
Chapter 1

Exemplar/ModelSim Tutorial for CPLDs

This tutorial shows you how to use Exemplar’s Leonardo Spectrum
(VHDL/Verilog) for compiling XC9500/XL/XV and Xilinx Cool-
Runner (XCR) CPLD designs, and Model Technology’s ModelSim for
simulation. It guides you through a typical CPLD HDL-based design
procedure using a design of a runner’s stopwatch called Watch. This
tutorial contains the following sections.

• “Design Description”

• “Before Beginning the Tutorial”

• “Design Flow”

• “Tutorial Installation”

• “Creating the tenths LogiBLOX component for the XC9500”

• “RTL Simulation”

• “Synthesizing the Design Using Exemplar”

• “Implementing the Watch Design”

• “XC9500/XL/XV Timing simulation”

• “XCR Timing simulation”

Design Description
Throughout this tutorial, the design is referred to as Watch which is a
design for a runner’s stop watch. The tutorial assumes that you have
a working knowledge of VHDL and/or Verilog.

The Watch design is a counter that counts up from 0 to 59, then resets
to zero, and starts over. There are two external inputs and three
external outputs in the completed design.
Exemplar Tutorial 1-1

Exemplar Tutorial
There is a companion Watch tutorial for Xilinx FPGAs, which have an
on chip oscillator. Xilinx CPLDs do not have an on chip oscillator, and
most of the differences in the tutorials are due to the use of an
external system clock for the CPLD.

The Watch design inputs, outputs, and modules are summarized
below.

Inputs

• STRTSTOP—The start/stop button of the stopwatch. This is an
active-low signal that must be depressed then released to start or
stop the counting.

• RESET—Forces the signals TENSOUT and ONESOUT to be “00”
after the stopwatch has been stopped.

• CLK — Externally supplied system clock. A 36 KHz clock is used
on XCR demo board.

Outputs

• TENSOUT[6:0]—7-bit bus which represents the tens-digit of the
stopwatch value. This is viewable on the 7-segment LCD display
of the XCR series demo board.

• ONESOUT[6:0]—Similar to TENSOUT bus above, but represents
the one-digit of the stopwatch value.

• TENTHSOUT[9:0]—10-bit bus which represents the tenths-digit
of the stopwatch value. The output is not displayed.

The top level of the Watch design consists of the following functional
blocks.

• DIVIDER—A clock divider which divides the 36 KHz clock
input to 17.5 Hz for internal use.

• STWATCH—A state machine that controls starting, stopping,
and clearing the counters.

• TENTHS—A 10-bit counter which outputs the Tenths digit as 10-
bit value. Optionally implemented using either the tenths.vhd
(tenths.v) file or a LogiBLOX macro.

• CNT60—A counter that outputs Ones and Tens digits as 4-bit
binary values. Counts 0 to 59 (decimal).
1-2 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
• HEX2LED—Converts 4-bit values of Ones and Tens to 7-segment
LED format.

Before Beginning the Tutorial
Before you begin this tutorial, set up your system to use the Exem-
plar, Model Technology, and Xilinx software as follows.

1. Install the following software.

• Xilinx Development System 2.1i or WebPACK v2.1

• Exemplar Leonardo Spectrum v1998.e2 or later

• Model Technology ModelSim EE/PE 5.2 or later

2. Verify that your system is properly configured. Consult the
release notes and installation notes that came with your software
package for more information.

Design Flow
The general flow is to do a functional simulation using ModelSim,
and then use Exemplar’s Leonardo Spectrum to compile the Verilog
or VHDL files to an edif file. The <design>.edf file is input into a
Xilinx tool, which produces a jedec file for programming the device
and various results files, including timing simulation models. A
ModelSim timing simulation is then run using the timing simulation
model.

For designs targeting the XC9500/XL/XV CPLDs, Xilinx Design
Manager or WebPACK can be used for implementation. Designs
targeting the XCR CPLDs can use WebPACK but not Design
Manager. WebPACK does not support LogiBLOX, so if the design
targets an XCR device, the tenths.vhd (tenths.v) module is used.

Functional simulation is the same for both XC9500/XL/XV and XCR
devices. Simulating the timing of the XC9500/XL/XV is slightly
different from that of the XCR CPLDs. The XV9500/XL/XV uses the
simprims library and generates a verilog or vhdl and sdf file. Designs
targeting XCR devices use a delay-annotated verilog (.vo) or vhdl
(.vho) file for timing simulation.
Exemplar Tutorial 1-3

Exemplar Tutorial
Tutorial Installation
The Watch tutorial file is available for download from the Xilinx Web
site at http://www.xilinx.com/support/techsup/tutorials.

Tutorial Directory and Files
The tutorial directory and tutorial files needed to complete the design
are provided for you. If LogiBLOX is used, the tenth files may be
created in later steps. The following table lists the contents of the
tutorial directories.

VHDL Design Files
Watch is the top level design. The tutorial uses the following VHDL
files.

• watch.vhd

• divider.vhd

• stmchine.vhd

• smallcntr.vhd

• cnt60.vhd

• hex2led.vhd

• tenths.vhd

• testbench.vhd (VHDL testbench for simulation)

Note: For designs targeting the XC9500/XL/XV CPLDs, the tenths
counter can be created as a LogiBLOX macro, or the tenths.vhd
source can be used. For designs targeting XCR CPLDs, the tenths.vhd
source is used. LogiBLOX is not currently supported in the XCR flow.

Verilog Design Files
Watch is the top level design. The tutorial uses the following Verilog
files.

Directory Description

cpld_tut/vhdl/watch VHDL source, simulation, and script files

cpld_tut/verilog/watch Verilog source, simulation, and script files
1-4 Xilinx Development System

http://www.xilinx.com/support/techsup/tutorials

Exemplar/ModelSim Tutorial for CPLDs
• watch.v

• divider.v

• stmchine.v

• smallcntr.v

• cnt60.v

• hex2led.v

• tenths.v

• testfixture.v (Verilog test fixture for simulation)

Note: For designs targeting the XC9500/XL/XV CPLDs, the tenths
counter can be created as a LogiBLOX macro, or the tenths.v source
can be used. For designs targeting XCR CPLDs, the tenths.v source is
used. LogiBLOX is not currently supported in the XCR flow.

Script Files
The following script files are provided to automate the steps in this
tutorial.

• rtl_sim.do

• stim.do

• xmplr_syn.tcl

• time_sim.do

Simulation Models for MTI
To simulate Xilinx designs with ModelSim, you can use the following
simulation libraries which you must compile as described below. This
isn’t necessary for designs targeting XCR devices, or for functional
simulation or synthesis of designs targeting XC9500/XL/XV devices.
The simprims library is used for timing simulation of the XC9500/
XL/XV design.

• UNISIMS Library—The Unisim library is used for behavioral
(RTL) simulation with instantiated components in the netlist, and
for post-synthesis simulation. The VHDL library is VITAL
compliant. The Verilog library has separate libraries by device
family: UNI3000, UNISIMS (for 4000E/L/X, SPARTAN/XL,
Exemplar Tutorial 1-5

Exemplar Tutorial
VIRTEX/E), UNI5200, UNI9000. This tutorial does not instantiate
any Unisim primitives.

• LogiBLOX Library—The LogiBLOX library is used for designs
containing LogiBLOX components, during pre-synthesis (RTL),
and post-synthesis simulation. This is used in VITAL VHDL
simulation only. Verilog uses the SIMPRIMS libraries.

• SIMPRIMS Library—The SIMPRIMS library is used for post
Ngdbuild (gate level functional), post-Map (partial timing), and
post-place-and-route (full timing) simulations. This library is
architecture independent, and supports VHDL and Verilog.

This tutorial uses the simprims library for XC9500/XL/XV designs.
To compile the simprims library, invoke ModelSim by entering

vsim &

Design -> FPGA Library Manager -> Vendor File
selection

Open fpgavendor_xilinx.tcl in the dialog box.

Compile the simprims library.

Figure 1-1 Compiling the simprims library
1-6 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
For detailed instructions on compiling these simulation libraries, see
the instructions in Xilinx Solution # 2561 which is available at http://
www.xilinx.com/techdocs/2561.htm.

After compiling the libraries, notice that ModelSim creates a file
called modelsim.ini. The upper portion defines the locations of the
compiled libraries. When doing a simulation, the modelsim.ini file
must be provided either by copying the file directly to the directory
where the HDL files are to be compiled and the simulation is to be
run, or by setting the MODELSIM environment variable to the loca-
tion of your master .ini file. You must set this variable since the
ModelSim installation does not initially declare the path for you. For
UNIX, type the following.

setenv MODELSIM /<path>/modelsim.ini

Creating the Tenths LogiBLOX Component
Designs targeting the XC9500/XL/XV may use LogiBLOX to
generate the tenths macro. If used, it must be created before
performing RTL simulation or implementation. While creating the
LogiBLOX component, you will create a behavioral simulation netlist
for RTL simulation, as well as the implementation netlist and an
instantiation netlist. To create the LogiBLOX component, follow these
steps.

1. To invoke the LogiBLOX GUI, type lbgui at the UNIX prompt. If
you are using a PC, click on the LogiBLOX icon in the Xilinx
Program group.

The LogiBLOX GUI and Setup dialog box open.

2. In the Vendor tab of the Setup dialog box, select B(I) for bus type
and “Other” for vendor.

3. In the Project Directory tab, use the Browse button or type the
path to specify the project directory where you wish to write files.

4. In the Device Family tab, choose the xc9500 family.

5. In the Options tab, set the following options.

VHDL tutorial settings.

• Simulation Netlist: Behavioral VHDL netlist

• Component Declaration: VHDL Template
Exemplar Tutorial 1-7

http://www.xilinx.com/techdocs/2561.htm
http://www.xilinx.com/techdocs/2561.htm

Exemplar Tutorial
• Implementation Netlist: NGC File

Verilog tutorial settings.

• Simulation Netlist: Structural Verilog netlist

• Component Declaration: Verilog Template

• Implementation Netlist: NGC File

6. Click OK to close the Setup dialog box.

Note: If you are familiar with LogiBLOX, notice that the implementa-
tion netlist extension is now .ngc. This was introduced in the Xilinx
Alliance 1.5 software. For more details, read Xilinx Solution # 3904
which is available at http://www.xilinx.com/techdocs/3904.htm.

Figure 1-2 LogiBLOX Setup Dialog Box

7. In the LogiBLOX Module Selector dialog box, set the following
options.
1-8 Xilinx Development System

http://www.xilinx.com/techdocs/3904.htm

Exemplar/ModelSim Tutorial for CPLDs
• Module Type: Counters

• Module Name: tenths (Typed by the user)

• Bus Width: 10 (Optionally typed by the user)

• Operation = Up

• Deselect D_IN

• Select Async. Control and Terminal Count

• By default, the following is selected: Clock Enable, Q_OUT

• Style = Maximum Speed

• Encoding = One Hot

• Async. Val = 2#0000000001#
Exemplar Tutorial 1-9

Exemplar Tutorial
Figure 1-3 LogiBLOX Module Selector

8. Click OK.

LogiBLOX generates the following output files.

• logblox.ini - shows the LogiBLOX options used

• logiblox.log - log file of the LogiBLOX GUI messages
window

• tenths.mod - LogiBLOX Modules options file

• tenths.ngc - implementation netlist
1-10 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
• tenths.vhi - VHDL declaration/instantiation template

• tenths.vhd - VHDL behavioral simulation netlist

• tenths.vei - Verilog declaration/instantiation template

• tenths.v - Verilog structural simulation netlist

RTL Simulation
Functional simulation is the same for the XC9500/XL/XV and XCR
devices. In this tutorial, no simulation library is used for functional
simulation.

For Verilog simulation, all behaviorally described (inferred) and
instantiated registers should have a common signal which asynchro-
nously sets or resets the registers. Toggling the global set/reset
emulates the Power-On-Reset of the CPLD. If this is not done, the
flip-flops and latches in your simulation enter an unknown state. The
general procedure for specifying global set/reset or global reset
during a pre-Ngdbuild Verilog UNISIMS simulation involves
defining the global reset signals with the $XILINX/verilog/glbl.v
module. However, Verilog allows a global signal to be modified as a
wire in a global module, and, thus does not contain these cells.

Copying Source Files to the Functional Simulation
Directory

VHDL

For the VHDL tutorial, copy the following files into the
/cpld_tut/vhdl/watch/func directory.

• divider.vhd

• smallcntr.vhd

• cnt60.vhd

• hex2led.vhd

• tenths.vhd

• watch.vhd

• stmchine.vhd
Exemplar Tutorial 1-11

Exemplar Tutorial
• testbench.vhd

• rtl_sim.do

Verilog

For the Verilog tutorial, copy the following files into the
/cpld_tut/verilog/watch/func directory.

• divider.v

• smallcntr.v

• cnt60.v

• hex2led.v

• tenths.v

• watch.v

• stmchine.v

• testfixture.v

• rtl_sim.do

Starting ModelSim
If you are using the PC, invoke the simulator by selecting Programs
→ Model Tech → ModelSim from the Start menu. For UNIX work-
stations, type the following at the prompt.

vsim -i &

Set the project directory using the File → Change Directory
menu command and select watch/func.

Creating the Work Directory
Before compiling the VHDL/Verilog source files, create a directory
for use as a library. Type the following at the ModelSim prompt.

vlib work

This action is echoed in the Transcript window as shown in the
following figure.
1-12 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
Figure 1-4 MTI Transcript Window

Compiling the Source Files

VHDL

Leonardo Spectrum supports translate_off/translate_on directives.
Translate_off instructs Leonardo Spectrum not to read in and synthe-
size anything after the translate_off directive, until a translate_on
directive is found. In this tutorial, these directives are used to declare
the simulation library without removing the declaration for
synthesis.

The Vcom command compiles VHDL code for use with Vsim RTL
simulation. Also, to enhance simulation, both Leonardo Spectrum
and ModelSim support VHDL ‘93. The -93 switch is used to enable
support for 1076-93. Type the following at the ModelSim prompt.

vcom -93 -explicit smallcntr.vhd

vcom -93 divider.vhd cnt60.vhd tenths.vhd

vcom -93 hex2led.vhd stmchine.vhd

vcom -93 watch.vhd testbench.vhd
Exemplar Tutorial 1-13

Exemplar Tutorial
The -explicit is used to compile smallcntr.vhd since there is a defini-
tion of “=” in the std_logic_1164 and std_logic_unsigned libraries
that are declared for the entity. The option resolves resolution
conflicts in favor of explicit function.

Verilog

If LogiBLOX is used, comment out the Tenths module declaration
within watch.v since the simulation model for this component was
generated with the creation of LogiBLOX component. The following
declaration is used as a place-holder for synthesis since the NGC was
created earlier, so it is unnecessary to synthesize the tenths module.

module tenths (CLK_EN, CLOCK, ASYNC_CTRL, Q_OUT,
TERM_CNT)

/* synthesis black_box */;

input CLK_EN, CLOCK, ASYNC_CTRL;

output [9:0] Q_OUT;

output TERM_CNT;

endmodule

The vlog command compiles Verilog code for use with Vsim RTL
simulation. Type the following at the ModelSim prompt.

vlog testfixture.v watch.v divider.v stmchine.v
hex2led.v cnt60.v smallcntr.v tenths.v

Invoke the Simulator
For the VHDL tutorial, type the following at the ModelSim prompt to
invoke the ModelSim simulator.

vsim tbx_watch tbx_arch

For the Verilog tutorial, type the following at the ModelSim prompt
to invoke the ModelSim simulator.

vsim watch_tf.v watch.v

For LogiBLOX generated components, Ngd2ver is used to generate a
structural Verilog netlists to facilitate functional simulation. The
structural netlist contains SIMPRIMS library components which are
mapped to the simprims_ver library.
1-14 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
Note: The file, rtl_sim.do, runs the above commands; you can run it
instead of executing each command. The file is located in the src
directory and you can copy it into the watch/func directory. To
execute the file, type the following at the ModelSim prompt.

do rtl_sim.do

Optionally, execute the macro via the Macro → Execute Macro
menu command.

Running the Simulation
To perform simulation using ModelSim, follow these steps.

1. To view all the ModelSim debug windows, type the following.

view *

2. Add the signals from the selected region in the Structure window
to the Wave and List windows by issuing the following
commands at the ModelSim prompt.

add wave *

add list *

3. In the Structure window, notice that VHDL design units are indi-
cated by squares and Verilog modules are indicated by circles.
You can expand and collapse regions of hierarchy by clicking on
the (+) and (-) notations.

4. To run the simulation for a specified amount of time at the
ModelSim prompt, type the following.

run 100000 ns

The simulation output is displayed in the Wave window. You
may have to zoom in/out to view the waveforms.

5. In the Wave window, try adding or removing cursors with the
Cursor → Add | Remove menu command. When multiple
cursors are drawn, ModelSim adds a delta measurement
showing the time difference between the cursors. The selected
cursor is drawn as a solid line and the values at the cursor loca-
tion are shown to the right of the signal name. All other cursors
are drawn as dotted lines. If you cannot see the signal value next
to the signal name, select the bar separating the signal names
from the waveforms and drag it to the right.
Exemplar Tutorial 1-15

Exemplar Tutorial
Note: The above commands have been combined into a macro file
called stim.do. You can execute them at the ModelSim prompt.

Figure 1-5 Simulation Output in Wave Window

Synthesizing the Design Using Exemplar
In this section you will synthesize your design using three different
methods.

• Leonardo Spectrum Level 1

• Leonardo Spectrum Level 2

• Leonardo Spectrum Level 3

Currently Leonardo Spectrum Level 1 is not included with the release
software, but will be introduced at a later time. Level 2 is basically
equivalent to the previous Galileo version, and has a Wizard to auto-
mate the synthesis step. Level 3 is equivalent to the previous
Leonardo 4.2.2 version, and also has the Wizard to automate the
synthesis step, but also has an interactive capability to give the user
more control over synthesis.
1-16 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
Verilog tutorial

You will need to either add or make sure the Tenths module declara-
tion within the file watch.v exists, as this is needed for a black box
instantiation. You can un-comment the lines by removing the slash-
slash ‘//’ at the beginning of the following lines if they exist:

module tenths (CLK_EN, CLOCK, ASYNC_CTRL, Q_OUT,
TERM_CNT)

/* synthesis black_box */;

input CLK_EN, CLOCK, ASYNC_CTRL;

output [9:0] Q_OUT;

output TERM_CNT;

endmodule

VHDL tutorial

For synthesis you may want to create a directory in which to process
the design through Exemplar. You will need to copy the following
files into the directory for synthesis: divider.vhd, smallcntr.vhd,
cnt60.vhd, hex2led.vhd, stmchine.vhd, watch.vhd, and synthesis.tcl.

Leonardo Spectrum Level 1
Leonardo Spectrum Level 1 is the same as Level 2 except it is for a
single technology only. Level 1 can be run using the Spectrum Level 2
flow documented in the next section “Leonardo Spectrum Level 2”.
Level 1 has an easy upgrade path to Leonardo Spectrum Level 2. For
more information about Leonardo Spectrum Level 1 please see the
Exemplar documentation, or go to the Exemplar web site at: http://
www.exemplar.com

Leonardo Spectrum Level 2
Leonardo Spectrum Level 2 has the ability to do CPLD and FPGA
synthesis, timing analysis, and back-annotation. The designer selects
the input design, output design, sets the constraints and target tech-
nology, and runs the tool. Level 2 has an easy upgrade path to Level
3. For this tutorial we will run the Spectrum Synthesis Wizard to
process the design. With Level 1 and Level 2 it is possible to run
through each step of the design using the “Power Tabs”.
Exemplar Tutorial 1-17

Exemplar Tutorial
The following apply for Unix and PC users unless otherwise speci-
fied.

1. To start-up the Leonardo Spectrum Graphical User Interface, do
the following:

UNIX platform

At the UNIX prompt type the following:

Leonardo &

PC platform

On a PC double-click on the Leonardo Spectrum icon on the
desktop, or choose Programs → Leonardo Spectrum V1998.2→
Leonardo Spectrum

The Exemplar Leonardo Spectrum license checkout window
opens as shown in the following figure 1-6.

Figure 1-6 Leonardo Spectrum license checkout Window

2. Select Leonardo Spectrum Level 2, and click the OK button
1-18 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
3. The Leonardo Spectrum Synthesis Wizard Input Files window
will open.

If this window does not come up choose Flows → Synthesis Wizard.

Figure 1-7 Set Input File(s) window

4. Check the working directory which is listed in the Synthesis
Wizard window. The working directory is also listed in lower
right hand corner of the Leonardo Spectrum Main Window. The
working directory is set by default to its previous value. To
change the working directory click on the folder icon just to the
Exemplar Tutorial 1-19

Exemplar Tutorial
right of the listed working directory and browse to the proper
directory. Select the directory and click on the Set button.

5. Add the files to the Open files box by clicking on the open files
icon to the right. The Set Input File(s) window will be shown as
in the figure 1-7. By default Verilog and VHDL files will be
displayed. You can select the files by left mouse clicking and
using a combination of either holding the left mouse button
down and highlighting all files at once, using the left mouse
button along with the shift-key and/or ctrl-key.

After the appropriate files are selected click the OK button.

6. The order of the files read in must be from the bottom up. To
arrange the files into the proper order highlight the file and drag
and drop it into the appropriate place to reflect the figure 1-8.

Figure 1-8 Input Files order window

7. Once the files are listed the Technology must be set for the HDL
files. This must be done since Level 2 runs everything at once and
the Target Technology library end up getting loaded after reading
the files in. So when there are instantiated components in the
1-20 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
HDL from a particular technology, then it must be set on the files.
To do this do the following:

a) Right mouse click in the Open files window where the files
are listed.

b) Goto Set Technology All → Xilinx → XC9500 or XCR

8. Click on the Next > button

9. In the Device Settings window you can set the technology. If you
are targeting the 95144 make the following selections:

Xilinx XC9500 or XCR

Part XC95144XL or XCR3256

Speed -6

After the selections are chosen as shown in figure 1-9 click on the
Next > button
Exemplar Tutorial 1-21

Exemplar Tutorial
Figure 1-9 Spectrum Level 2 Device selection window
1-22 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
10. In the Global window you can Specify Clock Frequency of 40
MHz, although for the tutorial this actually is not needed as on
the demo board the clock is going to be very slow. Click the Next
> button

11. In the Output File window the Filename: should already be set to
the top level name.edf, watch.edf in this tutorial, by default. It
will also give the path to the directory it is writing it to. If you
would like to change where it writes the output file to click on the
folder icon and select the destination.

For the Format choose EDIF.

Check the box for Write vendor constraints file (.ncf file)

Click on the Next > button

12. The Review window will come up showing all the options you
have set.

Click on the Run > button. The Review window will disappear and
the Spectrum Main Window will remain open and in the right hand
side of the Main window information will scroll by as the design is
processed. The following files are written out to the working direc-
tory:

exemplar.log - text file containing all the information that scrolls by in
the Main Window

exemplar.his - text file of the command and options run

watch.sum - Summary of the area and device utilization

watch.edf - Edif netlist to go into the Xilinx core tools

watch.ncf - constraints file for timing to go into the Xilinx core tools.
This is not used in the XCR flow.

Optionally you can now view the schematics of the RTL and Opti-
mized netlists by selecting: Tools → View RTL Schematic or by
selecting Tools → View Gate Level Schematic respectively. With
Spectrum Level 2 you will only be able to view the Schematics after
completing the flow.

Using the Exemplar Design Wizard, the option for entering in
constraints for pin locks is not available. Before Implementing the
design in the Xilinx tools you can add pin locks for two signals into
the supplied .ucf file. Using Spectrum Level 3 will explain how to
Exemplar Tutorial 1-23

Exemplar Tutorial
enter in the pin lock from the GUI. To add the pin locks to the .ucf
add the following two lines to the file watch.ucf:

NET reset LOC = xx;

NET strtstop LOC = yy ;

For XC9500/XL/XV designs, you can optionally implement the
design through the Xilinx tools from the Exemplar main window,
given that the Xilinx environment had been setup properly. This can
be done by clicking on the P&R tab in the main window choosing the
Execute Place_Route option. If you are going to be doing a Timing
Simulation you will also need to select Generate files for timing simu-
lation, as well as Generate bit file if you are going to download to the
demoboard. For more specific usage of the Xilinx Design Manager
refer to the ‘Watch Design Implementations Tools Tutorial’.

Leonardo Spectrum Level 3
Leonardo Spectrum Level 3 has all the capabilities as described for
Level 2, plus interactivity capabilities. Level 3 supports bottom-up
and top-down design methodologies. A designer can preserve and
manipulate the design hierarchy, and may set constraints on any level
of hierarchy, and then synthesize it separately with a different
constraint.

Each step is explained below in the order you would run them.
You do not necessarily need to run all the steps to write out the
EDIF file.

a) (Quick Setup Tab) —Define all input files, output files, target
technology, target frequency, and effort to Run Flow to get an
output netlist for implementation. Similar to a consolidated
Synthesis Wizard. This Step takes the place of running the
following steps b through i, not including constraints nor
report options.

b) (Technology Tab) Load Library —Reads a compiled Tech-
nology library file, then creates a library in Leonardo’s design
database. Modgen is automatically loaded with Load Library.

c) (Input Tab) Read —Loads a design from a file into the
Leonardo design database.

d) (Constraint Tab) Apply —Allows you to specify user-
defined constraints in the design.
1-24 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
e) (Optimize Tab) Optimize —Performs technology-specific
logic optimization and technology mapping.

f) (Timing Opt Tab) Optimize for Timing —Performs exten-
sive timing optimization on the design. This only appears if
Timing Optimization is selected.

g) (Report Tab) Report Area —Reports the accumulated area of
the present design.

h) (Report Tab) Report Delay —This option does critical path
reporting. This appears twice if Timing Optimization is
selected, otherwise it appears once. This allows comparing of
results before and after doing timing optimization.

i) (Output Tab) Write —Writes the output netlist in the user
specified format.

j) (P&R Tab) Run PR—Exemplar template that uses standard
setting to run the Xilinx core tools and to write out Timing
Simulation netlists and bit file for download to the chip.
There is also options for netlist for functional simulation pre-
Place & Route delay estimate, and running Xilinx Design
Manager only.

1. To start-up the Leonardo Spectrum Graphical User Interface, do
the following:

UNIX platform

At the UNIX prompt type the following:

leonardo &

PC platform

On a PC double-click on the Leonardo Spectrum icon on the
desktop, or choose Programs → Leonardo Spectrum V1998.2 →
Leonardo Spectrum

2. Select Leonardo Spectrum Level 3 and click the OK button

3. The Leonardo Spectrum Main Window is displayed similar to the
figure 1-10.
Exemplar Tutorial 1-25

Exemplar Tutorial
Figure 1-10 Leonardo Spectrum Main Window

4. Click on the technology tab and choose FPGA → Xilinx →
XC9500/XCR and then choose the following options as seen in
figure 1-11:

Part: XC95144 or XCR3256

Speed: -6
1-26 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
Click the Load Library button at the bottom of the window

Figure 1-11 Spectrum Level 3 Technology Settings window
Exemplar Tutorial 1-27

Exemplar Tutorial
5. In the lower right hand portion of the Main Window will show
the working directory. You can change the working directory by
going File → Change Working Directory, then browsing to the
directory and hitting the set button. You can also change the
working directory in the Input tab window, by clicking on the
open folder icon and browsing to the appropriate directory.

6. Under the Input tab add the HDL files to be read in by clicking on
the open file icon and browsing, or right-mouse click in the
empty box under the Open files text and choose the Add Input
Files. Select the files you wish to add and click on the OK button.

7. Next the files must be read in from the bottom up. To change the
order of the listing just drag and drop the file in the appropriate
location. The order should reflect the following in figure 1-12.

Click on the Read button in the lower portion of the Input
window.

Figure 1-12 Spectrum Level 3 Input Files window

8. You will notice after the ‘READ’ operation that the ‘View RTL
Schematic’ icon is now selectable, on the toolbar just below the
pulldown menus. Optionally you can now view the RTL Sche-
1-28 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
matic by choosing Tools → View RTL Schematic or by clicking
on the toolbar icon. The Schematic Viewer will come up with the
design loaded and the schematic will be shown. You will notice
as you select components in the schematic, that Spectrum auto-
matically opens the corresponding HDL code and cross-probes to
the code which created the selected logic.

9. Click on the Constraints tab. Since this design runs at quite a
slow frequency it is not necessary to enter in a Clock frequency.
You can enter in a Global timing constraint for the clock, of 40
MHz to see the resulting .ncf file timing constraints that are
written out. Click on the Apply button. We will be using the
Input sub-tab, found at the bottom of this particular window, to
lock two signals to two pins, then use a .UCF to lock all the rest in
order to save time. See figure 1-13.
Exemplar Tutorial 1-29

Exemplar Tutorial
Figure 1-13 Spectrum Level 3 Constraints window
1-30 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
10. Click on the Optimize tab. By default the architecture named
inside should already be highlighted. We will be using all default
settings, so simply click on the Optimize button. See figure 1-14.
Exemplar Tutorial 1-31

Exemplar Tutorial
Figure 1-14 Spectrum Level 3 Optimize window
1-32 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
11. Click on the Output tab. By default the Filename will be the top
level file .EDF, i.e. watch.edf in this tutorial. Click on the Write
Files tab in the lower portion of the Output window, and click on
the Write button to write out the EDIF netlist as in the following
figure 1-15.
Exemplar Tutorial 1-33

Exemplar Tutorial
Figure 1-15 Spectrum Level 3 Write Files

The following files are written out to the working directory:

exemplar.log - text file containing all the information that scrolls by in
the Main Window
1-34 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
exemplar.his - text file of the command and options run

watch.sum - Summary of the area and device utilization

watch.edf - Edif netlist to go into the Xilinx core tools

watch.ncf - constraints file for timing to go into the Xilinx core tools.

Optionally you can now view the schematics of the Optimized
netlists by selecting: Tools → View Gate Level Schematic. With Spec-
trum Level 3 you will be able to view the RTL Schematic after doing
the ‘Read’ operation, and can view the Synthesized gate level netlist
after the ‘Optimize’ operation.

For XC9500/XL/XV designs, you can optionally implement the
design through the Xilinx tools from the Exemplar main window,
given that the Xilinx environment had been setup properly. This can
be done by clicking on the P&R tab in the main window choosing the
Execute Place_Route option. If you are going to be doing a Timing
Simulation you will also need to select Generate files for timing simu-
lation, as well as Generate bit file if you are going to download to the
demoboard. For more specific usage of the Xilinx Design Manager
refer to the ‘Watch Design Implementations Tools Tutorial’.

Operating Leonardo in Batch Mode
As you were processing the Watch design in Leonardo you may have
noticed that for each command that ran, such as Load Library, Read,
and Optimize, that the exact command including the file names
appeared in blue in the Leonardo Main Window. Each of these
commands can be put into a file and run from a command line using
the ‘spectrum’ command, which is equivalent to using the 4.2.2
‘elsyn’ command. This script file has already been created, called
synthesis.tcl.

To run the Script from the Leonardo Spectrum GUI choose File →
Run Script and either select the file synthesis.tcl or type the filename
in. Click the OK button and the script will be executed.

To run Leonardo Spectrum in script mode you can also type the
following from the UNIX prompt.

spectrum -file xmplr_syn.tcl

This executes the Tcl script file and exits when finished. The file
watch.edf as well as an exemplar.log file are created. The flow
Exemplar Tutorial 1-35

Exemplar Tutorial
through Leonardo is fully defined by the commands in the script and
not fixed as with Galileo compatibility mode. The script can use any
command that Leonardo accepts including all Tcl and shell
commands that can be found in the path.

Implementing the Watch Design
The XC9500/XL/XV can be implemented in either Xilinx Design
Manager or WebPACK, while the XCR can only be implemented in
WebPACK. To implement the Watch design, refer to the Xilinx Design
Manager Tutorial or to WebPACK documentation. You need the
following files for implementation.

• watch.edf

• tenths.ngc (if LogiBLOX is used)

When you implement the Watch design with the Xilinx Design
Manager, set the Implementation Options Timing Template to
ModelSim VHDL for the VHDL tutorial to produce the time_sim.vhd
file, or ModelSim Verilog for the Verilog tutorial to produce the
time_sim.v file, and time_sim.sdf for timing simulation. To set these
options, follow these steps.

1. In the Design Manger’s Implement window, select Options
under the Design pull-down menu, to open the Options dialog
box.

2. In the Program Option Template, set Simulation to ModelSim
VHDL for the VHDL tutorial or ModelSim Verilog for the Verilog
tutorial, as shown in figure 1-16.
1-36 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
Figure 1-16 Design Manager Implement Dialog Box

3. Proceed with the Design Manager or WebPACK tutorial.

Note: Although not included in this tutorial, it is possible to run a
post-Ngdbuild and post-Map simulation, which may be helpful for
debugging the design.

XC9500/XL/XV Timing Simulation

VHDL
For VHDL simulation, you need two files.
Exemplar Tutorial 1-37

Exemplar Tutorial
• time_sim.vhd

• time_sim.sdf

To perform timing simulation, follow these steps.

1. Copy time_sim.vhd, time_sim.sdf, and testbench.vhd to the
following directory.

/cpld_tut/vhdl/watch/time

2. Launch ModelSim, and navigate to the following directory.

/cpld_tut/vhdl/watch/time

3. Create the work directory.

vlib work

4. Compile the VHDL source files and the testbench.

vcom time_sim.vhd testbench.vhd

5. Read in the SDF file for timing simulation.

vsim -sdftyp uut=time_sim.sdf tbx_watch tbx_arch

Alternatively, select File → Load New Design. Highlight the
design in the Design Unit window. Click the Add button. To
apply the timing data, click on the SDF tab on the Load Design
window. Click the Add button. Browse and select the
time_sim.sdf file. Type uut in the Apply to Region field and click
the Load button.

6. View the necessary debugging windows by typing the following
command at the ModelSim prompt.

view wave signals source

7. View and add the signals of the design to the waveform window.

8. At the ModelSim prompt type.

run 100000 ns

9. Right click in the waveform window and zoom in. Another way
to zoom in is to press and hold the middle mouse button and
draw a square around the area to zoom in on. After simulating,
you can then zoom in and view the delay from the clock edge to
the TENSOUT, ONESOUT, and TENTHSOUT output change.
1-38 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
Note: The above commands have been combined into a macro file,
time_sim.do, and can be executed at the ModelSim prompt.

Verilog
For Verilog simulation you need two files.

• time_sim.v

• time_sim.sdf

To perform timing simulation, follow these steps.

1. Copy time_sim.v, time_sim.sdf, and testfixture.v to the following
directory.

/cpld_tut/verilog/watch/time

2. Launch ModelSim, and navigate to the following directory.

/cpld_tut/verilog/watch/time

3. Create the work directory.

vlib work

4. Compile the Verilog file and the testfixture.
Exemplar Tutorial 1-39

Exemplar Tutorial
vlog testfixture.v time_sim.v

5. Read in the SDF file for timing simulation. Ngd2ver automati-
cally writes out a directive, $sdf_annotate, within the time_sim.v
file. This directive specifies the appropriate SDF file to use in
conjunction with the produced netlist. So, it unnecessary for the
user to specify an option for ModelSim to read the SDF.

vsim -L simprims test

Now that the HDL netlist has been resolved into primitives, we
must provide the simulation models to the SIMPRIMS library.

6. View the necessary debugging windows by typing the following
command at the ModelSim prompt. Use the ModelSim Combine
command to group the tensout and onesout signals into buses.

view wave signals source

7. View and add the signals of the design to the waveform window.

8. At the ModelSim prompt type.

run 100000 ns

9. Right click in the waveform window and zoom in. Another way
to zoom in is to press and hold the middle mouse button and
draw a square around the area to zoom in on. After simulating,
you can then zoom in and view the delay from the clock edge to
the TENSOUT, ONESOUT, and TENTHSOUT output change.

Note: The above commands have been combined into a macro file,
time_sim.do, and can be executed at the ModelSim prompt.

XCR Timing Simulation

VHDL
For timing simulation of a VHDL design using a XCR CPLD, you
need two files.

Note: The testbencht.vhd file is an edited version of the original test-
bench.vhd file. In the VHDL timing model (watch.vho), the tensout,
onesout, and tenthsout bus signals are broken into discrete signals.
For simulation, the component signals and uut signals in the test-
bench and design model must match. The component and uut instan-
1-40 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
tiation statements in testbencht.vhd have been edited to match those
in watch.vho.

• watch.vho

• testbencht.vhd

To perform timing simulation, follow these steps.

1. Copy watch.vho and testbencht.vhd to the following directory.

/cpld_tut/vhdl/xcr/watch/time

2. Launch ModelSim, and navigate to the following directory.

/cpld_tut/vhdl/watch/time

3. Create the work directory.

vlib work

4. Compile the VHDL source files and the testbench.

vcom watch.vho testbencht.vhd

5. Read in the files for timing simulation.

vsim tbx_watch tbx_arch

Alternatively, select File → Load New Design. Click the Add
button. Browse and select the design file. Type uut in the Apply
to Region field and click the Load button.

6. View the necessary debugging windows by typing the following
command at the ModelSim prompt.

view wave signals source

7. View and add the signals of the design to the waveform window.
Use the ModelSim Combine command to group the tensout and
onesout signals into buses.

8. At the ModelSim prompt type.

run 100000 ns

9. Right click in the waveform window and zoom in. Another way
to zoom in, press and hold the middle mouse button and draw a
square around the area to zoom in on. After simulating, you can
then zoom in and view the delay from the clock edge to the
TENSOUT, ONESOUT, and TENTHSOUT output change.
Exemplar Tutorial 1-41

Exemplar Tutorial
Note: The above commands have been combined into a macro file,
time_sim.do, and can be executed at the ModelSim prompt.

Verilog
For timing simulation of the Verilog design you need two files.

• watch.vo

• testfixturet.v

Note: The testfixturet.v file is an edited version of the original tesfix-
ture.v file. In the Verilog timing model (watch.vo), the tensout,
onesout, and tenthsout bus signals are broken into discrete signals.
For simulation, the component signals and uut signals in the test-
bench and design model must match.

Note:

To perform timing simulation, follow these steps.

1. Copy watch.vo and testfixturet.v to the following directory.

/cpld_tut/verilog/watch/time

2. Launch ModelSim, and navigate to the following directory.
1-42 Xilinx Development System

Exemplar/ModelSim Tutorial for CPLDs
/cpld_tut/verilog/watch/time

3. Create the work directory.

vlib work

4. Compile the Verilog file and the testfixture.

vlog testfixturet.v watch.vo

5. Simulate the design

vsim -L simprims_ver test

Now that the HDL netlist has been resolved into primitives, we
must provide the simulation models to the SIMPRIMS library.

6. View the necessary debugging windows by typing the following
command at the ModelSim prompt.

view wave signals source

7. View and add the signals of the design to the waveform window.

8. At the ModelSim prompt type.

run 100000 ns

9. Right click in the waveform window and zoom in. Another way
to zoom in, press and hold the middle mouse button and draw a
square around the area to zoom in on. After simulating, you can
then zoom in and view the delay from the clock edge to the
TENSOUT, ONESOUT, and TENTHSOUT output change.

Note: The above commands have been combined into a macro file,
time_sim.do, and can be executed at the ModelSim prompt.

The Exemplar/MTI/Xilinx CPLD Tutorial is now completed!
Exemplar Tutorial 1-43

Exemplar Tutorial
1-44 Xilinx Development System

	Chapter 1
	Exemplar/ModelSim Tutorial for CPLDs
	Design Description
	Inputs
	Outputs

	Before Beginning the Tutorial
	1. Install the following software.
	2. Verify that your system is properly configured. Consult the release notes and installation not...

	Design Flow
	Tutorial Installation
	Tutorial Directory and Files
	VHDL Design Files
	Verilog Design Files
	Script Files
	Simulation Models for MTI
	Figure 1-1� Compiling the simprims library

	Creating the Tenths LogiBLOX Component
	1. To invoke the LogiBLOX GUI, type lbgui at the UNIX prompt. If you are using a PC, click on the...
	2. In the Vendor tab of the Setup dialog box, select B(I) for bus type and “Other” for vendor.
	3. In the Project Directory tab, use the Browse button or type the path to specify the project di...
	4. In the Device Family tab, choose the xc9500 family.
	5. In the Options tab, set the following options.
	6. Click OK to close the Setup dialog box.
	Figure 1-2� LogiBLOX Setup Dialog Box
	7. In the LogiBLOX Module Selector dialog box, set the following options.

	Figure 1-3� LogiBLOX Module Selector
	8. Click OK.

	RTL Simulation
	Copying Source Files to the Functional Simulation Directory
	VHDL
	Verilog

	Starting ModelSim
	Creating the Work Directory
	Figure 1-4� MTI Transcript Window

	Compiling the Source Files
	VHDL
	Verilog

	Invoke the Simulator
	Running the Simulation
	1. To view all the ModelSim debug windows, type the following.
	2. Add the signals from the selected region in the Structure window to the Wave and List windows ...
	3. In the Structure window, notice that VHDL design units are indicated by squares and Verilog mo...
	4. To run the simulation for a specified amount of time at the ModelSim prompt, type the following.
	5. In the Wave window, try adding or removing cursors with the Cursor Æ Add | Remove menu command...
	Figure 1-5� Simulation Output in Wave Window

	Synthesizing the Design Using Exemplar
	Verilog tutorial
	VHDL tutorial
	Leonardo Spectrum Level 1
	Leonardo Spectrum Level 2
	1. To start-up the Leonardo Spectrum Graphical User Interface, do the following:
	UNIX platform
	PC platform
	Figure 1-6� Leonardo Spectrum license checkout Window
	2. Select Leonardo Spectrum Level 2, and click the OK button
	3. The Leonardo Spectrum Synthesis Wizard Input Files window will open.

	Figure 1-7� Set Input File(s) window
	4. Check the working directory which is listed in the Synthesis Wizard window. The working direct...
	5. Add the files to the Open files box by clicking on the open files icon to the right. The Set I...
	6. The order of the files read in must be from the bottom up. To arrange the files into the prope...

	Figure 1-8� Input Files order window
	7. Once the files are listed the Technology must be set for the HDL files. This must be done sinc...
	8. Click on the Next > button
	9. In the Device Settings window you can set the technology. If you are targeting the 95144 make ...

	Figure 1-9� Spectrum Level 2 Device selection window
	10. In the Global window you can Specify Clock Frequency of 40 MHz, although for the tutorial thi...
	11. In the Output File window the Filename: should already be set to the top level name.edf, watc...
	12. The Review window will come up showing all the options you have set.

	Leonardo Spectrum Level 3
	a) (Quick Setup Tab) —Define all input files, output files, target technology, target frequency, ...
	b) (Technology Tab) Load Library —Reads a compiled Technology library file, then creates a librar...
	c) (Input Tab) Read —Loads a design from a file into the Leonardo design database.
	d) (Constraint Tab) Apply —Allows you to specify user- defined constraints in the design.
	e) (Optimize Tab) Optimize —Performs technology-specific logic optimization and technology mapping.
	f) (Timing Opt Tab) Optimize for Timing —Performs extensive timing optimization on the design. Th...
	g) (Report Tab) Report Area —Reports the accumulated area of the present design.
	h) (Report Tab) Report Delay —This option does critical path reporting. This appears twice if Tim...
	i) (Output Tab) Write —Writes the output netlist in the user specified format.
	j) (P&R Tab) Run PR—Exemplar template that uses standard setting to run the Xilinx core tools and...
	1. To start-up the Leonardo Spectrum Graphical User Interface, do the following:
	UNIX platform
	PC platform
	2. Select Leonardo Spectrum Level 3 and click the OK button
	3. The Leonardo Spectrum Main Window is displayed similar to the figure 1-10.
	Figure 1-10� Leonardo Spectrum Main Window
	4. Click on the technology tab and choose FPGA Æ Xilinx Æ XC9500/XCR and then choose the followin...

	Figure 1-11� Spectrum Level 3 Technology Settings window
	5. In the lower right hand portion of the Main Window will show the working directory. You can ch...
	6. Under the Input tab add the HDL files to be read in by clicking on the open file icon and brow...
	7. Next the files must be read in from the bottom up. To change the order of the listing just dra...

	Figure 1-12� Spectrum Level 3 Input Files window
	8. You will notice after the ‘READ’ operation that the ‘View RTL Schematic’ icon is now selectabl...
	9. Click on the Constraints tab. Since this design runs at quite a slow frequency it is not neces...

	Figure 1-13� Spectrum Level 3 Constraints window
	10. Click on the Optimize tab. By default the architecture named inside should already be highlig...

	Figure 1-14� Spectrum Level 3 Optimize window
	11. Click on the Output tab. By default the Filename will be the top level file .EDF, i.e. watch....

	Figure 1-15� Spectrum Level 3 Write Files

	Operating Leonardo in Batch Mode

	Implementing the Watch Design
	1. In the Design Manger’s Implement window, select Options under the Design pull-down menu, to op...
	2. In the Program Option Template, set Simulation to ModelSim VHDL for the VHDL tutorial or Model...
	Figure 1-16� Design Manager Implement Dialog Box
	3. Proceed with the Design Manager or WebPACK tutorial.

	XC9500/XL/XV Timing Simulation
	VHDL
	1. Copy time_sim.vhd, time_sim.sdf, and testbench.vhd to the following directory.
	2. Launch ModelSim, and navigate to the following directory.
	3. Create the work directory.
	4. Compile the VHDL source files and the testbench.
	5. Read in the SDF file for timing simulation.
	6. View the necessary debugging windows by typing the following command at the ModelSim prompt.
	7. View and add the signals of the design to the waveform window.
	8. At the ModelSim prompt type.
	9. Right click in the waveform window and zoom in. Another way to zoom in is to press and hold th...

	Verilog
	1. Copy time_sim.v, time_sim.sdf, and testfixture.v to the following directory.
	2. Launch ModelSim, and navigate to the following directory.
	3. Create the work directory.
	4. Compile the Verilog file and the testfixture.
	5. Read in the SDF file for timing simulation. Ngd2ver automatically writes out a directive, $sdf...
	6. View the necessary debugging windows by typing the following command at the ModelSim prompt. U...
	7. View and add the signals of the design to the waveform window.
	8. At the ModelSim prompt type.
	9. Right click in the waveform window and zoom in. Another way to zoom in is to press and hold th...

	XCR Timing Simulation
	VHDL
	1. Copy watch.vho and testbencht.vhd to the following directory.
	2. Launch ModelSim, and navigate to the following directory.
	3. Create the work directory.
	4. Compile the VHDL source files and the testbench.
	5. Read in the files for timing simulation.
	6. View the necessary debugging windows by typing the following command at the ModelSim prompt.
	7. View and add the signals of the design to the waveform window. Use the ModelSim Combine comman...
	8. At the ModelSim prompt type.
	9. Right click in the waveform window and zoom in. Another way to zoom in, press and hold the mid...

	Verilog
	1. Copy watch.vo and testfixturet.v to the following directory.
	2. Launch ModelSim, and navigate to the following directory.
	3. Create the work directory.
	4. Compile the Verilog file and the testfixture.
	5. Simulate the design
	6. View the necessary debugging windows by typing the following command at the ModelSim prompt.
	7. View and add the signals of the design to the waveform window.
	8. At the ModelSim prompt type.
	9. Right click in the waveform window and zoom in. Another way to zoom in, press and hold the mid...

