

Single Port Block Memory

May 28, 1999 Product Specification

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
E-mail: coregen@xilinx.com
URL: www.xilinx.com

R

Features
• Supports RAM, ROM and Write Only functions
• Supports data widths from 1 to 1024 bits
• Supports memory depths from 16 to 1M words
• Uses VirtexTM block memory for performance and

efficiency
• Allows power-on memory content to be defined
• Fully synchronous
• Drop-in modules for the VirtexTM family
• Available in Xilinx CORE GeneratorTM System

Functional Description
The Block RAM takes an N-bit data value and an M-bit
address. When the Block RAM is disabled (EN inactive) the
memory configuration and output value remain unaltered.
When enabled (EN asserted) all memory operations occur
on the active edge of the clock input (CLK). During a write
operation (WE asserted) the data value is stored at the
location selected by the address. If the memory is not in
reset mode (RST inactive) the data value will also appear at
the module’s output. During a read operation (WE and RST
inactive) the memory contents at the location selected by
the address will appear at the module’s output. While in
reset mode (RST asserted) the module’s outputs are all
LOW, although memory write operations may still take
place. (Asserting RST has no effect on memory contents.)

The initial contents of the memory (i.e. the data stored in
the memory immediately after device configuration) may
also be specified.

 Pinout
Port names for the core module are shown in Figure 1 and
described in Table 1. The inclusion of some ports on the
module is optional; exclusion of these ports will alter the

Figure 1: Core Schematic Symbol

DI[n : 0]

ADDR[m : 0]

WE

EN

RST

CLK

DO[n : 0]

x9021

Figure 2: Parameterization Window

Single Port Block MemorySingle Port Block Memory

function of the module (e.g., by excluding the DI and WE
ports the Block RAM becomes a Block ROM). The optional
ports are marked in Table 1.

CORE Generator Parameters
The CORE Generator parameterization window for this
module is shown in Figure 2. The Parameters tab of this
window is divided into a number of sections. The interactive
section of the window contains parameters that the user
can define. These are as follows:

• Component Name: Enter a name for the output files
generated for this module.

• Depth: Select the number of words in the memory.
Values should be 16, 32, 64, 128 or multiples of 256.
Invalid entries will be set to the nearest value greater in
depth. The absolute maximum number of words is
1048576 (or 1M), but useful cores should not exceed
the number of Block RAM primitives available in the
required device. (1M words would require more
primitives than are available in any current device.)

• Data Width: Select the data bit width. Values must be
greater than 1. There is no upper limit but useful cores
should not exceed the number of Block RAM primitives
available in the required device.

• Pins…: Press the button to display the Pins dialog box
on the screen.

• Initial Contents…: Press the button to display the
Initial Contents dialog box on the screen.

The Pins dialog box is shown in Figure 4. The box contains
parameter fields that the user can define, relating to the
optional pins and the control pin polarity. These fields are
as follows:

• Write Port: Check the box to include the DI and WE
ports on the module; uncheck the box to remove them.

• Read Port: Check the box to include the DO port on the
module; uncheck the box to remove it.

• Enable: Check the box to include the EN port on the
module; uncheck the box to remove it.

• Output Reset: Check the box to include the RST port
on the module; uncheck the box to remove it.

• WE Active: Choose between an active High and active
Low WE port. This choice will only be available if the
Write Port box is checked.

• Clock On: Choose whether the CLK port is active on
the rising edge or falling edge.

• EN Active: Choose between an active High and active
Low EN port. This choice will only be available if the
Enable box is checked.

• RST Active: Choose between an active High and
active Low RST port. This choice will only be available if
the Output Reset box is checked.

The Initial Contents dialog box is shown in Figure 3. The
box contains parameter fields that the user can define,
relating to the data stored in the memory directly after
device configuration. These fields are as follows:

• MIF Filename: Enter the name of a file to which the
memories initial contents will be read from or to, which
they will be written. This defaults to the modules
component name. If no extension is given this will
default to .mif.

Table 1: Core Signal Pinout

Signal
Signal

Direction
Description

ADDR[m:0] Input ADDRESS – memory loca-
tion to which data will be
written or from which data
will be read.

DI[n:0]
(Optional)

Input DATA INPUT – data to be
written into memory.

WE
(Optional)

Input WRITE ENABLE – control
signal used to allow transfer
of data input into memory.
Active state of WE is user
defined (default is active
High).

EN
(Optional)

Input ENABLE – control signal
used to allow any memory
operations to take place. Ac-
tive state of EN is user de-
fined (default is active High).

RST
(Optional)

Input RESET – control signal
used to force the modules
outputs LOW. Active state of
RST is user defined (default
is active High). RST does
not affect memory contents.

CLK Input CLOCK – when memory is
enabled, control and data in-
puts are registered and new
output data formed on active
clock edge. Active edge of
clock is user defined (default
is rising edge).

DO[n:0]
(Optional)

Output DATA OUTPUT – when the
memory is enabled this port
reflects data stored at the lo-
cation selected by the ad-
dress during read mode,
data input during write mode
or LOW during reset mode.
When memory is disabled,
maintains the previous out-
put data value.

• Read MIF: Check this box if the named MIF file exists
and the initial memory contents are to be read from this
file.

• Default Data: Enter the initial value to be stored in any
memory location not specified by another means. When
no value is entered this field defaults to 0. Values may
be entered in Binary, Decimal or Hex, as defined by the
Radix entry.

• Radix: Choose the radix of the Default Data value. Valid
entries are 2,10 and 16. If the memory’s initial contents
have been defined by an entry in a coefficient file (.coe
– see below) the radix will become fixed.

• Write MIF: Check this box if the initial contents of the
memory are to be written to the named MIF file. In most
cases this parameter will be unchecked; the file will be
written by default where necessary.

• Close: Press the button to close the dialog box and
return to the parameterization window.

For further information regarding the memory’s initial con-
tents refer to the Specifying Memory Contents section.

The .coe file section of the window allows the user to load
parameter values from a coefficient file, including initial and
default memory contents. The .coe file section fields are:

• Load Init Values: Specifies the file that contains the
parameter values for the memory.

• Show Invalid Values: Display any initial content values
that are invalid given the chosen parameters, once they
have been loaded.

• .coe file: Displays the name of the coefficient file. This
field is read only.

The report section of the window provides feedback about
the memory with the parameter values as set by the user.
These fields are:

• Address Width: Shows the number of bits needed to
address all of the words in the memory.

• Blocks*: Shows the number of Block RAM primitives
required to implement the specified Depth and Data
width.

• Slices: For some memory depths address decoding
and output multiplexing external to the Block RAM
primitives is required. This field shows an estimate of
the number of VirtexTM slices used for the extra logic.

• Bits Unused: For some memory depths and data
widths the Block RAM primitives (needed to construct
the user’s specified memory) may not be 100% utilized.
This field shows the number of Block RAM bits which
are unused.

Figure 4: Pins Dialog Box

Figure 3: Initial Contents Dialog Box

..

.

Figure 6: Symbol Annotations and Their Meaning

Decode and Mux
required utilized

Full width not Full depth not
utilized

Figure 5: An example COE file for Single Port Block
RAM

Component_Name=ram256x16;

Data_Width=16;

Depth=256;

Radix=16;

Default_Data=F;

Memory_Initialization_Vector=123, 456,
aaaa;

Single Port Block MemorySingle Port Block Memory

• Initial Contents: Shows how the initial contents of the
memory are specified either: To be read from (MIF) file,
Loaded from coe file or Set to (default value).

Finally, the Symbol section of the window updates itself in
response to the user’s parameter selections. The user’s
Depth and Data width settings are reflected on the ADDR,
DIand DO bus widths. Active Low control signals are illus-
trated with a circle on the pin. Other annotations on the
symbol and their meanings are shown in Figure 6.

*Note: Ensure that the target device has sufficient Block
RAM primitives to accommodate the specified memory,
including any primitives used elsewhere in the application.
(Each primitive is equivalent to 4096 bits of storage. Table 2
shows how many primitives are available in each device.)

Specifying Memory Contents
The initial contents of the memory can be assigned by
specifying the desired information in a text file known as a
memory initialization file (MIF). MIF files may take any root
file name and extension, although the extension will nor-
mally be “.mif”.

The MIF file consists of one line per memory location, start-
ing from 0 and running consecutively. The file must not con-
tain more lines than there are memory locations, but may
contain fewer. In the latter case all other locations will be
initialized to the default value. Each individual line must
contain the value for that location in binary format, with
exactly one binary digit per bit in the memory’s width.

To specify a MIF file to use as the initial memory contents
press the “Initial Contents…” button, enter the file’s name in
the MIF Filename field and then check the Read MIF box.
At this point the default data value and radix can be entered
in their respective fields, if required. The MIF file will be
read during core generation.

The initial contents of the memory can also be assigned by
specifying the desired information in a separate text file
called a COE file. In addition to the initial memory contents,
all the parameters visible on the parameterization window
may be assigned values in the COE file. COE files may take
any root file name but must end with the extension “.coe”.

To select and load a COE file, press the “Load Init Val-
ues…” button on the parameterization window and choose
the desired file from the dialog box. Any field on the param-
eterization window that is assigned a value in the COE file
will lose its previous value when the COE file is loaded.
Changing a parameter value that was previously loaded
from a COE file causes the COE file’s name to be high-
lighted in red, indicating that the settings have changed
since the file was loaded. If any of the initialization values
are inconsistent with the other parameters specified, an
error is issued. The inconsistent data can then be reviewed
by pressing the “Show Invalid Values…” button, which will
now be highlighted in red.

For a detailed description of the COE file syntax, please
refer to the Xilinx CORE Generator User Guide. The COE
keywords supported by the Single Port Block Memory mod-
ule are shown in the Parameter File Information table at the
end of this data sheet. An example COE file is shown in
Figure 5.

When specifying the initial contents for a memory in a COE
file the keywords DEFAULT_DATA ,
MEMORY_INITIALIZATION_VECTOR , RADIX and
READ_MIF may be used. The DEFAULT_DATA keyword
allows a value to be assigned to all memory locations with
a single statement. If not set, the DEFAULT_DATA value is
0. (In general, data values that require fewer than
DATA_WIDTH bits to express will be padded with “0”s at
their most significant end. In the example below the
DEFAULT_DATA value ”F” is assumed to be ”000F”.) The
DEFAULT_DATA value is overridden by the
MEMORY_INITIALIZATION_VECTOR but only for the
memory locations covered by the vector.

The MEMORY_INITIALIZATION_VECTOR takes the form
of a sequence of comma separated values, one value per
memory location, terminated by a semi-colon. Any amount
of white space, including new lines, can be included in the
vector to enhance readability. The format of an individual
value in the vector will depend on the RADIX value, which
can be ”2”, ”10” or ”16”, (the default value is 16). The vector
values must be consistent with the RADIX value and must
fall within the range of 0 to 2DATA_WIDTH-1. Values must not be
negative. Additionally, the initial values for the memory can
be read from a memory initialization file (.mif) by setting the
READ_MIF parameter. When READ_MIF is true the
MEMORY_INITIALIZATION_VECTOR values are over
written with values from the .mif file. This allows the initial
memory contents to be developed in conjunction with the
HDL behavioral models and then used when generating the
final module. The name of the .mif file can be specified with
the MIF_FILENAME parameter. This name is used for
reading and generating the MIF file, and its root name
defaults to the COMPONENT_NAME parameter values.

HDL Simulation
The behavioural models (VHDL and Verilog) for the mem-
ory components initialize their contents by reading a mem-
ory initialization file (MIF). This file (specified by the
MIF_FILENAME parameter) is written into the project
directory when the module is generated. Both the Verilog
and the VHDL behavioural models read the same .mif file.
The C_READ_MIF generic (or parameter for Verilog) must
be set to ‘1’ in order for the model to read the .mif file. If
C_READ_MIF is set to ‘1’ and the .mif file is not present in
the simulator project directory before the simulation begins,
an error will be issued. If C_READ_MIF is set to ‘0’ the
memory will be initialized with the default data value as
specified by the C_DEFAULT_DATA generic (or parame-
ter).

For backward compatibility .mif files can also be generated
from the behavioural models and read in during module
generation (see previous section). This function is available
by setting the generatemif signal within the behavioural
model to 1, during simulation. The memory contents will be
written to the file (specified by the MIF_FILENAME param-
eter, overwriting the previous contents) on every inactive
clock edge until the generatemif signal is set to 0. As writing
the .mif file may be time consuming it is advised to use this
function sparingly.

Note: As the VHDL behavioural models must be VHDL-87
and VHDL-93 compliant, the default VHDL model does not
contain this feature. User’s wishing to use this feature
should compile either, the mem_init_file_pack.vhd87 (for
VHDL-87 compilers) or the mem_init_file_pack.vhd93 (for
VHDL-93 compilers) package, into XilinxCoreLib. Compila-
tion of these files directly supersedes the
mem_init_file_pack package and the .mif file reading and
writing procedures, compiled from mem_init_file_pack.vhd
by default, with VHDL-87 or VHDL-93 equivalents. Both
packages can be downloaded from:

http:\\www.xilinx.com\ipcenter

Core Resource Utilization
The number of Block RAM primitives required is dependent
on the values of the depth and data width fields selected in
the CORE generator parameterization window, and is
equal to:

(depth*data_width)/4096.

Table 2 details the smallest device in the VirtexTM family, that
provides a particular number of primitives.

For some memory depths extra logic is required to decode
the address and multiplex the outputs from various primi-
tives. VirtexTM CLB slices are used to provide this function-
ality. The number of slices required depends on the way
that the depth is constructed from differing primitives, the
data width and the way that the decode and mux are con-
structed. Calculating the number of slices used is therefore
a non-trivial task and the best way to obtain an estimate for
a specified memory is to enter its parameters into the
parameterization window and read the report section.

Ordering Information
This macro comes free with the Xilinx CORE GeneratorTM

System. For additional information contact your local Xilinx

sales representative, or e-mail requests to: coregen@xil-
inx.com.

Table 2: Block RAM Primitives Available by Device

Blocks
Minimum

Device
1

XCV50

2
3
4
5
6
7
8
9

XCV100
10
11

XCV150
12
13

XCV200
14
15

XCV300
16
17

XCV400
18
19
20
21

XCV600
22
23
24
25

XCV800
26
27
28
29

XCV1000
30
31
32

Single Port Block MemorySingle Port Block Memory

Table 3: Parameter File Information

Parameter Type Type Notes
Component_Name String
Depth Integer 16,32,64,128 or multi-

ples of 256 (up to 1M)
Data_Width Integer > 1
Write_Port Boolean Default = true
Read_Port Boolean Default = true
Enable Boolean Default = true
Output_Reset Boolean Default = true
WE_Active String High or Low

Default = High
EN_Active String High or Low

Default = High
RST_Active String High or Low

 Default = High
Clock_On String Rising_Edge or

Falling_Edge
Default = Rising_Edge

Radix Integer 2,10 or 16
Default = 16

Default_Data Integer Default = 0
Memory_Initializa-
tion_Vector*

Integer
List

Comma seperated and
semi-colon terminated

Write_MIF Boolean Default = false
Read_MIF Boolean Default = false
MIF_FileName String Default

=Component_Name
*used in COE and batch files only.

	Single Port Block Memory
	Features
	Functional Description
	Pinout
	CORE Generator Parameters
	Specifying Memory Contents
	HDL Simulation
	Core Resource Utilization
	Ordering Information

