
Chapter 1

Workstation flow for Xilinx CoolRunner CPLDs

This tutorial provides Xilinx’s workstation flow for Xilinx Cool-
Runner (XCR) CPLD designs. The XPLA Workstation flow is different 
from the Xilinx Design Manager flow used for the XC9500 CPLDs. 
XPLA Workstation is a command line flow.

For Cadence, Exemplar, Mentor Graphics, Synplicity, Synopsys 
Design Compiler - FPGA Compiler, and Viewlogic designs, the 
design entry for targeting XCR devices is the same as that for 
targeting XC9500 devices. The exception is that LogiBLOX is not 
supported. This tutorial provides the procedure for implementing the 
calc design from the Mentor Graphics Interface/Tutorial Guide, and 
the watch design used in the Exemplar, Synopsys, and Synplicity 
tutorials. This tutorial contains the following sections.

• “Before Beginning the Tutorial”

• “Design Flow”

• “RTL Simulation”

• “Implementing the Watch and Calc design”

• “XCR Timing simulation”

Before Beginning the Tutorial
Set up your system to use XPLA Workstation as follows.

1. The XPLA Workstation software is available from ftp.xilinx.com, 
compressed in the xpla2_solaris.tar.Z and xpla2_hpux.tar.Z files. 

2. Create the install directory xpla for XPLA Workstation.

3. From <install_path>/xpla, uncompress xpla2_solaris.tar.Z 
(xpla2_hpux.tar.Z) to generate the xpla2_solaris.tar 
(xpla2_hpux.tar) archive file.
XPLA Workstation Flow Tutorial 1-1



XPLA Workstation Flow Tutorial
4. Extract the following directories/files (tar xvf xpla2_solaris.tar) : 
xdsnrtut.pdf (this file), examples, xpla2_solaris.tar, bin, and lib. 
The <install_path>/xpla/examples directory contains the calc 
and watch design files used in this tutorial. The xpla2_solaris.tar 
file may be deleted.

5. Set the environment variable XPLA_PATH to the XPLA Worksta-
tion install directory in your .cshrc or .kshrc file.

C Shell: 

% setenv XPLA_PATH <install_path>/xpla

Korn Shell:

% export XPLA_PATH=<install_path>/xpla

6. Add $XPLA_PATH/bin to the PATH environment variable.

7. To test XPLA Workstation installation:

cd $XPLA_PATH/examples

mkdir install_test

cp watch.edf install_test

cp watch.ctl install_test

cd install_test

xsh watch (this should produce jedec,fit,tim files)

cd ..

rm -r install_test

Design Flow 
The design flow is to do a functional simulation using ModelSim or 
other third party simulator, and then use the third party CAE vendor 
to compile the Verilog, VHDL, or schematic files to an edif file. The 
<design>.edf file is input into XPLA Workstation, which produces a 
jedec file for programming the device and various results files, 
including timing simulation models. A timing simulation is then run 
using the timing simulation model.

For designs targeting the XC9500/XL/XV CPLDs, Xilinx Design 
Manager or WebPACK can be used for implementation. WebPACK is 
a PC based design system, and supports third party edif entry for 
both XC9500/XL/XV and XCR series CPLDs. Designs targeting the 
1-2 XPLA Workstation



Workstation flow for Xilinx CoolRunner CPLDs
XCR CPLDs can use either the workstation based XPLA Workstation 
or WebPACK, but not Xilinx Design Manager. 

Functional simulation is the same for both XC9500/XL/XV and XCR 
devices. Simulating the timing of the XC9500/XL/XV is slightly 
different from that of the XCR CPLDs. The XV9500/XL/XV uses the 
simprims library and generates a verilog or vhdl and sdf file. Designs 
targeting XCR devices use a delay-annotated verilog (.vo) or vhdl 
(.vho) file for timing simulation.

RTL Simulation
Functional simulation is the same for the XC9500/XL/XV and XCR 
devices. A simulation library is not required for functional simula-
tion. 

For Verilog simulation, all behaviorally described (inferred) and 
instantiated registers should have a common signal which asynchro-
nously sets or resets the registers. Toggling the global set/reset 
emulates the Power-On-Reset of the CPLD. If this is not done, the 
flip-flops and latches enter an unknown state. 

Implementation
XPLA Workstation runs from the command line. The steps are to 
create the edif file using the CAE vendor software, create a control file 
using a text editor, and to run XPLA Workstation by entering xsh 
(xsh2) <design> at the Unix prompt. The xsh script is used to target 
XPLA 1 devices, and the xsh2 script is used to target XCR22V10 and 
XPLA 2 devices.

1. Using the design entry tool and targeting the XC9000 or XCR 
library, create an edif file. 

2. From the project directory, create <design> .ctl using a text editor. 
Alternately, copy an existing .ctl file such as $XPLA_PATH/
examples/watch.ctl to <design>.ctl.

3. In <design>.ctl, provide the <design>.edf argument to the -i 
command.

4. Enter xsh (xsh2) with no argument to obtain device list. In 
<design>.ctl, edit -dev <device> to target appropriate device.

5. Run xsh (xsh2) <design>
XPLA Workstation Flow Tutorial 1-3



XPLA Workstation Flow Tutorial
This produces the jedec, tim, and fit files. It is recommended that 
users run three iterations of the design, assigning the th parameter to 
10, 20, and 30. The fit and timing results should then be analyzed for 
efficiency and performance objectives. 

Format of the control file
The control file allows the user to define pinout and compile options. 
The control filename must be the same as the design name, plus the 
extension of “.ctl”, e.g. watch .ctl. The contents of a control file is 
provided in three sections: command, property, and pin_assignment. 
In the description below, boldtype indicates the default value used by 
the tool if an alternative is not specified. Only the command section is 
required, and only the -i, -it, and -dev commands in the command 
section are required. The # character is used to indicate a comment 
line in the control file.

To assign pins, the -pre command is set to keep, and the pin assign-
ments are specified in the pin_assignment section. In some cases, the 
design entry tool or XPLA Workstation renames signals slightly, 
particularly bus signals. For example, a signal named din[7] may be 
renamed to din_7_. The pin assignments in the control file must 
match the signal names assigned by the fitter. If there is a problem, 
first fit the design using the -pre ignore command. Then re-fit the 
design, ensuring that the signal names provided in the .ctl file mathc 
those in the .fit or .spf file, using the -pre keep command.

COMMAND SECTION ( [command] )
    Specify all the command line options here:

    -i   file input filename 

    -it type input type (edif or blif)

    -th number max pterm for each equation (5 - 37)

    -fi number max fanin for each equation 

    -bfi number max fanin for each logic block (36 - 40)

    -vho generate vhdl timing model

    -vo generate verilog timing model

    -reg apply register synthesis to the design
1-4 XPLA Workstation



Workstation flow for Xilinx CoolRunner CPLDs
-co  type collapsing method (best or none) 

- effort synthesis effort (exhaust or fast) 

-xor type xor synthesis type (all, exp, or none) 

-dev name device name

-pre type preassign handling: KEEP, TRY, or IGNORE 

PROPERTY SECTION ( [property] )
maxpt : specify maximum pterm for each pin/node

keep : specify a signal’s attribute as keep

retain : specify a signal’s attribute as retain

mode : 0, 1, 4

dut on | off

isp off | on 

tri-state all 

fm_group : group signals within a fast module

lb_group : group signals within a logic block

slow_slew_rate : slow or fast 

PIN ASSIGNMENT SECTION ( [pin_assignment] )

[pin_assignment]

<signal_name>:<pin_location>

Control file example
[command]

-it edif

-i watch.edf

-dev xcr3128as10be

-reg

-pre keep

-th 30

# Rerun w th 20
XPLA Workstation Flow Tutorial 1-5



XPLA Workstation Flow Tutorial
[property]

maxpt bit0 12 bit 1 14

dut on

isp off # frees up 4 pins

[pin_assignment]

din_7_:5

din_6_:4

XCR Timing Simulation
Timing simulation is discussed in the Exemplar, Synopsys, and 
Synplicity tutorials, so this section is brief. The watch design is used 
as an example

VHDL
For timing simulation of a VHDL design using a XCR CPLD, two files 
are required.

• watch.vho - generated when -vho command is set in .ctl file

• testbencht.vhd

The testbencht.vhd file is an edited version of the original test-
bench.vhd file. In the VHDL timing model (watch.vho), the tensout, 
onesout, and tenthsout bus signals are broken into discrete signals. 
For simulation, the component signals and uut signals in the test-
bench and design model must match. The component and uut instan-
tiation statements in testbencht.vhd have been edited to match those 
in watch.vho.

To perform timing simulation, follow these steps.

6. Create the work directory.

vlib work

7. Compile the VHDL source files and the testbench.

vcom watch.vho testbencht.vhd

8. Read in the files for timing simulation.

vsim tbx_watch tbx_arch
1-6 XPLA Workstation



Workstation flow for Xilinx CoolRunner CPLDs
Alternatively, select File → Load New Design. Click the Add 
button. Browse and select the design file. Type uut in the Apply 
to Region field and click the Load button.

9. View the necessary debugging windows by typing the following 
command at the ModelSim prompt.

view wave signals source

10. View and add the signals of the design to the waveform window. 
Use the ModelSim Combine command to group the tensout and 
onesout signals into buses.

11. At the ModelSim prompt type.

run 100000 ns

Verilog
For timing simulation of the Verilog design two files are needed.

• watch.vo - generated when -vo command is specified in .ctl file

• testfixturet.v

The testfixturet.v file is an edited version of the original tesfixture.v 
file. In the Verilog timing model (watch.vo), the tensout, onesout, and 
tenthsout bus signals are broken into discrete signals. For simulation, 
the component signals and uut signals in the testbench and design 
model must match.

To perform timing simulation, follow these steps.

1. Create the work directory.

vlib work

2. Compile the Verilog file and the testfixture.

vlog testfixturet.v watch.vo

3. Simulate the design

vsim -L simprims test

Now that the HDL netlist has been resolved into primitives, we 
must provide the simulation models to the SIMPRIM library.

4. View the necessary debugging windows by typing the following 
command at the ModelSim prompt.
XPLA Workstation Flow Tutorial 1-7



XPLA Workstation Flow Tutorial
view wave signals source

5. View and add the signals of the design to the waveform window.

6. At the ModelSim prompt type.

run 100000 ns

The XPLA Workstation Tutorial is now completed!
1-8 XPLA Workstation


	Chapter 1
	Workstation flow for Xilinx CoolRunner CPLDs
	Before Beginning the Tutorial
	1. The XPLA Workstation software is available from ftp.xilinx.com, compressed in the xpla2_solari...
	2. Create the install directory xpla for XPLA Workstation.
	3. From <install_path>/xpla, uncompress xpla2_solaris.tar.Z (xpla2_hpux.tar.Z) to generate the xp...
	4. Extract the following directories/files (tar xvf xpla2_solaris.tar) : xdsnrtut.pdf (this file)...
	5. Set the environment variable XPLA_PATH to the XPLA Workstation install directory in your .cshr...
	6. Add $XPLA_PATH/bin to the PATH environment variable.
	7. To test XPLA Workstation installation:

	Design Flow
	RTL Simulation
	Implementation
	1. Using the design entry tool and targeting the XC9000 or XCR library, create an edif file.
	2. From the project directory, create <design> .ctl using a text editor. Alternately, copy an exi...
	3. In <design>.ctl, provide the <design>.edf argument to the -i command.
	4. Enter xsh (xsh2) with no argument to obtain device list. In <design>.ctl, edit -dev <device> t...
	5. Run xsh (xsh2) <design>

	Format of the control file
	COMMAND SECTION ( [command] )
	PROPERTY SECTION ( [property] )
	Control file example

	XCR Timing Simulation
	VHDL
	6. Create the work directory.
	7. Compile the VHDL source files and the testbench.
	8. Read in the files for timing simulation.
	9. View the necessary debugging windows by typing the following command at the ModelSim prompt.
	10. View and add the signals of the design to the waveform window. Use the ModelSim Combine comma...
	11. At the ModelSim prompt type.

	Verilog
	1. Create the work directory.
	2. Compile the Verilog file and the testfixture.
	3. Simulate the design
	4. View the necessary debugging windows by typing the following command at the ModelSim prompt.
	5. View and add the signals of the design to the waveform window.
	6. At the ModelSim prompt type.




