

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
E-mail: coregen@xilinx.com
URL: www.xilinx.com

R

Features

• Drop-in modules for the XC4000E, EX, XL, XV, Spartan
and Virtex families

• Divides Dividend by Divisor to give the quotient with
integer or fractional remainder

• Pipelined architecture for increased throughput
• Pipeline reduction for size versus speed selections
• The Dividend value can range from 1 to 24 bits
• The Divisor value can range from 3 to 24 bits
• The Remainder value in fractional mode can range from

3 to 24 bits
• Independent Dividend, Divisor and Fractional

Remainder bit widths
• Supports unsigned and 2’s complement signed

numbers
• Can implement 1/X function
• Fully registered inputs and outputs
• High performance and density guaranteed through

Relational Placed Macro (RPM) mapping and
placement technology

• Available in Xilinx CORE Generator

TM

 System

Functional Description

This parameterized module divides an M-bit wide variable
dividend by an N-bit wide variable divisor. The output con-
sists of the quotient and either remainder or the fractional
result. In remainder mode, the result of the division is an M-
bit wide quotient with an N-bit wide integer remainder, see
Equation 1. In fractional mode, the result is an M-bit wide
quotient with an F-bit wide fractional remainder, see Equa-
tion 2. It is an efficient, high speed, parallel implementation.
The input data can be unsigned or signed.

Dividend=Quotient

*

Divisor + IntRmd

Equation 1 Dividend = quotient * divisor plus integer
remainder.

Equation 2 F-bit wide Fractional Remainder

For signed mode with integer remainder, it should be noted
that the sign of the quotient and remainder correspond
exactly to Equation 1.

Thus

6/-4 = -1 REMD 2

whereas

-6/4 = -1 REMD –2

For signed mode with fractional remainder, the sign bit is
present both in the quotient and the remainder. For exam-
ple, for a four bit dividend, divisor and fractional remainder

FractRmd=
IntRmd

*

2

F

Divisor

Pipelined Divider

May 28, 1999 Product Specification

Figure 1: Parameterization Window

Pipelined DividerPipelined Divider

we have:

-9/4 = 9/-4 = -(2

1

/

4

)

This corresponds to:

(1)0111 / 0100 or 1001/1100

Giving the result:

Quotient = 1110 (= -2)
Remainder = 1110 (= -1/4)

For an unsigned divider, division by zero always results in a
quotient of 1's.

For example, for a 6 bit dividend:

 10/0 Quotient = 011111 = 31

For the signed case the result is the maximum positive
value or minus the maximum positive value depending on
the sign of the dividend.

For example, for a 6 bit dividend:

 6/0 Quotient = 011111 = 31
 -6/0 Quotient = 100001 = -31

The remainder for division by zero for the integer remainder
case is always equal to the dividend.

The design is highly pipelined. The amount of pipelining
can be reduced to decrease the area of the design at the
expense of throughput. In the fully-pipelined mode the
design supports one division per clock cycle after an initial
latency. The design also supports the options of 2,4 and 8
clock cycles per division after an initial latency, see Table 2.

The dividend and divisor bit widths can be set indepen-
dently. The bit width of the quotient is equal to the bit width
of the dividend. For fractional output, the remainder bit
width is also independent of the dividend and divisor. The
core will handle data ranges of 3 to 24 bits for the dividend,
divisor and fractional output.

The divider can be used to implement the 1/X function, i.e.
the reciprocal of the variable X. To do this, the dividend bit
width is set to 1 for unsigned or 2 for signed data and frac-
tional mode is selected. The dividend input is tied high
within the user’s design.

The divider core provides one of the basic math building
blocks often encountered in general purpose processing
and DSP. This core is targeted at those applications where
the divisor is known to be a true variable changing every
input sample. The high speed implementation of the divider
will ease the design process, both in the DSP and micro-
processor environment.

Pinout

The schematic symbol with signal names are shown in Fig-
ure 2 and described in Table 1.

CORE Generator Parameters

The CORE Generator parameterization window for this
macro is shown in Figure 1. The parameters are as follows:

Component Name:

 Enter a name for the component.

Dividend:

 Select an input bit width from the pull-down
menu for the variable width. The valid range is 1 to 24.

Divisor:

 Select an input bit width from the pull-down menu
for the variable width. The valid range is 3 to 24.

Remainder:

 Select from integer remainder or fractional
remainder.

Sign:

Set the sign of the input and output data to signed or
unsigned.

Fractional:

 Select an output bit width from the pull-down
menu for the variable width. The valid range is 1 to 24. This
option can only be modified if the Fractional check box (see
below) is selected.

Clocks per Division:

 Select the number of clock cycles
per division.

Latency

The total latency (number of clocks required to get the first
output) is a function of the bit width of the dividend. If frac-
tional output is required the latency is also a function of the
fractional bit width.

In general:

Latency

=

m for integer remainder dividers

Latency

=

m + f for fractional remainder dividers

Table 2 gives a list of the latency for some divider selec-
tions.

Ordering Information

This macro comes free with the Xilinx CORE Generator

TM

System. For additional information, contact your local Xilinx
sales representative or e-mail requests to coregen@xil-
inx.com.

dividend

divisor

quotient

remd

clk

X8818

>

Figure 2: Core Schematic Symbol

Table 1: Core Signal Pinout

Signal Signal Direction Description

dividend[m:0] Input Dividend–Parallel
Data In

divisor[n:0] Input Divisor–Parallel Data
In

clk Input Clock – with the ex-
ception of asynchro-
nous control inputs
(where applicable),
control and data in-
puts are captured, and
new output data
formed on rising clock
transitions.

quotient[m:0] Output Quotient-Parallel data
out

remd[n:0]
remd[f:0]

Output Remainder-Integer
data bit width N
Fractional data bit
width F Parallel data
out

Table 2: Latency Based on Divider Parameters

Signed Fractional Clks/div Latency

False False 1 M+3
False False >1 M+4
False True 1 M+4
False True >1 M+DC+4
True False 1 M+F+3
True False >1 M+F+4
True True 1 M+F+3
True True >1 M+F+DC+3

M=dividend width, F=remainder width, DC=no. of clocks
per division.

Figure 3: Two Clock Cycle Latency on Output Data

clk

dividend

divisor

quot

remd

X9023

Rk-2

Qk-2

Rk-1 Rk

Bk

Ak

Qk-1 Qk

Parameter File Information

Parameter Type Notes
Component_Name String

Dividend_Width Integer 3-24 Integer Remainder,
1-24 Fractional Remainder

Divisor_Width Integer 3-24

Fractional_Width Integer 3-24

Signed_B Boolean True/False

Fractional_B Boolean True/False

Divclk_Sel Integer 1,2,4 or 8

	Pipelined Divider
	Features
	Functional Description
	Pinout
	CORE Generator Parameters
	Latency
	Ordering Information

