

December 17, 1999

Xilinx Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 URL: www.xilinx.com/support/techsup/appinfo www.xilinx.com/ipcenter

Features

- Drop-in module for Virtex, Virtex[™]-E and Spartan[™]-II FPGAs
- 2:1 to 64:1 multiplexing range
- Optional registered output with optional clock enable and asynchronous and synchronous controls
- Incorporates Xilinx Smart-IP technology for maximum performance
- To be used with version 2.1i and later of the Xilinx CORE Generator System

Bit Multiplexer	
Component Name: Number of Inputs: 2 Valid Range: 264	
C Non Registered Registered Register Options	
Create RPM	

Figure 1: Main Bit Multiplexer Parameterization Screen

Bit Multiplexer V1.0.3

Product Specification

Functional Description

The Bit Multiplexer is a member of the BaseBLOX series of building blocks for the Virtex architecture. Options are provided for selecting the multiplexer size, registered outputs and non-registered outputs. When a registered output is selected options are also provided for **Clock Enable**, **Asynchronous Set and Clear**, and **Synchronous Set and Clear**. The module can optionally be generated as a Relationally Placed Macro (RPM) or as unplaced logic. When an RPM is generated the logic is placed in a column.

Pinout

Signal names are shown in Figure 3 and described in Table 1.

Register Options 🛛 🗙
Clock Enable
Clock Enable
- CE Overrides
CE overrides Sync Controls O Sync Controls override CE
- Asynchronous Settings
None Solution
O Set O Clear O Set and Clear
C Init
Asynchronous Init Value: 0
(and Power on Reset Value - Hex Value, MSB first)
- Synchronous Settings
None
O Set O Clear O Set and Clear
Set/Clear Priority
🖲 Clear overrides Set 🔘 Set overrides Clear
O Init
Synchronous Init Value: 0
(Hex Value, MSB first)
OK Cancel

Figure 2: Bit Multiplexer Register Options Parameterization Screen

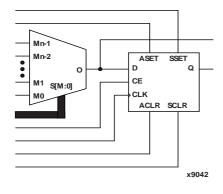


Figure 3: Core Schematic Symbol

Table 1: Core Signal Pinout

Signal	Signal Direction	Description
M0 Mn-1	Input	Multiplexer inputs
S[M:0]	Input	Binary encoded multiplexer select inputs where M = RoundUp(Log2n)
0	Output	Multiplexer output for non- registered module
D	Internal	Internal data input connec- tion to optional output regis- ter
CE	Input	Clock Enable
CLK	Input	Clock: rising edge
ASET	Input	Asynchronous Set: forces the registered output to a high state when driven
ACLR	Input	Asynchronous Clear: forces outputs to a Low state when driven
SSET	Input	Synchronous Set: forces the registered output to a High state on next concurrent clock edge
SCLR	Input	Synchronous Clear: forces the registered output to a Low state on next concurrent clock edge.
Q[0:0]	Output	Multiplexer output for regis- tered module

Note:

All control inputs are Active High. Should an Active Low input be required for a particular control pin an inverter must be placed in the path to the pin. The inverter will be absorbed appropriately during mapping.

CORE Generator Parameters

The main CORE Generator parameterization screen for this module is shown in Figure 1. The parameters are as follows:

- Component Name: The component name is used as the base name of the output files generated for this module. Names must begin with a letter and must be composed from the following characters: a to z, 0 to 9 and "_".
- Number of Inputs: Enter the number of multiplexer inputs. The valid range is 2 to 64. The default value is 2.
- Output Options: Select the appropriate radio button for the types of outputs required.
- **Register Options**: This button is only enabled when a registered output has been requested via the Output Options. Clicking on this button brings up the Register Options parameterization screen (see figure 1).
- Create RPM: When this box is checked the module is generated with relative location attributes attached. The resulting placement of the module is in a column with two bits per slice. The default operation is to create an RPM.

Note that when a module is created as an RPM it is possible that one or more of the module dimensions may exceed those of the device being targeted. If this is the case mapping errors will occur and the compilation process will fail. In this case the module should be regenerated with the **Create RPM** checkbox unchecked.

The Register Options parameterization screen for this module is shown in Figure 2. The parameters are as follows:

- **Clock Enable**: When this box is checked the module is generated with a clock enable input. The default setting is unchecked.
- CE Overrides: This parameter controls whether or not the SSET and SCLR inputs are qualified by CE. This parameter is only enabled when a Clock Enable input has been requested.

When **CE Overrides Sync Controls** is selected an active level on any of the synchronous control inputs will only be acted upon when the CE pin is also Active. Note that this is not the way that the dedicated inputs on the flip-flop primitives work, and so setting the **CE Overrides** parameter to **CE Overrides Sync Controls** will force any synchronous control functionality to be implemented using logic in the Look Up Tables (LUTs) preceding the output register. This results in increased resource utilization.

When **Sync Controls Override CE** is selected an active level on any of the synchronous control inputs is acted upon irrespective of the state of the CE pin. This setting allows the dedicated inputs on the flip-flop primitives to be used for the synchronous control functions provided that asynchronous controls are not requested. If both asynchronous and synchronous controls are requested, the synchronous control functionality must be implemented using logic in the LUTs preceding the output register. In this case, the CE input has to be gated with the synchronous control inputs so that each synchronous control input and the CE input can generate a CE signal to the flip-flops. This results in a performance degradation for the module due to the additional gating in the CE path.

The default setting is **Sync Controls Override CE** so that a more efficient implementation can be generated.

- Asynchronous Settings: All asynchronous controls are implemented using the dedicated inputs on the flipflop primitives. The module can be generated with the following asynchronous control inputs by clicking on the appropriate button:
 - None: No asynchronous control inputs. This is the default setting.
 - Set: An ASET control pin is generated.
 - Clear: An ACLR control pin is generated.
 - Set and Clear: Both ASET and ACLR control pins are generated. ACLR has priority over ASET when both are asserted at the same time.
- **Power On Reset Value**: This text box accepts a value of 0 or 1 and defines the power on value for the output register. The default value is 0.
- Synchronous Settings: When no asynchronous controls are requested (i.e. the Asynchronous Setting is None) the synchronous controls can be implemented using the dedicated inputs on the flip-flop primitives. There are exceptions to this which are described in the sections for the Set/Clear Priority and CE Overrides parameters.

When asynchronous controls are present any synchronous control functionality must be implemented using logic in the Look Up Tables (LUTs) preceding the output register. With modules where a non-registered output is not required there are combinations of parameters that allow this logic to be absorbed into the same LUTs used to implement the function. In cases where this absorption is not possible the synchronous control logic will require an additional LUT per output bit.

The module can be generated with the following synchronous control inputs by clicking on the appropriate button:

- **None**: No synchronous control inputs. This is the default setting.
- Set: An SSET control pin is generated.
- Clear: An SCLR control pin is generated.
- Set and Clear: Both SSET and SCLR control pins are generated. SCLR/SSET priority is defined by the setting of the Set/Clear Priority parameter.
- Set/Clear Priority: By selecting the appropriate radio button the relative priority of SCLR and SSET can be controlled. This parameter is only enabled when Set and Clear is selected for Synchronous Settings.

A setting of **Clear Overrides Set** corresponds to the native operation of the flip-flop primitive. This setting will result in a more efficient implementation when asynchronous controls are not requested. A setting of **Set Overrides Clear** can only be implemented using logic in the LUTs preceding the output register.

The default setting is **Clear Overrides Set** so that the dedicated inputs on the flip-flops can be used if available.

Parameter Values in the XCO File

Names of XCO file parameters and parameter values are identical to the names and values shown in the GUI, except that underscore characters (_) are used instead of spaces. The text in an XCO file is not case sensitive.

Table 2 shows the XCO file parameters and values, as well as summarizing the GUI defaults. The following is an example of the CSET parameters in an XCO file:

CSET component_name = abc123 CSET number_of_inputs = 2 CSET output_options = registered CSET create_rpm = TRUE CSET clock_enable = FALSE CSET cc_overrides = sync_controls_override_ce CSET asynchronous_settings = none CSET power_on_reset_value = 0 CSET synchronous_settings = none CSET synchronous_settings = none CSET set_clear_priority = clear_overrides_set

Core Resource Utilization

The resource utilization figures for this core are shown in Table 3. The resource counts are accurate for the following Output Options:

- Non-registered outputs
- Registered outputs with no synchronous control implemented in logic
- Registered with synchronous control functions implemented in logic and one synchronous control input
- Registered and non-registered outputs with no synchronous control functions implemented in logic

For the following Output Options the LUT count should be increased by 1 in each case:

- Registered with synchronous control functions implemented in logic and two synchronous control inputs
- Registered and non-registered outputs with synchronous functions control implemented in logic

When registered outputs are required a single flip-flop is used.

When the synchronous control functionality cannot be implemented using the dedicated control inputs of the flipflop (i.e. when asynchronous controls are also requested) and the **CE Overrides** are set to **Sync Controls Override CE** an additional LUT per module is required.

Ordering Information

This core is downloadable free of charge from the Xilinx IP Center (www.xilinx.com/ipcenter), for use with the Xilinx Core Generator System version 2.1i and later. The Core Generator System 2.1i tool is bundled with the Alliance 2.1i and Foundation 2.1i implementation tools.

To order Xilinx software contact your local Xilinx sales representative at www.xilinx.com/company/sales.htm.

Table 2:	XCO File	Values and	Default Values
----------	----------	------------	----------------

Parameter	XCO File Values	Default GUI Setting
component_name	ASCII text starting with a letter and based upon the following character set: a z, 09 and _	blank
number_of_inputs	Integer in the range 2 to 64	2
output_options	One of the following keywords: non_registered, registered, both	registered
create_rpm	One of the following keywords: true, false	false
clock_enable	One of the following keywords: true, false	false
ce_overrides	One of the following keywords: sync_controls_override_ce, ce_overrides_sync_controls	sync_controls_override_ce
asynchronous_settings	One of the following keywords: none, set, clear, set_and_clear	none
power_on_reset_value	0 or 1	0
synchronous_settings	One of the following keywords: none, set, clear, set_and_clear	none
set_clear_priority	One of the following keywords: clear_overrides_set or set_overrides_clear	clear_overrides_set

Table 3: Resource Utilization (LUT/ MUXF5/ MUXF6) by Number of Inputs

Number of Inputs	Resources Used
2	1/0/0
3	2/1/0
4	2/1/0
5	3/1/1
6	3/1/1
7	4/2/1
8	4/2/1
9	5/2/1
10	6/2/1
11	7/3/1
12	7/3/1
13	8/3/2
14	8/3/2
15	9/4/2
16	9/4/2
17	10/5/2
18	10/5/2
19	12/6/2
20	12/6/2
21	13/6/3
22	13/6/3
23	14/7/3

Number of	Resources
Inputs	Used
24	14/7/3
25	15 / 7 / 3
26	15 / 7 / 3
27	16/8/3
28	16/8/3
29	17/9/4
30	17/9/4
31	18/9/4
32	18/9/4
33	20 / 10 / 5
34	20 / 10 / 5
35	21 / 11 / 5
36	21 / 11 / 5
37	22 / 11 / 6
38	22 / 11 / 6
39	23 / 12 / 6
40	23 / 12 / 6
41	24 / 12 / 6
42	24 / 12 / 6
43	25 / 13 / 6
44	25 / 13 / 6
45	26 / 14 / 7

Number of	Resources
Inputs	Used
46	26 / 14 / 7
47	27 / 14 / 7
48	27 / 14 / 7
49	29/14/7
50	29/14/7
51	30 / 15 / 7
52	30 / 15 / 7
53	31 / 16 / 8
54	31 / 16 / 8
55	32 / 16 / 8
56	32 / 16 / 8
57	33 / 16 / 8
58	33 / 16 / 8
59	34 / 17 / 8
60	34 / 17 / 8
61	35 / 18 / 9
62	35 / 18 / 9
63	36 / 18 / 9
64	36 / 18 / 9