Synthesis Guide for ModelSimrev 1.0

Synplify Guidefor
Model Technology - ModelSim

Section 1. Introduction

As today’s designs increase in complexity, the ability to find and fix design problems through hardware
decreases. Designers can't easily probe internal logic or trace back problems to the source of the problem
when looking at a chip. The solution to finding and fixing these problems is through software simulation.
Software simulation emulates real time operation of the internal logic as well as the external pins. By
probing different locations within the chip, simulation allows designers to trace problems back to the
source.

The most accurate simulation model is created by the back-end placement tool. However, for larger FPGA
devices, the back-end compile times may be significantly longer than the synthesis compiles through
Synplify. Synplify is uniquely capable of providing accurate functional simulation models with quick
compile times thereby allowing designers to accurately debug functional design problems in a timely
manner.

This application note describes how to successfully integrate simulation into your design methodology.
This integration not only involves the simulation process but additionally uses test benches to run the
different types of simulations.

Topicsto be covered:

Simulation Flow

Simulation Features

HDL Testbenches

Example 1: Functional Simulation (Mo&ah)

Example 2: Compiling the Mapped Netlist (Synplify)

Example 3: Mapped-Functional Simulation (Mdged)

Example 4: Generating Gate Level VHDL/Verilog (Xilinx Alliance)
Example 5: Gate-Level Simulation With Timing (MoSieh)

VVVVVVVYVYY

Synthesis Guide for ModelSimrev 1.0

Synplify ModelSim

RTL-Functional
Simulation

synplify.vhd

M apped-Functional
Simulation

SIMPRIM
Library

Place & Route Gate Leve

Simulation

HDL Design Entry

Figure 1: Design Flow

Section 2. The Design Flow

Designers have traditionally simulated the source code to check for syntax and functional problems. With
the HDL editor in Synplify designers may easily enter and simulate the mapped-functional netlist. The
functional simulation of the source code allows designers to check the general functionality without the full
design flow.

After synthesis, Synplify generates mapped functional simulation that uses unit delays. This mapped netlist

adds architecture specific structures to the functional simulation. With Synplify’s linear compile times,
even the largest Xilinx devices may be compiled in minutes. Designers can iterate more quickly through
their design cycle using the mapped, functional simulation generated from Synplify without running into
the longer Alliance place and route times.

The Alliance tools will additionally generate a VHDL or Verilog netlist with the routing delays annotated
into a Standard Delay Format (SDF) file. The simulation netlist settings may be set in the Alliance tools in
the IMPLEMENTATION OPTIONS window under the INTERFACE tab.

Simulation Features
As a leader in FPGA synthesis solutions, Synplify offers an efficient simulation flow for Sliodel
Coupled with other debugging features and fast compile times, designers can quickly debug problems
within Synplify and Modelim, minimizing the iterations through the Alliance tools.

Because a good simulation models true device behavior, functionally simulating the source code may not
be enough. If the simulation does not accurately represent device operation, a bad simulation may cause
designers to debug non-existent problems seen only during simulation or to miss critical board problems
during simulation. Because VHDL and Verilog were both originally created as a simulation language,
functional simulation of the source code will simulate following a set of guidelines for simulation and will
not be able to model true device behavior.

Synthesis Guide for ModelSimrev 1.0

Only after using Synplify for synthesis will the device characteristics be incorporated into a mapped-
functional simulation model that includes device characteristics. Due to the mapping, architecture specific
details will be mapped making the simulation accurately model true device behavior functionally.

Designers should simulate at the mapped-functional level to bypass longer compile times associated with

placing and routing the FPGA device through the Alliance tools. Synplify’s fast compile times allow
designers to run multiple compiles to isolate and debug problems before having to go through the full back-
end design flow. When the design is functionally correct, the designer takes the design through the Alliance
tools to place and route the Xilinx device.

To make the simulation accurately model Xilinx devices, Synplify creates a mapped simulation netlist for
both VHDL and Verilog. These mapped simulation netlists use unit delays to model propagation delays.
Both VHDL and Verilog are structured down to the base cells, e.g. look-up-tables and carry chains.

To enhance simulations, both Synplify and M&elsupport VHDL '93. Concerning library requirements
for simulation, only a small three-component VHDL library from Synplicity will be required
(<synplcty>/lib/vhdl_sim/synplify.vhd). The remainder of the VHDL is self-contained within the
simulation file. Synplify’s Verilog netlist is fully self-contained and does not require any other design files
to be compiled into Mod&m.

About Testbenches
A testbench is a separate set of VHDL or Verilog code that connects up to the inputs and outputs of a
design. Since the inputs and outputs of the design stay constant throughout the Synthesis and Place &
Route process, the testbench can usually be used at each stage to verify the functionality of the design. The
Testbench has two main purposes:

First, a testbench provides the stimulus and response information (clocks, reset, input data, etc.) that the
design will encounter when implemented in a FPGA device. Secondly, the testbench contains regression
checking constructs which allow key functionality to be tested throughout the FPGA HDL simulation flow
(whether a counter design is counting; whether a floating point unit has calculated the correct value; etc.).

Synthesis Guide for ModelSimrev 1.0

use std.textio.all;

library |IEEE;

use |EEE.std_logic_1164.all;
use |EEE.std_logic_arith.all;

entity TGUESSER is
end TGUESSER;

architecture SMULATE of TGUESSER is
component GUESSER

port (
DATA, CLK,RST :in std_logic;
GUESS : out std_logic);
end component;
constant CLK_PUL SE :time:=50ns;
signal TB_DATA,TB_RST, TB_CLK : std_logic;
signal TB_GUESS : std_logic;
begin

DUT: GUESSER port map(TB_DATA, TB_CLK, TB_RST, TB_GUESS);

TB_RST <= 'O after Ons,
"1’ after 50 ns,
'0’ after 100 ns;

TB_DATA <="0 after Ons,
'1’ after 150 ns,
'0’ after 550 ns,
"1’ after 1000 ns;

--Createthe clock
process (TB_RST, TB_CLK)
begin
if (TB_RST ='1") then
TB CLK <="0;
else
TB_CLK <=not TB_CLK after CLK_PUL SE;
end if;
end process,
end SIMULATE;

-- Configuration for simulation
-- Configuration for simulation
library WORK;
configuration CFG_TB_GUESSER of TGUESSER is
FOR SIMULATE
FOR DUT: GUESSER
use entity work.GUESSER (behave);
END FOR;
END FOR;
end CFG_TB_GUESSER,;

Figure 2: tstate mch2.vhd

Synthesis Guide for ModelSimrev 1.0

Section 3. The Design Example
The design file can be found in the Synplify examples directory
<synplcty>\exampl es\vhdl\statmchs\statmch2.vhd. Create a working directory for thistutorial and copy the
designfile.

For ModelS'm, both the menu commands as well as the command M#&B*>" have been shown.

Example 1: Functional Simulation (M odelSim)
Prior to synthesizing and place & routing with the Xilinx tools, you will first compile and simulate the
"LAB" RTL design with Model Technology's Mod&m simulator.

1)
2)
3)

4)
5)

Open Modetim

Change directories to the working directory <working directory>:
Select FILE=>DIRECTORY menu.
VIM> cd <path>

Create a WORK directory: Select LIBRARY=>NEW and enter in WORK
VS M>vlib work

Open up VHDL Compiler menu: Click on the VCOM button.

Switch to VHDL'93: Click on the OPTIONS button and check “Use 1076-199fukage standard”
and ACCEPT.

YHDL Compiler Options |

— Flag " amings on: — Other Options
¥ iUnbound Component [Show source lines with emars
¥ Process without a wait statement v Optimize for std_logic_1164
v Mull Fange W Usze 1076-1993 language standard
V¥ Mo space in time literal [e.g. Gns [Use explicit declarations only
W tultiple drivers on unresolved signal [Dizable loading messages
[Do not put debugging info into the library

Accept Cancel |

Figure 3: Setting Compiler Options

6) Compile the VHDL design file and testbench:

a) Select STATMCH2

b) Click COMPILE

c) Select TSTATE_MCH2.VHD

d) Click COMPILE

e) Click on DONE. The design is now ready for simulation.
VSIM> vcom -93 statmch2.vhd

VSIM> vcom —93 tstate_mch2.vhd

Synthesis Guide for ModelSim rev 1.0

7) Start simulation: Click on VSIM and select the configuration cfg_tb_guesser.
VI M> vsimcfg_tb_guesser

8) Open the simulator windows. Select VIEW=>ALL
VIM> view *

9) Clean up windows by tiling: Select Window=>Tile Horizontally

10) Add signalsto waveform:
Select SIGNALS=>ADD TO WAVEFORM=>SIGNALS IN DESIGN
VI M> wave *
VS M> wave /dut/state

11) Run for 2000 ns
VSIM> run 2000

Note: See appendix A for a brief description of the M odelSim debugging
windows

B - | |
Fr Yow Ly Prasct Bn Sy [obem Wress teo

VIOM| VDG | VEM (IHT| BREAR| FTEF
[i[pep—— ol - 3 | 10l =i ﬁ'iu—n.—-

 Leadisg werk.guesserbehmes|

¥

¥ i ®

& wwam ™ 2 5

¥ I k trxtin

¥ wevr Mulfstaie | FACKAGE std Legle 1184
i

:::Tu'::"" " I FACEAGE std_Llesple_arith

reeiad

v 2[E0

*

Apey

st st bestio .all)

Liwrary 1EEE]

use JEEE.std_loglo_iiée.all;
use JEEE.sTd_loglc_arith, allj;

entiby TENESSER 1=
el TEMEESEE;

ol = D D R

architectore SIMWILATE of TGUESSIN iw
18 canpanrmal EULIIEE
11 parl [

12 BAla, ELK, AST L in srd e
Al i
'Mow: Fun Dokl 1 Lins Uat il

Figure4: ModelSim Simulation

Example 2: Compiling the M apped Netlist (Synplify)
1) Open Synplify
2) Create anew project file and save to working directory:
a) Select FILE=>NEW “Project”
b) Select FILE=>SAVE AS

Synthesis Guide for ModelSimrev 1.0

3) Enablethe VHDL or Verilog mapped netlists from the menus:
OPTIONS=>WRITE MAPPED VHDL/VERILOG NETLIST

Synplify - [Unsaved Project] H= E

Window Help — | = |1|

-

PRl File Wiew Source Target Synthesize HOL Analyst sl

—u = Forts - .
n P i nl%l & | :/.-.). v 'wiite Mapped VHDL Metiist >|@|9|£| tl'|‘5 :
“Wiite Mapped Verlog Hetlist

Synplify

r Source Files <

Add j r’

Al

Change|| Us= the right mouse button to
bring up a context sensitive

i Synplicity
- Frequency (MHz) ID—

EEE

A M | symbalic FSM Campiler T

ResultFile
Changel ¢Ho_Result:

Target
Changel Hilinx XC400S5XLPCS84-09, Fanout Limit: 100, Foree GSE, M1

=l Read
2 eady...
Cancel

Ln0000CalOO0 | A

Figure5: Mapping To VHDL/Verilog in Synplify

Note: Synplify will create a vhdl (.vhm) or verilog (.vm) netlist in the
working directory.

4) Add the design files to be compiled:
Note: Add the designs in the reverse order of hierarchy with the top level design file added last to the
bottom of the list
Click on ADD (Source Files) “statmch2.vhd” to the compiler window

5) Start Compiling: Click on the Run button

Example 3: Mapped-Functional Simulation (M odelSim)
1) Open Modetim

2) (MAPPING LIBRARY ONLY NEEDSTO BE DONE FIRST TIME)
Pre-Compile Synplicity Synplify library:
a) Choose a directory to keep compiled libraries: <modelsim>/SYNPLIFY
b) Change to <modelsim> directory
c) Create a SYNPLIFY library: LIBRARY=>NEW and type SYNPLIFY
d) Open VHDL Compiler window: Click VCOM button
€) Change to <synplcty>/lib/vhdl_src directory
f) Change TARGET LIBRARY to SYNPLIFY
g) Compile synplify.vhd
j) Change TARGET LIBRARY back to WORK

Synthesis Guide for ModelSimrev 1.0

3)

4)

5)

6)

7)

8)

k) Map Compiled SSMPRIM library to directory:
Select LIBRARY=>MAPPING=>NEW

Library: synplify

Directory: <model Sm>/synplify

[) Click OK in both windows

Compile YHDL Source Eq |

File Marne: Directories: Compile
synplify. vhd d:haynplotphlibyhdl_zim
Done
S5 dh =
3 synplcty ,
= Optionz...
{23 vhdl_sim M etwark...

. =

W Compile Mare

Lizt Filez of Type: Drrives:
YHDL sources [*vhd) x| [d -]
T arget Library: IS.'r'r'IF'“f.'r' Start compiling an line: I-I

Figure 6: Compiling Synplify Library

Change directories to the working directory <path>:
Open the FILE=>DIRECTORY menu

VSIM> cd <path>

Create WORK library:

b) Select LIBRARY=>NEW and type WORK
VI M>vlib work

Switch to VHDL'93 (use —93 option when using vcom in command line):
a) Click on VCOM button
b) Click on the OPTIONS button and check “Use 1076-1988Uage standard” and ACCEPT.

Compile VHDL files:

a) Show all the files: In SELECT FILES OF TYPE select ALL FILES
b) Select statmch2.vhm

c) Click on COMPILE

d) Select TSTATE_MCH2.VHD

e) Click on COMPILE

f) Close the VHDL Compiler window by clicking on DONE. The design is now ready for simulation.

VSIM> vcom -93 statmch2.vhd

VSIM> vcom —93 tstate_mch2.vhd

Start Simulation: Click on VSIM and select the configuration cfg_tb_guesser.
VSIM> vsim cfg_tb_guesser

Simulate:

VSIM> view *

VSIM> wave *

Synthesis Guide for ModelSimrev 1.0

VI M> wave /dut/state
VS M> run 2000

9) Setup display: Select Window=>Tile Horizontally

Example 4: Generating Gate Level VHDL /Verilog (Xilinx Alliance)
1) Open Alliance
2) Create anew project: Select File=>New Project

Input Design: <path>/statmch2.xnf
Work Directory: <path>
Comment: <optional>

3) Enable Timing Simulation to create gate level netlist for HDL Simulation:
a) Select DESIGN=>IMPLEMENT
b) Click on OPTIONS
¢) Check PRODUCE TIMING SIMULATION DATA (Optional Targets)
d) Keep DESIGN=>IMPLEMENT=>0OPTIONS menu open

Options
— Control Files
Guids Desigr: (NP - I¥ | Wtk Euide Mesian Eract)

Uszer Conztraints: I Erowsze... |

— Program Option Templates

Irnplementatiar; IDefauIt j Edit Template. .. |
Configuration: IDefauIt j Edit Template. .. |

— Optional Targetz

¥ Produce Timing Simulation D ata [Produce Logic Level Timing Feport

W Produce Configuration D ata [Produce Post Layout Timing Fepart

QK. I Cancel Help

Figure 7: Setting Simulation Settings

4) Select the simulation format in DESIGN=>IMPLEMENT=>OPTIONS menu:
a) Click on EDIT TEMPLATE (Implementation)
b) Select INTERFACE tab
c) Select netlist preference (VHDL/Verilog)
d) Click OK to close EDIT TEMPLATE menu
€) Click OK to close OPTIONS menu
f) Keep IMPLEMENT menu open
5) Start compiling: Click on RUN
Alliance will start compiling STATMCH2.XNF and generate the gate-level simulation netlist files
automatically in the directory <path>/xproj/verl/revl

Synthesis Guide for ModelSimrev 1.0

6)

TIME_SIM.VHD: VHDL Netlist
TIME_SIM.SDF; Annotated Timing Delays

Close Flow Engine and Alliance Tools

Example 5: Gate-Level Simulation With Timing (M odelSim)

1)
2)

3)

4)

5)

6)

7)

8)

9)

Open ModelSm

(MAPPING LIBRARY ONLY NEEDS TO BE DONE ONCE)
Pre-Compile Xilinx SSMPRIMS ibrary:

a) Choose a directory to keep compiled libraries: <modelsim>/XILINX
b) Change to <modelsim> directory

¢) Create a XILINX library: LIBRARY=>NEW and type XILINX

d) Open VHDL Compiler window: Click VCOM button

€) Change to <xilinx>/vhdl/src/simprims directory

f) Change TARGET LIBRARY to XILINX

g) Compile simprim_Vpackage.vhd

h) Compile simprim_VITAL.vhd

i) Compile simprim_Vcomponents

j) Change TARGET LIBRARY back to WORK

k) Map Compiled SSMPRIM library to directory:

Select LIBRARY=>MAPPING=>NEW

Library: Xilinx

Directory: <modelsim>/XILINX

[) Click OK in both windows

Change directories to the working directory <path>/xproj/verl/rev1 by using the
FILE=>DIRECTORY menu.

VI M> cd <path>/xproj/verL/revl

Create the WORK directory: Select LIBRARY =>NEW and type WORK
VSIM> vlib work

Switch to VHDL'93 (use —93 in command line):

a) Click on VCOM

b) Click on the OPTIONS button and check “Use 1076-1988Uage standard” and ACCEPT.
Compile VHDL File

a) Select TIME_SIM.VHD

b) Click on COMPILE

c) Select TSTATE_MCH2_GATE.VHD

d) Click on COMPILE

e) Close the VHDL Compiler window by clicking on DONE. The design is now ready for simulation.
VSIM>vcom —-93 TIME_SIM.VHD

VSIM>vcom —93 TSTATE_MCH2_GATE.VHD

Start Simulation:

a) Clickon VSIM

b) Click on Config CFG_TB_GUESSER
c) Select the SDF tab

SDF File: TIME_SIM.SDF

Apply to region: DUT

VSIM> vsim —sdftype DUT=time_sim.sdf cfg_tb_guesser
Simulate;

VSIM> view *

VSIM> wave *

VSIM> run 2000

Setup display: Windows=>Tile Horizontally

10

Synthesis Guide for ModelSimrev 1.0

use std.textio.all;

library |IEEE;

use |EEE.std_logic_1164.all;
use |EEE.std_logic_arith.all;

entity TGUESSER is
end TGUESSER;

architecture SSIMULATE of TGUESSER is
component STATMCH2

port (
DATA, CLK,RST :in std_logic; -- Clock
GUESS :out std_logic); -- STATMCH2 result
end component;
constant CLK_PULSE : time:=50ns;
signal TB_DATA,TB_RST, TB_CLK : std_logic;
signal TB_GUESS : std_logic;
begin

DUT: STATMCH2 port map(TB_DATA, TB_CLK, TB_RST, TB_GUESS);

TB_RST <='0 after 0 ns,
"1’ after 50 ns,

'0" after 100 ns,
TB_DATA <=0 after O ns,
"1’ after 150 ns,

'O’ after 550 ns,

"1’ after 1000 ns;

--Createthe clock
process (TB_RST, TB_CLK)
begin
if (TB_RST ='1") then
TB_CLK <="0;
else
TB_CLK <=not TB_CLK after CLK_PUL SE;
end if;
end process,

end SSIMULATE;

-- Configuration for simulation
library WORK;
configuration CFG_TB_GUESSER of TGUESSER is
FOR SIMULATE
FOR DUT : STATMCH2
use entity work.STATM CH2(STRUCTURE);
END FOR;
END FOR;
END CFG_TB_GUESSER,;

Figure8: tstate mch2_gate.vhd

11

Synthesis Guide for ModelSimrev 1.0

Appendix A

The following is a brief description of the Model S m debugging windows.
Transcript — The command-line window; displays a transcript of all command activity.
Sour ce — Displays the HDL source code for the design.

Structure — Displays the hierarchy of structural elements such as VHDL component instances, packages,
blocks, generate statements, and Verilog model instances, names blocks, tasks and functions.

Wave — Displays waveforms and current values for the VHDL signals, and Verilog nets and register
variables you have selected.

List — Shows the simulation values of selected VHDL signals, and Verilog nets and register variables in
tabular format.

Dataflow — Allows you to trace VHDL signals or Verilog nets through your design.

Signals — Shows the names and current values of VHDL signals, and Verilog nets and register variables in
the region currently selected in the Structure window.

Variables — Displays VHDL constants, generics, variables, and Verilog register variables in the current
process and their current values.

Process — Displays a list of processes that are scheduled to run during the current simulation cycle.

12

	Introduction
	Design Flow
	Simulation Features
	Testbenches

	The Design Example
	1: Functional Simulation (ModelSim)
	2: Compiling the Mapped Netlist (Synplify)
	3: Mapped-Functional Simulation (ModelSim)
	4: Generating Gate Level VHDL/Verilog (Xilinx Alliance)
	5: Gate-Level Simulation With Timing (ModelSim)

	Appendix A
	ModelSim debugging windows

