
Chapter 1

Synopsys Design Compiler/FPGA Compiler/
ModelSim Tutorial for CPLDs

This tutorial shows you how to use Synopsys’ Design Compiler/
FPGA Compiler (VHDL/Verilog) for compiling XC9500/XL/XV and
Xilinx CoolRunner (XCR) CPLD designs, and Model Technology’s
ModelSim for simulation. It guides you through a typical CPLD
HDL-based design procedure using a design of a runner’s stopwatch
called Watch. This tutorial contains the following sections.

• “Design Description”

• “Before Beginning the Tutorial”

• “Tutorial Installation”

• “Design Flow”

• “Creating the tenths LogiBLOX component for the XC9500”

• “RTL Simulation”

• “Synthesizing the Design Using Synopsys”

• “Implementing the Watch Design”

• “XC9500/XL/XV Timing simulation”

• “XCR Timing simulation”

Design Description
Throughout this tutorial, the design is referred to as Watch which is a
design for a runner’s stop watch. The tutorial assumes that you have
a working knowledge of VHDL and/or Verilog.
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-1

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
The Watch design is a counter that counts up from 0 to 59, then resets
to zero, and starts over. There are two external inputs and three
external outputs in the completed design.

There is a companion Watch tutorial for Xilinx FPGAs, which have an
on chip oscillator. Xilinx CPLDs do not have an on chip oscillator, and
most of the differences in the tutorials are due to the use of an
external system clock for the CPLD.

The Watch design inputs, outputs, and modules are summarized
below.

Inputs

• STRTSTOP—The start/stop button of the stopwatch. This is an
active-low signal that must be depressed then released to start or
stop the counting.

• RESET—Forces the signals TENSOUT and ONESOUT to be “00”
after the stopwatch has been stopped.

• CLK — Externally supplied system clock. A 36 KHz clock is used
on XCR demo board.

Outputs

• TENSOUT[6:0]—7-bit bus which represents the tens-digit of the
stopwatch value. This is viewable on the 7-segment LCD display
of the XCR series demo board.

• ONESOUT[6:0]—Similar to TENSOUT bus above, but represents
the one-digit of the stopwatch value.

• TENTHSOUT[9:0]—10-bit bus which represents the tenths-digit
of the stopwatch value. The output is not displayed.

The top level of the Watch design consists of the following functional
blocks.

• DIVIDER—A clock divider which divides the 36 KHz clock
input to 17.5 Hz for internal use.

• STWATCH—A state machine that controls starting, stopping,
and clearing the counters.

• TENTHS—A 10-bit counter which outputs the Tenths digit as 10-
bit value. Optionally implemented using either the tenths.vhd
(tenths.v) file or a LogiBLOX macro.
1-2 Xilinx Development System

• CNT60—A counter that outputs Ones and Tens digits as 4-bit
binary values. Counts 0 to 59 (decimal).

• HEX2LED—Converts 4-bit values of Ones and Tens to 7-segment
LED format.

Before Beginning the Tutorial
Before you begin this tutorial, set up your system to use the
Synopsys, Model Technology, and Xilinx software as follows.

1. Install the following software.

• Xilinx Development System 2.1i or WebPACK v2.1

• Synopsys Design Compiler/FPGA Compiler v1998.08 or
later

• Model Technology ModelSim EE/PE 5.2 or later

• Target XC9500/XL/XV and/or XCR libraries (available from
ftp://www.xilinx.com)

2. Verify that your system is properly configured. Consult the
release notes and installation notes that came with your software
package for more information.

Design Flow
The general flow is to do a functional simulation using ModelSim,
and then use Synopsys Design Compiler/FPGA Compiler to compile
the Verilog or VHDL files to an edif file. The <design>.edf file is input
into a Xilinx tool, which produces a jedec file for programming the
device and various results files, including timing simulation models.
A ModelSim timing simulation is then run using the timing simula-
tion model.

Designs targeting the XC9500/XL/XV CPLDs, Xilinx Design
Manager or WebPACK can be used for implementation. Designs
targeting the XCR CPLDs can use WebPACK but not Design
Manager. WebPACK does not support LogiBLOX, so if the design
targets an XCR device, the tenths.vhd (tenths.v) module is used.

Functional simulation is the same for both XC9500/XL/XV and XCR
devices. Simulating the timing of the XC9500/XL/XV is slightly
different from that of the XCR CPLDs. The XV9500/XL/XV uses the
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-3

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
simprims library and generates a verilog or vhdl and sdf file. Designs
targeting XCR devices use a delay-annotated verilog (.vo) or vhdl
(.vho) file for timing simulation.

Tutorial Installation
The Watch tutorial file is available for download from the Xilinx Web
site at http://www.xilinx.com/support/techsup/tutorials.

Tutorial Directory and Files
The tutorial directory and tutorial files needed to complete the design
are provided for you. If LogiBLOX is used, the tenth files may be
created in later steps. The following table lists the contents of the
tutorial directories.

VHDL Design Files
Watch is the top level design. The tutorial uses the following VHDL
files.

• watch.vhd

• divider.vhd

• stmchine.vhd

• smallcntr.vhd

• cnt60.vhd

• hex2led.vhd

• tenths.vhd

• testbench.vhd (VHDL testbench for simulation)

Note: For designs targeting the XC9500/XL/XV CPLDs, the tenths
counter can be created as a LogiBLOX macro, or the tenths.vhd

Directory Description

cpld_tut/vhdl/watch VHDL source, simulation, and script files

cpld_tut/verilog/watch Verilog source, simulation, and script files
1-4 Xilinx Development System

http://www.xilinx.com/support/techsup/tutorials

source can be used. For designs targeting XCR CPLDs, the tenths.vhd
source is used. LogiBLOX is not currently supported in the XCR flow.

Verilog Design Files
Watch is the top level design. The tutorial uses the following Verilog
files.

• watch.v

• divider.v

• stmchine.v

• smallcntr.v

• cnt60.v

• hex2led.v

• tenths.v

• testfixture.v (Verilog test fixture for simulation)

Note: For designs targeting the XC9500/XL/XV CPLDs, the tenths
counter can be created as a LogiBLOX macro, or the tenths.v source
can be used. For designs targeting XCR CPLDs, the tenths.v source is
used. LogiBLOX is not currently supported in the XCR flow.

Script Files
The following script files are provided to automate the steps in this
tutorial.

• rtl_sim.do

• stim.do

• time_sim.do

Simulation Models for MTI
To simulate Xilinx designs with ModelSim, you can use the following
simulation libraries which you must compile as described below. This
isn’t necessary for designs targeting XCR devices, or for functional
simulation or synthesis of designs targeting XC9500/XL/XV devices.
The simprims library is used for timing simulation of the XC9500/
XL/XV design.
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-5

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
• UNISIMS Library—The Unisim library is used for behavioral
(RTL) simulation with instantiated components in the netlist, and
for post-synthesis simulation. The VHDL library is VITAL
compliant. The Verilog library has separate libraries by device
family: UNI3000, UNISIMS (for 4000E/L/X, SPARTAN/XL,
VIRTEX/E), UNI5200, UNI9000. This tutorial does not instantiate
any Unisim primitives.

• LogiBLOX Library—The LogiBLOX library is used for designs
containing LogiBLOX components, during pre-synthesis (RTL),
and post-synthesis simulation. This is used in VITAL VHDL
simulation only. Verilog uses the SIMPRIMS libraries.

• SIMPRIMS Library—The SIMPRIMS library is used for post
Ngdbuild (gate level functional), post-Map (partial timing), and
post-place-and-route (full timing) simulations. This library is
architecture independent, and supports VHDL and Verilog.

This tutorial uses the simprims library for XC9500/XL/XV designs.
To compile the simprims library, invoke ModelSim by entering

vsim &

Design -> FPGA Library Manager -> Vendor File selection

Open fpgavendor_xilinx.tcl in the dialog box.

Compile the simprims library.
1-6 Xilinx Development System

Figure 1-1 Compiling the simprims library

For detailed instructions on compiling these simulation libraries, see
the instructions in Xilinx Solution # 2561 which is available at http://
www.xilinx.com/techdocs/2561.htm.

After compiling the libraries, notice that ModelSim creates a file
called modelsim.ini. The upper portion defines the locations of the
compiled libraries. When doing a simulation, the modelsim.ini file
must be provided either by copying the file directly to the directory
where the HDL files are to be compiled and the simulation is to be
run, or by setting the MODELSIM environment variable to the loca-
tion of your master .ini file. You must set this variable since the
ModelSim installation does not initially declare the path for you. For
UNIX, type the following.

setenv MODELSIM /<path>/modelsim.ini

Copying the Tutorial Files
In this tutorial, “watch” is the name of the directory where the tuto-
rial will be performed.
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-7

http://www.xilinx.com/techdocs/2561.htm

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
Creating the Tenths LogiBLOX Component
Designs targeting the XC9500/XL/XV may use LogiBLOX to
generate the tenths macro. If used, it must be created before
performing RTL simulation or implementation. While creating the
LogiBLOX component, you will create a behavioral simulation netlist
for RTL simulation, as well as the implementation netlist and an
instantiation netlist. To create the LogiBLOX component, follow these
steps.

1. To invoke the LogiBLOX GUI, type lbgui at the UNIX prompt. If
you are using a PC, click on the LogiBLOX icon in the Xilinx
Program group.

The LogiBLOX GUI and Setup dialog box open.

2. In the Vendor tab of the Setup dialog box, select B(I) for bus type
and “Other” for vendor.

3. In the Project Directory tab, use the Browse button or type the
path to specify the project directory where you wish to write files.

4. In the Device Family tab, choose the xc9500 family.

5. In the Options tab, set the following options.

VHDL tutorial settings.

• Simulation Netlist: Behavioral VHDL netlist

• Component Declaration: VHDL Template

• Implementation Netlist: NGC File

Verilog tutorial settings.

• Simulation Netlist: Structural Verilog netlist

• Component Declaration: Verilog Template

• Implementation Netlist: NGC File

6. Click OK to close the Setup dialog box.

Note: If you are familiar with LogiBLOX, notice that the implementa-
tion netlist extension is now .ngc. This was introduced in the Xilinx
Alliance 1.5 software. For more details, read Xilinx Solution # 3904
which is available at http://www.xilinx.com/techdocs/3904.htm.
1-8 Xilinx Development System

http://www.xilinx.com/techdocs/3904.htm

Figure 1-2 LogiBLOX Setup Dialog Box

7. In the LogiBLOX Module Selector dialog box, set the following
options.

• Module Type: Counters

• Module Name: tenths (Typed by the user)

• Bus Width: 10 (Optionally typed by the user)

• Operation = Up

• Deselect D_IN

• Select Async. Control and Terminal Count

• By default, the following is selected: Clock Enable, Q_OUT

• Style = Maximum Speed

• Encoding = One Hot
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-9

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
• Async. Val = 2#0000000001#

Figure 1-3 LogiBLOX Module Selector

8. Click OK.

LogiBLOX generates the following output files.

• logblox.ini - shows the LogiBLOX options used

• logiblox.log - log file of the LogiBLOX GUI messages
window
1-10 Xilinx Development System

• tenths.mod - LogiBLOX Modules options file

• tenths.ngc - implementation netlist

• tenths.vhi - VHDL declaration/instantiation template

• tenths.vhd - VHDL behavioral simulation netlist

• tenths.vei - Verilog declaration/instantiation template

• tenths.v - Verilog structural simulation netlist

RTL Simulation
Functional simulation is the same for the XC9500/XL/XV and XCR
devices. In this tutorial, no simulation library is used for functional
simulation.

For Verilog simulation, all behaviorally described (inferred) and
instantiated registers should have a common signal which asynchro-
nously sets or resets the registers. Toggling the global set/reset
emulates the Power-On-Reset of the CPLD. If this is not done, the
flip-flops and latches in your simulation enter an unknown state. The
general procedure for specifying global set/reset or global reset
during a pre-Ngdbuild Verilog UNISIMS simulation involves
defining the global reset signals with the $XILINX/verilog/src/
glbl.v module. However, Verilog allows a global signal to be modified
as a wire in a global module, and, thus does not contain these cells.

Copying Source Files to the Functional Simulation
Directory

VHDL

For the VHDL tutorial, copy the following files into the
/cpld_tut/vhdl/watch/func directory.

• divider.vhd

• smallcntr.vhd

• cnt60.vhd

• hex2led.vhd

• tenths.vhd
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-11

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
• watch.vhd

• stmchine.vhd

• testbench.vhd

• rtl_sim.do

Verilog

For the Verilog tutorial, copy the following files into the
/cpld_tut/verilog/watch/func directory.

• divider.v

• smallcntr.v

• cnt60.v

• hex2led.v

• tenths.v

• watch.v

• stmchine.v

• testfixture.v

• rtl_sim.do

Starting ModelSim
If you are using the PC, invoke the simulator by selecting Programs
→ Model Tech → ModelSim from the Start menu. For UNIX work-
stations, type the following at the prompt.

vsim -i &

Set the project directory using the File → Change Directory
menu command and select watch/func.

Creating the Work Directory
Before compiling the VHDL/Verilog source files, create a directory
for use as a library. Type the following at the ModelSim prompt.

vlib work
1-12 Xilinx Development System

This action is echoed in the Transcript window as shown in the
following figure.

Figure 1-4 MTI Transcript Window

Compiling the Source Files

VHDL

Design Compiler/FPGA Compiler supports translate_off/
translate_on directives. Translate_off instructs Design Compiler/
FPGA Compiler not to read in and synthesize anything after the
translate_off directive, until a translate_on directive is found. In this
tutorial, these directives are used to declare the simulation library
without removing the declaration for synthesis.

The Vcom command compiles VHDL code for use with Vsim RTL
simulation. Also, to enhance simulation, ModelSim support VHDL
‘93. The -93 switch is used to enable support for 1076-93. Type the
following at the ModelSim prompt.

vcom -93 -explicit smallcntr.vhd

vcom -93 divider.vhd cnt60.vhd tenths.vhd
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-13

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
vcom -93 hex2led.vhd stmchine.vhd

vcom -93 watch.vhd testbench.vhd

The -explicit is used to compile smallcntr.vhd since there is a defini-
tion of “=” in the std_logic_1164 and std_logic_unsigned libraries
that are declared for the entity. The option resolves resolution
conflicts in favor of explicit function.

Verilog

If LogiBLOX is used, comment out the Tenths module declaration
within watch.v since the simulation model for this component was
generated with the creation of LogiBLOX component. The following
declaration is used as a place-holder for synthesis since the NGC was
created earlier, so it is unnecessary to synthesize the tenths module.

module tenths (CLK_EN, CLOCK, ASYNC_CTRL, Q_OUT,
TERM_CNT)

/* synthesis black_box */;

input CLK_EN, CLOCK, ASYNC_CTRL;

output [9:0] Q_OUT;

output TERM_CNT;

endmodule

The vlog command compiles Verilog code for use with Vsim RTL
simulation. Type the following at the ModelSim prompt.

vlog testfixture.v watch.v divider.v stmchine.v
hex2led.v cnt60.v smallcntr.v tenths.v

Invoke the Simulator
For the VHDL tutorial, type the following at the ModelSim prompt to
invoke the ModelSim simulator.

vsim tbx_watch tbx_arch

For the Verilog tutorial, type the following at the ModelSim prompt
to invoke the ModelSim simulator.

vsim watch_tf.v watch.v

For LogiBLOX generated components, Ngd2ver is used to generate a
structural Verilog netlist to facilitate functional simulation. The struc-
1-14 Xilinx Development System

tural netlist contains SIMPRIMS library components which are
mapped to the simprims library.

Note: The file, rtl_sim.do, runs the above commands; you can run it
instead of executing each command. The file is located in the src
directory and you can copy it into the watch/func directory. To
execute the file, type the following at the ModelSim prompt.

do rtl_sim.do

Optionally, execute the macro via the Macro → Execute Macro
menu command.

Running the Simulation
To perform simulation using ModelSim, follow these steps.

1. To view all the ModelSim debug windows, type the following.

view *

2. Add the signals from the selected region in the Structure window
to the Wave and List windows by issuing the following
commands at the ModelSim prompt.

add wave *

add list *

3. In the Structure window, notice that VHDL design units are indi-
cated by squares and Verilog modules are indicated by circles.
You can expand and collapse regions of hierarchy by clicking on
the (+) and (-) notations.

4. To run the simulation for a specified amount of time at the
ModelSim prompt, type the following.

run 100000 ns

The simulation output is displayed in the Wave window. You
may have to zoom in/out to view the waveforms.

5. In the Wave window, try adding or removing cursors with the
Cursor → Add | Remove menu command. When multiple
cursors are drawn, ModelSim adds a delta measurement
showing the time difference between the cursors. The selected
cursor is drawn as a solid line and the values at the cursor loca-
tion are shown to the right of the signal name. All other cursors
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-15

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
are drawn as dotted lines. If you cannot see the signal value next
to the signal name, select the bar separating the signal names
from the waveforms and drag it to the right.

Note: The above commands have been combined into a macro file
called stim.do. You can execute them at the ModelSim prompt.

Figure 1-5 Simulation Output in Wave Window

Synthesizing the Design Using Synopsys
In this section, you synthesize the design using a script file. Synthesis
is the similar whether targeting a XC9500/XL/XV or XCR device,
with the target, link, and symbol library in the .synopsys_dc.setup
file the only difference. An example .synopsys_dc.setup file for
targeting the XC9500/XL/XV device is given below.

designer = “Xilinx CPLD Applications”
company = “Xilinx, Inc”
search_path = {., ~/synlib, /cadappl/packages/synopsys/1998.08/
libraries/syn, ~} ;
link_library = {xc9000.db} ;
target_library = {xc9000.db};
symbol_library = {xc9000.sdb} ;
synthetic_library = {standard.sldb}
1-16 Xilinx Development System

bussing_no_ladder = “true”;
edifout_netlist_only = “true”;
edifout_power_and_ground_representation = “cell”;
edifout_power_name = “VCC”;
edifout_ground_name = “GND”;
edifout_power_pin_name = P ;
edifout_ground_pin_name = G ;
compile_fix_multiple_port_nets = “true” ;
bus_naming_style = “%s<%d>”
bus_inference_style = “%s<%d>”
bus_dimension_separator_style = “><“
edif_write_properties_list = “instance_number pad_location part”
compile_fix_multiple_port_nets = true
hdlin_translate_off_skip_text = true
edifout_write_properties_list = {INIT IO LOC PWR_MODE
PAD_LOCATION PART }

If you are targeting a XCR device, change the link_library and target
library to xcr.db. Remove the symbol library and
edifout_write_properties_list.

For the VHDL tutorial, create watch.script as shown below.

read -format vhdl cnt60.vhd
read -format vhdl divider.vhd
read -format vhdl hex2led.vhd
read -format vhdl smallcntr.vhd
read -format vhdl stmchine.vhd
read -format vhdl tenths.vhd
read -format vhdl watch.vhd
check_design
ungroup -all -flatten
uniquify
compile -map_effort low
ungroup -all -flatten
current_design
write -format edif -output watch.edf
exit

For the Verilog tutorial, create watch.script as shown above for
VHDL designs, substituting Verilog as the format and .v as the file
extension.

At the Unix prompt run
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-17

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
dc_shell -f watch.script | tee log

Implementing the Watch Design
The XC9500/XL/XV can be implemented in either Xilinx Design
Manager or WebPACK, while the XCR can only be implemented in
WebPACK. To implement the Watch design, refer to the Xilinx Design
Manager Tutorial or to WebPACK documentation. You need the
following files for implementation.

• watch.edf

• tenths.ngc (if LogiBLOX is used)

When you implement the Watch design with the Xilinx Design
Manager, set the Implementation Options Timing Template to
ModelSim VHDL for the VHDL tutorial to produce the time_sim.vhd
file, or ModelSim Verilog for the Verilog tutorial to produce the
time_sim.v file, and time_sim.sdf for timing simulation. To set these
options, follow these steps.

1. In the Design Manger’s Implement window, select Options
under the Design pull-down menu, to open the Options dialog
box.

2. In the Program Option Template, set Simulation to ModelSim
VHDL for the VHDL tutorial or ModelSim Verilog for the Verilog
tutorial.
1-18 Xilinx Development System

Figure 1-6 Design Manager Implement Dialog Box

3. Proceed with the Design Manager or WebPACK tutorial.

Note: Although not included in this tutorial, it is possible to run a
post-Ngdbuild and post-Map simulation, which may be helpful for
debugging the design.

XC9500/XL/XV Timing Simulation

VHDL
For VHDL simulation, you need two files.

• time_sim.vhd
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-19

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
• time_sim.sdf

To perform timing simulation, follow these steps.

1. Copy time_sim.vhd, time_sim.sdf, and testbench.vhd to the
following directory.

/cpld_tut/vhdl/watch/time

2. Launch ModelSim, and navigate to the following directory.

/cpld_tut/vhdl/watch/time

3. Create the work directory.

vlib work

4. Compile the VHDL source files and the testbench.

vcom time_sim.vhd testbench.vhd

5. Read in the SDF file for timing simulation.

vsim -sdftyp uut=time_sim.sdf tbx_watch tbx_arch

Alternatively, select File → Load New Design. Highlight the
design in the Design Unit window. Click the Add button. To
apply the timing data, click on the SDF tab on the Load Design
window. Click the Add button. Browse and select the
time_sim.sdf file. Type uut in the Apply to Region field and click
the Load button.

6. View the necessary debugging windows by typing the following
command at the ModelSim prompt.

view wave signals source

7. View and add the signals of the design to the waveform window.

8. At the ModelSim prompt type.

run 100000 ns

9. Right click in the waveform window and zoom in. Another way
to zoom in is to press and hold the middle mouse button and
draw a square around the area to zoom in on. After simulating,
you can then zoom in and view the delay from the clock edge to
the TENSOUT, ONESOUT, and TENTHSOUT output change.

Note: The above commands have been combined into a macro file,
time_sim.do, and can be executed at the ModelSim prompt.
1-20 Xilinx Development System

Verilog
For Verilog simulation you need two files.

• time_sim.v

• time_sim.sdf

To perform timing simulation, follow these steps.

1. Copy time_sim.v, time_sim.sdf, and testfixture.v to the following
directory.

/cpld_tut/verilog/watch/time

2. Launch ModelSim, and navigate to the following directory.

/cpld_tut/verilog/watch/time

3. Create the work directory.

vlib work

4. Compile the Verilog file and the testfixture.

vlog testfixture.v time_sim.v
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-21

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
5. Read in the SDF file for timing simulation. Ngd2ver automati-
cally writes out a directive, $sdf_annotate, within the time_sim.v
file. This directive specifies the appropriate SDF file to use in
conjunction with the produced netlist. So, it unnecessary for the
user to specify an option for ModelSim to read the SDF.

vsim -L simprims test

Now that the HDL netlist has been resolved into primitives, we
must provide the simulation models to the SIMPRIMS library.

6. View the necessary debugging windows by typing the following
command at the ModelSim prompt. Use the ModelSim Combine
command to group the tensout and onesout signals into buses.

view wave signals source

7. View and add the signals of the design to the waveform window.

8. At the ModelSim prompt type.

run 100000 ns

9. Right click in the waveform window and zoom in. Another way
to zoom in is to press and hold the middle mouse button and
draw a square around the area to zoom in on. After simulating,
you can then zoom in and view the delay from the clock edge to
the TENSOUT, ONESOUT, and TENTHSOUT output change.

Note: The above commands have been combined into a macro file,
time_sim.do, and can be executed at the ModelSim prompt.

XCR Timing Simulation

VHDL
For timing simulation of a VHDL design using a XCR CPLD, you
need two files.

Note: The testbencht.vhd file is an edited version of the original test-
bench.vhd file. In the VHDL timing model (watch.vho), the tensout,
onesout, and tenthsout bus signals are broken into discrete signals.
For simulation, the component signals and uut signals in the test-
bench and design model must match. The component and uut instan-
tiation statements in testbencht.vhd have been edited to match those
in watch.vho.
1-22 Xilinx Development System

• watch.vho

• testbencht.vhd

To perform timing simulation, follow these steps.

1. Copy watch.vho and testbencht.vhd to the following directory.

/cpld_tut/vhdl/watch/time

2. Launch ModelSim, and navigate to the following directory.

/cpld_tut/vhdl/watch/time

3. Create the work directory.

vlib work

4. Compile the VHDL source files and the testbench.

vcom watch.vho testbencht.vhd

5. Read in the files for timing simulation.

vsim tbx_watch tbx_arch

Alternatively, select File → Load New Design. Click the Add
button. Browse and select the design file. Type uut in the Apply
to Region field and click the Load button.

6. View the necessary debugging windows by typing the following
command at the ModelSim prompt.

view wave signals source

7. View and add the signals of the design to the waveform window.
Use the ModelSim Combine command to group the tensout and
onesout signals into buses.

8. At the ModelSim prompt type.

run 100000 ns

9. Right click in the waveform window and zoom in. Another way
to zoom in, press and hold the middle mouse button and draw a
square around the area to zoom in on. After simulating, you can
then zoom in and view the delay from the clock edge to the
TENSOUT, ONESOUT, and TENTHSOUT output change.

Note: The above commands have been combined into a macro file,
time_sim.do, and can be executed at the ModelSim prompt.
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-23

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
Verilog
For timing simulation of the Verilog design you need two files.

• watch.vo

• testfixturet.v

Note: The testfixturet.v file is an edited version of the original tesfix-
ture.v file. In the Verilog timing model (watch.vo), the tensout,
onesout, and tenthsout bus signals are broken into discrete signals.
For simulation, the component signals and uut signals in the test-
bench and design model must match.

Note:

To perform timing simulation, follow these steps.

1. Copy watch.vo and testfixturet.v to the following directory.

/cpld_tut/verilog/watch/time

2. Launch ModelSim, and navigate to the following directory.
1-24 Xilinx Development System

/cpld_tut/verilog/watch/time

3. Create the work directory.

vlib work

4. Compile the Verilog file and the testfixture.

vlog testfixturet.v watch.vo

5. Simulate the design

vsim -L simprims_ver test

Now that the HDL netlist has been resolved into primitives, we
must provide the simulation models to the SIMPRIMS library.

6. View the necessary debugging windows by typing the following
command at the ModelSim prompt.

view wave signals source

7. View and add the signals of the design to the waveform window.

8. At the ModelSim prompt type.

run 100000 ns

9. Right click in the waveform window and zoom in. Another way
to zoom in, press and hold the middle mouse button and draw a
square around the area to zoom in on. After simulating, you can
then zoom in and view the delay from the clock edge to the
TENSOUT, ONESOUT, and TENTHSOUT output change.

Note: The above commands have been combined into a macro file,
time_sim.do, and can be executed at the ModelSim prompt.

The Synopsys/MTI/Xilinx CPLD Tutorial is now completed!
Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs 1-25

Synopsys Design Compiler - FPGA Compiler Tutorial for CPLDs
1-26 Xilinx Development System

	Chapter 1
	Synopsys Design Compiler/FPGA Compiler/ ModelSim Tutorial for CPLDs
	Design Description
	Inputs
	Outputs

	Before Beginning the Tutorial
	1. Install the following software.
	2. Verify that your system is properly configured. Consult the release notes and installation not...

	Design Flow
	Tutorial Installation
	Tutorial Directory and Files
	VHDL Design Files
	Verilog Design Files
	Script Files
	Simulation Models for MTI
	Figure 1-1� Compiling the simprims library

	Copying the Tutorial Files

	Creating the Tenths LogiBLOX Component
	1. To invoke the LogiBLOX GUI, type lbgui at the UNIX prompt. If you are using a PC, click on the...
	2. In the Vendor tab of the Setup dialog box, select B(I) for bus type and “Other” for vendor.
	3. In the Project Directory tab, use the Browse button or type the path to specify the project di...
	4. In the Device Family tab, choose the xc9500 family.
	5. In the Options tab, set the following options.
	6. Click OK to close the Setup dialog box.
	Figure 1-2� LogiBLOX Setup Dialog Box
	7. In the LogiBLOX Module Selector dialog box, set the following options.

	Figure 1-3� LogiBLOX Module Selector
	8. Click OK.

	RTL Simulation
	Copying Source Files to the Functional Simulation Directory
	VHDL
	Verilog

	Starting ModelSim
	Creating the Work Directory
	Figure 1-4� MTI Transcript Window

	Compiling the Source Files
	VHDL
	Verilog

	Invoke the Simulator
	Running the Simulation
	1. To view all the ModelSim debug windows, type the following.
	2. Add the signals from the selected region in the Structure window to the Wave and List windows ...
	3. In the Structure window, notice that VHDL design units are indicated by squares and Verilog mo...
	4. To run the simulation for a specified amount of time at the ModelSim prompt, type the following.
	5. In the Wave window, try adding or removing cursors with the Cursor Æ Add | Remove menu command...
	Figure 1-5� Simulation Output in Wave Window

	Synthesizing the Design Using Synopsys
	Implementing the Watch Design
	1. In the Design Manger’s Implement window, select Options under the Design pull-down menu, to op...
	2. In the Program Option Template, set Simulation to ModelSim VHDL for the VHDL tutorial or Model...
	Figure 1-6� Design Manager Implement Dialog Box
	3. Proceed with the Design Manager or WebPACK tutorial.

	XC9500/XL/XV Timing Simulation
	VHDL
	1. Copy time_sim.vhd, time_sim.sdf, and testbench.vhd to the following directory.
	2. Launch ModelSim, and navigate to the following directory.
	3. Create the work directory.
	4. Compile the VHDL source files and the testbench.
	5. Read in the SDF file for timing simulation.
	6. View the necessary debugging windows by typing the following command at the ModelSim prompt.
	7. View and add the signals of the design to the waveform window.
	8. At the ModelSim prompt type.
	9. Right click in the waveform window and zoom in. Another way to zoom in is to press and hold th...

	Verilog
	1. Copy time_sim.v, time_sim.sdf, and testfixture.v to the following directory.
	2. Launch ModelSim, and navigate to the following directory.
	3. Create the work directory.
	4. Compile the Verilog file and the testfixture.
	5. Read in the SDF file for timing simulation. Ngd2ver automatically writes out a directive, $sdf...
	6. View the necessary debugging windows by typing the following command at the ModelSim prompt. U...
	7. View and add the signals of the design to the waveform window.
	8. At the ModelSim prompt type.
	9. Right click in the waveform window and zoom in. Another way to zoom in is to press and hold th...

	XCR Timing Simulation
	VHDL
	1. Copy watch.vho and testbencht.vhd to the following directory.
	2. Launch ModelSim, and navigate to the following directory.
	3. Create the work directory.
	4. Compile the VHDL source files and the testbench.
	5. Read in the files for timing simulation.
	6. View the necessary debugging windows by typing the following command at the ModelSim prompt.
	7. View and add the signals of the design to the waveform window. Use the ModelSim Combine comman...
	8. At the ModelSim prompt type.
	9. Right click in the waveform window and zoom in. Another way to zoom in, press and hold the mid...

	Verilog
	1. Copy watch.vo and testfixturet.v to the following directory.
	2. Launch ModelSim, and navigate to the following directory.
	3. Create the work directory.
	4. Compile the Verilog file and the testfixture.
	5. Simulate the design
	6. View the necessary debugging windows by typing the following command at the ModelSim prompt.
	7. View and add the signals of the design to the waveform window.
	8. At the ModelSim prompt type.
	9. Right click in the waveform window and zoom in. Another way to zoom in, press and hold the mid...

