf file can
then be utilised by a Test Description Language (TDL) module in
Computer Aided Program Generation (CAPG) to produce an appro-
priate MTL test.

This manual describes the operations required to program ISP
devices using the following:

• From JTAG Programmer.

- Generate an erase SVF file and a program/verify SVF file.

• From IFR Ltd.

-File conversion software (PC executables)

−MTL and TDL modules for ISP

−CAPG/XCAPG

−4200 series ATE

It is assumed that the XC9500 series devices are being programmed
on the printed circuit board under test on the 4200 series ATE, and
that, therefore, there is an associated test fixture available.

Figure 1 illustrates the process.

1-2 Xilinx Development System

Figure 1-1 Processing ISP vectors (general)

The reason for the two stage conversion process is that ASCII files are
easily transferred between different systems and can be easily edited,
if required. Binary files, on the other hand contain the same informa-

Xilinx JEDEC File

JTAG Programmer

Xilinx .svf File

IFR Conversion
program

(generic to ASCII)

Bvgen
IFR conversion program

(ASCII to binary)

.avf file
(IFR ASCII format)

.bvf file
(IFR binary format)

Copy test to 42xx tester
(if necessary)

Xilinx
processes

IFR
processes

Xilinx test file
generation program

Introduction

1-3

tion but in a format more suitable for machine access thus providing
the necessary speed for a production environment.

It is good policy to carry out two complete programming procedures.
The first would use a JEDEC file containing information for program-
ming test vectors, the results of which would then be tested. The
second would use a JEDEC file for programming real data.

Documentation
Reference should be made to the following manuals for further
details on other, relevant aspects as follows:

• CAPG--There are two CAPG manuals, user and reference; both
are contained in H4200, CAPG:

Use the CAPG User Manual for information on partitioning and
using TDL modules.

Use the CAPG Reference for file formatting information and other
reference data. This manual also explains MBNF which is the file
description language used in Chapter 4 of this manual.

• MTL--There are a number of manuals concerned with MTL.
These are contained in H4200, Cover 2. In particular H4200,
Cover 2B contains the two MTL Refer-ence manuals which give
information on the language itself.

• Xilinx application note XAPP067, Using Serial Vector Format Files
to Program XC9500 Devices In-System on Automatic Test Equipment
and Third Party Tools.

• Serial vector format specification, revision B (produced by Asset
InterTech Inc.)

2.

2-1

Chapter 2

Creating SVF Files

Creating an SVF File Using JTAG Programmer
This procedure describes how to create an SVF file; it assumes that
you are using Xilinx Foundation or Alliance Series software, Version
1.3 or newer. These software packages include the Xilinx CPLD fitter
and JTAG Programmer software. JTAG Programmer is available free
of charge on the Xilinx World Wide Web site, www.xilinx.com.

JTAG Programmer is supplied with both graphical and batch user
interfaces. The batch user interface executable name is jtagprog ;
and the graphical user interface is named jtagpgmr . The graphical
tool can be launched from the Design Manager or Project Manager,
but may also be launched by opening a shell and invoking jtag-
pgmr. The batch tool is available by opening a shell and invoking
jtagprog on the command line.

The goal of the following procedure is to create two separate SVF files
for each device being programmed. We will show you how to do this
using both the batch and the GUI tool. One SVF file contains erase
information for the device, another the program verification informa-
tion for the device, and the third contains verification information.
On XC9500 devices the erase vectors should have a 2 ms TCK period.

Using the Batch Download Tool to Generate SVF
Files

1. Run your design through the Xilinx fitter and create a JEDEC
programming file. You may already have been provided with a
JEDEC file; if so, proceed to the next step.

2. Invoke the batch JTAG Programmer tool from the command line
in a new shell.

2-2 Xilinx Development System

jtagprog -svf

The following messages will appear:

JTAGProgrammer: version < Version Number >
Copyright:1991-1998

Sizing system available memory...done.

SVF GENERATION MODE

[JTAGProgrammer::(1)]>

3. Set up the device types and assign design names by typing the
following command sequence at the JTAG Programmer prompt:

part deviceType1:designName1 deviceType2:designName2
... deviceTypeN:designNameN

where devicetype is the name of the BSDL file for that device and
designName is the name of the design to translate into SVF.
Multiple deviceType:designName pairs are separated by spaces. For
example:

part xc95108:abc12 xc95216:ww133

The part command defines the composition and ordering of the
boundary-scan chain. The devices are arranged with the first
device specified being the first to receive TDI information and the
last device specified being the one to provide the final TDO data.

Note: For any non-XC9500(XL) device in the boundary-scan chain,
make certain that the BSDL file is available either in the XILINX vari-
able data directory, or by specifying the complete path information in
the deviceType. The designName in this case can be any arbitrary name.

4. Execute the required boundary-scan or ISP operation in JTAG
Programmer.

• erase [-fh] designName -- generates an SVF file to describe
the boundary-scan sequence to erase the specified part. The -
f flag generates an erase sequence that overrides write
protection on devices. The -h flag indicates that all other
parts (other than the specified designName) in the boundary-
scan chain should be held in the HIGHZ state during the
erase operation. Xilinx recommends erase -f -h design-
Name.

• verify [-h] designName [-j jedecFileName] -- generates an
SVF file to describe the boundary-scan sequence to read back

Creating SVF Files

2-3

the device contents and compare it against the contents of the
specified JEDEC file. The JEDEC file defaults to be the design-
Name.jed in the current directory, or may be alternatively
specified using the -j flag. The -h flag is used to specify that
all other parts (other than the specified designName) in the
boundary-scan chain should be held in the HIGHZ state
during the verify operation. Xilinx recommends verify -h
designName.

• program [-bh] designName -j [jedecFileName] -- generates an
SVF file to describe the boundary-scan sequence to program
the device using the programming data in the specified
JEDEC file. The JEDEC file defaults to be designName.jed in
the current directory, or may be alternatively specified using
the -j flag. The -h flag is used to specify that all other parts
(other than the specified designName) in the boundary scan
chain should be held in the HIGHZ state during the
programming operation. The -b flag indicated the program-
ming operations should erase the device. This is useful when
programming devices shipped from the factory. Xilinx
recommends program -b -h designName.

• partinfo [-h] -idcode designName -- generates an SVF file
to describe the boundary-scan sequence to read back the 32
bit hard-coded device IDCODE. The -h flag is used to specify
that all other parts (other than the specified designName) in
the boundary scan chain should be held in the HIGHZ state
during the IDCODE operation.This operation can be
performed in any combination of the three SVF files.

• partinfo [-h] -signature designName -- generates an
SVF file to describe the boundary-scan sequence to read back
the 32 bit user-programmed device USERCODE. The -h flag
is used to specify that all other parts (other than the specified
designName) in the boundary scan chain should be held in the
HIGHZ state during the USERCODE operation. This opera-
tion can be performed in any combination of the SVF files.

5. Exit JTAG Programmer by entering the following command:

quit

Note: The SVF file will be named designName.svf and will be created
in the current working directory. Consecutive operations on the same
designName will append to the SVF file. To create SVF files with sepa-

2-4 Xilinx Development System

rate operations in each, you will need to rename the SVF file after
each operation by exiting to the system shell.

Using the Graphical User Interface to Generate SVF
Files

1. Run your design through the Xilinx fitter and create a JEDEC file
(you may already have been provided with one).

2. Double-click on the JTAG Programmer icon or open a shell and
type jtagpgmr . The JTAG Programmer will appear.

3. Instantiate your boundary-scan chain. There are two ways to do
this. The first is to manually add each device in the correct
boundary-scan order from system TDI to system TDO.

a) Selecting Edit → Add Device for each device in the
boundary-scan chain.

b) Fill in the device properties dialog to identify the JEDEC (if it
is an XC9500 device) or BSDL (if it is not an XC9500 device)
file associated with the device you are adding.

Creating SVF Files

2-5

The device type and JEDEC file name will appear below the
added device.

The second method is to allow JTAG Programmer to query the
boundary-scan chain for devices, and then fill in the JEDEC and
BSDL file information. This method will work only when you have
the target system connected to your computer with a Xilinx serial or
parallel cable. The cable must be powered up by the board under test.
The steps are as follows:

a) Initialize the chain as follows:

File → Initialize Chain

JTAG Programmer will display the boundary-scan chain configu-
ration as shown:

2-6 Xilinx Development System

b) For each device in the resulting chain, double-click on the
chip icon to bring up the device properties dialog, then select
the JEDEC or BSDL file associated with that device.

4. Put the JTAG Programmer into SVF mode by selecting

Output → Create SVF File...

to create a new SVF file, or

Output → Append to SVF File...

to append to an existing SVF file. Fill in the SVF file dialog with
the desired name of the target SVF file to be created.

Note: Once you enter SVF mode the composition of the boundary-
scan chain cannot be edited in order to ensure consistency of the
boundary-scan data in the SVF file.

5. Highlight one of the devices by clicking it once with the mouse.
Then, select any of the enable operations from the Operations
pull down menu to generate an SVF file to describe the
boundary-scan sequence to accomplish the requested operation.

6. When you completed the required operations you may exit JTAG
Programmer by selecting:

File → Exit

Creating SVF Files

2-7

Note: You may select Use HIGHZ instead of BYPASS from the
File → Preferences... dialog to specify that all other parts (not
the device selected) in the boundary-scan chain will be held in
HIGHZ state during the requested operation.

Note: To generate separate SVF files for each operation you will have
to perform the following steps between operations:

a) Select Output → Use Cable...

b) On the Cable Communications dialog box select Cancel

c) Select Output → Create SVF File..

d) Choose a new SVF file and proceed normally.

3-1

Chapter 3

Xilinx ISP Modules

Introduction
This chapter describes the methodology for in-system programming
of Xilinx XC9500 series devices on an IFR 4200 series tester. XC9500
devices use a standard 4-wire Test Access Port (TAP) for In-System
Programming (ISP) and IEEE1149.1 boundary scan (JTAG) testing.

Xilinx XC9500 series in-system programmable devices are supported
via test vectors produced by the Xilinx JTAG Programmer software
which produces a Serial vector format (SVF) file. JTAG Programmer
only uses a subset of the serial vector format. You should refer to the
Xilinx documentation (e.g. application note XAPP067) for informa-
tion on the process of using serial vector format files to program
XC9500 devices In-System on automatic test equipment and third
party tools.

You should have created two serial vector files: one containing erase
vectors for the device, the other containing programming and verifi-
cation vectors. The erase vectors must be run no faster than 500 Hz, a
2 ms TCK period.

The serial vector file you created must be converted for use by IFR
software such as CAPG. This is a two stage process:

1. Convert the SVF file to IFR’s ASCII vector file format using the
IFR supplied converter. Note that this converter will only
support the subset of SVF used by the Xilinx JTAG Programmer
software.

2. Convert the ASCII vector file into a binary vector file using the
IFR supplied converter.

Note: The supplied IFR translators are PC-based tools appropriate
for Win 95/98 and Win NT systems.

3-2 Xilinx Development System

Having converted the Xilinx generic test vectors to binary IFR format
(.bvf file), CAPG can be run and the program generated, as described
in this section.

The process is illustrated in Fig. 3-1:

Figure 3-1 Processing ISP vectors (Xilinx)

Data

.svf file
(generic test vectors)

Bvgen
IFR conversion program

(ASCII to binary)

.avf file
(IFR ASCII format)

.bvf file
(IFR binary format)

Copy test to 42xx tester
(if necessary)

Xilinx
processes

IFR
processes

JTAG Programmer

generation program
Xilinx test file

svf2avf
IFR conversion program

(.svf to ASCII)

Xilinx ISP Modules

3-3

Running the converters
Each converter is run from the command line, so you should open a
system shell on your PC.

Before you can proceed, the vector file obtained by running the JTAG
Programmer program must be copied to the working directory.

The following ISP software should have already been installed on the
CAPG host in the appropriate locations:

• svf2avf – Serial vector file to IFR ASCII vectors file converter.

• bvgen – ASCII to binary vectors file converter.

For further information on each converter’s format, please see IFR
Ltd’s documentation.

svf2avf (Serial vector file to ASCII vector file)
svf2avf must be run on the same platform as CAPG/XCAPG.
To run it, type svf2avf, followed by a set of arguments according to
the format:

svf2avf [-d] < input_file > < output_file >

where:

-d is an optional switch which allows you to include comments in
the output file – to aid readability.

input_file is the name of the serial vector file to be converted.

output_file is the name of the ASCII vector file to be output. This
will be a .avf file ready for conversion to a .bvf file (see next
section).

The converter takes a Xilinx Serial Vector File and converts it into an
IFR ASCII vector file. The converter only supports a subset of SVF as
used by the Xilinx JTAG Programmer software. The following svf
statements are recognised:

SDR, SIR, RUNTEST, TRST, ENDIR, ENDDR, STATE

The resulting .avf file has SOURCE specified as ‘JTAG Programmer’.

3-4 Xilinx Development System

The converter takes into account the requirement to repeat blocks of
vectors that correspond to failing SDR statements. The error recovery
loop is defined in the Xilinx application note XAPP067. The converter
uses .avf BREAK statements in appropriate places to identify blocks
of vectors that require error recovery.

A block of vectors that requires error recovery is given a block id of
‘1’ all other blocks are given a block id of ‘0’.

bvgen (ASCII vector file to binary vector file)
bvgen must be run on the same platform as CAPG/XCAPG.
To run it, type bvgen, followed by a set of arguments according to the
format:

bvgen< input_file > < output_file >

where :

input_file is the name of the ASCII vector file .avf to be
converted

output_file is the name of the binary vector file .bvf to be output

Having entered this command line, you should now have a .bvf file
to use during MTL runtime for programming the ISP devices.

The CAPG phase
This phase involves use of the partitioning toolkit (see CAPG
manual). You must generate a partition for each ISP port that
includes all the devices to be programmed by that port. Once a parti-
tion has been created, you add an entry in the device library for that
partition. You can use SVF.tdl in the IFR device library as a frame-
work for creating your library entry. You must also specify the SVF
TDL module as the test to use for that partition.

The only PIOs (Primary Input Outputs) are the four TAP pins and it is
important that these be appropriately named tms, tck, tdi, and tdo.
Names have to match those in the pinlist and TDL module.

The class for the partition library entry is also important as it deter-
mines where in the final MTL program the partition is programmed.
The classes are mosp1 or mosp2. If the class chosen is mosp1, the
partition is programmed before digital tests. If the class is mosp2
programming occurs after digital tests.

Xilinx ISP Modules

3-5

If you are doing two programming runs (see Chapter 1) you would
choose mosp1 first, program test vectors and test the results. You
would then change the SVF file input and this time, at this point,
select mosp2 to program real data.

Having selected the class for the partition library you can now run
the SVF module. During running of the module MTL test code is
generated. If you have carried out the CAPG phase on the target
tester, you can run the final MTL program. If not, you will have to
transfer the relevant files.

MTL runtime
When you run the generated MTL program, Vprog is called. This
controls loading of the .bvf file into the pattern generator and
programming/verification of the ISP devices on the UUT.

Vprog handles

• Loading of each block of data into the pattern RAM.

• Guarantees the required delay between blocks.

• Configures testpoints to the required line of the pattern gener-
ator.

• Configures the mask of the sdo pin.

• Patches MTL repeat instruction in Master Test Controller (MTC)
control RAM with required repeat count for the block loaded.

• Flags when no more blocks remain to be processed.

• Handles printing and logging of results

The Vprog functions are defined in Chapter 4.

The MTL program to control programming of the device will consist
of some initiation code and calls to Vprog , followed by a repeat loop.
The following lines illustrate this.

1 configure testpoints/open binary file

2 configure mask

3 load a block of vectors

4 if no more vectors stop

5 repeat for number of vector in block

3-6 Xilinx Development System

6 apply a vector

7 end repeat

8 check block ok

9 if block failed attempt error recovery if required

10 goto 3

Some blocks of vectors require error recovery if they fail. These
blocks correspond to SDR instructions in the .svf file. Refer to
XAPP067 for information on the error recovery process.
Briefly, error recovery consists of a delay and then attempting to
apply the block again. The error recovery loop is attempted 32 times
before the block is considered to fail.

4-1

Chapter 4

Reference Material

File formats
The information given in this chapter is intended to describe those
files which are produced by means of IFR Ltd’s software. The
descriptions are in MBNF, the use and structure of which is explained
in the CAPG Reference manual, and also in the MTL Reference – Core
manual.

ASCII vector file (.avf)
The following MBNF specifies the format of the ASCII vector file
used as input for ISP programming of Xilinx ISP devices on a 4200
series tester.

$$ mi_avf = {source | rate | vector | break}{comment|}
$ source = "SOURCE" from
$ from = "JTAGProgrammer"
$ rate = "RATE" time
$ vector = pin_data pin_data pin_data pin_data pin_data
$ pin_data = ["." | "X" | "0" | "1" | "H" | "L"]
$ break = "BREAK" time [block_id||]
$ block_id = [<alpha> || <digit>]
$ time = <integer> units
$ units = ["f" | "p" | "n" | "u" | "m" | "R" | "k" |
 "K" | "M" | "G" | "T"]
$ comment = "#" text
$ text = (* all remaining characters up to a newline *)

All vectors are 5 characters wide, each character corresponds to one
of the isp programming pins and is ordered as follows:

4-2 Xilinx Development System

RATE specifies the rate at which vectors should be applied by the
tester and should appear only once in the ASCII vector file.

Binary vector file (.bvf)
The following MBNF specifies the format of the binary vector file
used as input for ISP programming of ISP devices on a 4200 series
tester.

$$ mi_bvf = magic_number cycle_time {block}
$ magic_number = <posint> (* byte 0..255 *)
$ cycle_time = <posint> (* long 0..4294967295, time in nanosec *)
$ block = header data
$ header = sync_byte block_id no_vectors delay
$ sync_byte = <posint> (* byte 0..255 *)
$ block_id = <posint> (* byte 0..255 *)
$ no_vectors = <posint> (* word 0..65535 *)
$ delay = <posint> (* word 0..65535 *)
$ data = {<posint>} (* no_vectors x bytes *)

magic_number identifies the file as a valid binary vector file and
gives the possibility of identifying different version/variants of the
file. For binary files containing Xilinx In-System programming
vectors it is 0x20.

cycle_time specifies the rate, in nanoseconds, at which vectors
should be applied.

sync_byte at the start of every block of data allows the file to be
checked for corruption.

block_id provides a mechanism of identifying different blocks of
vectors. For instance, this is used to identify when a device id check is
being performed.

no_vectors gives the number of bytes of vector data that follow the
header.

delay is in milliseconds and states the minimum amount of time
that must pass between applying the vectors contained in the current
block and applying the vectors of the next block.

Maker Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5

Xilinx Not used TMS TCK TDI TDO

4-3

data --Each byte of data contains 8 bits of information to load into
the pattern ram on the 4200 Series tester. No block can consist of more
than 8192 bytes of data i.e. consist of more than 8k vectors. This is
dictated by the depth of the pattern ram on the 4200 Series.

VPROG Module
The Vprog MTL module contains functions to control the loading and
processing of the binary vector file.

Vprog provides the following functions –

Vprog.svf.init(file string ,p1,p2,p3,p4,p5,p6,p7,p8 pin) void

Configures each of the testpoints p1 to p8 to a line of the pattern
generator. It locates the repeat instruction in MTC control ram that
will require patching with the correct repeat count. Opens the binary
vector file.

Vprog.svf.mask(masktp, montp, sdo pin)void

Configures a mask pin, used to mask monitors in the pattern ram on
vectors when a monitor is not required.

Vprog.svf.data(reset int)void

When reset is 0 it opens the binary vector file, otherwise it reads the
next block of data and performs any delay required by the previous
block.

With Vprog.svf.data, when the end of the binary vector file is encoun-
tered it sets MTL FLAG(1) to indicate end of file. If a block of vectors
requires error recovery it sets MTL FLAG(2).

Vprog.svf.errorcount(maxretry int)void

Checks to see if the current block has been re-tried more than a speci-
fied number of times. If a block has been re-tried more than the speci-
fied number of times the MTL FLAG(2) is cleared to indicate that the
block does not require re-trying.

Vprog.svf.errordelay()void

Delays the amount of time required by the error recovery loop.

Vprog.svf.cleanup()void

Called to close bvf file at end of a test.

Vprog.svf.scan_func()void

4-4 Xilinx Development System

Replaces Test.Onscan function. VPROG.SVF.scan_func () stores
the number of failures.

Vprog.svf.display_func()void

Replaces Test.Display.Function and handles display of results.

Vprog.svf.print_func()void

Replaces Test.Print.Function and handles the printing of
results.

Vprog.svf.log_func()void

Replaces Test.Log.Function and handles the logging of results.

Vprog.delaytweak (mul float)

Increase or decrease delays by the specified multiplier. This is some-
times useful when debugging and the manufacturer’s specified delay
needs to be adjusted. This function must be called after
Vprog.svf.init()

	Preface
	About This Manual
	Manual Contents

	Conventions
	Introduction
	Process Flow
	Documentation

	Creating SVF Files
	Creating an SVF File Using JTAG Programmer
	Using the Batch Download Tool to Generate SVF Files
	Using the Graphical User Interface to Generate SVF Files

	Xilinx ISP Modules
	Introduction
	Running the converters
	svf2avf (Serial vector file to ASCII vector file)
	bvgen (ASCII vector file to binary vector file)
	The CAPG phase
	MTL runtime

	Reference Material
	File formats
	ASCII vector file (.avf)
	Binary vector file (.bvf)

	VPROG Module

