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1 Features

• Drop-in module for VirtexTM, VirtexTM-E and SpartanTM-II FPGAs
• High-performance finite impulse response (FIR), half-band, Hilbert transform and interpolated

filters
• Highly parameterizable
• 2-to-1024 taps
• 1-to-32 bit input data precision
• signed or unsigned input data
• 1-to-32 bit coefficient precision
• 1-to-8 channels
• Coefficient symmetry exploited (symmetric/negative-symmetric) to produce compact

implementations
• Serial and parallel filters supported. The user may specify the degree of parallelism and

tradeoff  FPGA logic resources for sample rate in order to generate an optimal design
• Data-flow style core interface and control
• High performance and density guaranteed through Relational Placed Macro (RPM) mapping

and placement technology
• Incorporates Xilinx Smart-IP technology for maximum performance
• To be used with version 2.1i or later of the Xilinx CORE Generator System

2 General Description

The Xilinx filter Core is a highly parameterizable, area efficient high-performance FIR filter.
Several highly optimized FIR filters can be realized with the filter compiler: single-rate, half-band,
Hilbert transform and interpolated FIR filters. Structure in the coefficient set is exploited to
produce area-efficient FPGA implementations. Sufficient arithmetic precision is employed in the
internal data-path to avoid the possibility of overflow. The filter always presents a full-precision
result at its output port.

The conventional single-rate FIR version of the core computes the convolution sum defined in Eq. (1)
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where N is the number of filter coefficients. The conventional tapped delay line realization of this
inner-product calculation is shown in Figure 1.
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Figure 1: Conventional tapped-delay line FIR filter mechanization.

Even though the figure is a useful conceptualization of the computation performed by the core,
the actual FPGA realization is quite different. A distributed arithmetic (DA) realization [1] [2] is
employed. With this approach there are no explicit multipliers employed in the design, only look-
up tables (LUTs), shift registers and a scaling accumulator.

2.1 Filter Realization – Distributed Arithmetic

A simplified view of a DA FIR is shown in Figure 2. In its most obvious and direct form, DA based
computations are bit-serial in nature – serial distributed arithmetic (SDA) FIR. Extensions to the
basic algorithm remove this potential throughput  limitation [2]. The advantage of a distributed
arithmetic approach is its efficiency of mechanization. The basic operations required are a
sequence of table look-ups, additions, subtractions and shifts of the input data sequence. All of
these functions efficiently map to FPGAs. Input samples are presented to the input parallel-to-
serial shift register (PSC) at the input signal sample rate. As the new sample is serialized, the bit-
wide output is presented to a bit-serial shift register or time-skew buffer (TSB). The TSB stores
the input sample history in a bit-serial format and is used in forming the required inner-product
computation. The TSB is itself constructed using a cascade of shorter bit–serial shift registers.
The nodes in the cascade connection of TSB’s are used as address inputs to a look-up table.
This LUT stores all possible partial products [2] over the filter coefficient space.
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Figure 2: Serial distributed arithmetic FIR filter.
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Several observations provide valuable insight into the operation of a DA FIR filter. In a
conventional multiply-accumulate (MAC) based FIR realization, the sample throughput is coupled
to the filter length. With a DA architecture the system sample rate is related to the bit precision of
the input data samples.  Each bit of an input sample must be indexed and processed in turn
before a new output sample is available. For B-bit precision input samples, B clock cycles are
required to form a new output sample for a non-symmetrical filter, and B+1 clock cycles are
needed for a symmetrical filter. The rate at which data bits are indexed occurs at the bit-clock
rate. The bit-clock frequency is greater than the filter sample rate (fs) and is equal to Bfs for a
non-symmetrical filter and (B+1)fs for a symmetrical filter. In a conventional instruction-set
(processor) approach to the problem, the required number of multiply-accumulate operations are
implemented using a time-shared or scheduled MAC unit. The filter sample throughput is
inversely proportional to the number of filter taps. As the filter length is increased the system
sample rate is proportionately decreased.  This is not the case with DA based architectures. The
filter sample rate is de-coupled from the filter length. The trade off introduced here is one of
silicon area (FPGA logic resources) for time. As the filter length is increased in a DA FIR filter,
more logic resources are consumed, but throughput is maintained.

Figure 3 provides a comparison between a DA FIR architecture and a conventional scheduled
MAC-based approach. The clock rate is assumed to be 120 MHz for both filter architectures.
Several values of input sample precision for the DA FIR are presented. The dependency of the
DA filter throughput on the sample precision is apparent from the plots. For 8-bit precision input
samples, the DA FIR maintains a higher throughput for filter lengths greater than 8 taps. When
the sample precision is increased to 16 bits, the crossover point is 16 taps.
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Figure 3: Throughput (sample rate)  comparison of single-MAC based FIR and DA FIR as a
function of filter length. B is the DA FIR input sample precision. The clock rate is 120 MHz.

Figure 4 provides a similar comparison but for a dual-MAC architecture.
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Figure 4: Throughput (sample rate)  comparison of dual-MAC based FIR and DA FIR as a
function of filter length. B is the DA FIR input sample precision. The clock rate is 120 MHz.

2.2 Increasing the Speed of Multiplication - Parallel Distributed Arithmetic

In its most obvious and direct form, DA based computations are bit-serial in nature – each bit of
the samples must be indexed in turn before a new output sample becomes available (SDA FIR).
When the input samples are represented with B bits of precision, B clock cycles are required to
complete an inner-product calculation (for a non-symmetrical impulse response). Additional
speed may be obtained in several ways. One approach is to partition the input words into M
subwords and process these subwords in parallel. This method requires M-times as many
memory look-up tables and so comes at a cost of  increased storage requirements. Maximum
speed is achieved by factoring the input variables into single bit subwords. The resulting structure
is a fully parallel DA (PDA) FIR filter. With this factoring a new output sample is computed on
each clock cycle. PDA FIR filters provide exceptionally high-performance. The Xilinx filter Core
provides support for parallel DA FIR implementations. Filters may be designed that process
several bits in a clock period, through to a completely parallel architecture that processes all the
bits of the input data during a single clock period. For example, consider a non-symmetrical filter
with 12-bit precision input samples. Using a serial DA filter, new output samples are available
every 12 clock periods. If the data samples are processed 2-bits-at-a-time (2-BAAT), a new
output sample is ready every 12/2 = 6 clock cycles. With 3-,4-, 6- and 12-BAAT implementations,
a new result is available every 4, 3, 2 and 1 clock cycles respectively.

Another way to view the problem is in terms of the number of clock cycles L needed to produce a
filter output sample. And indeed, this is how the degree of computation parallelism is presented to
the user on the filter design GUI.  So for example, let’s consider a filter core with a master system
clock (and this is not necessarily the filter sample rate) equal to 150 MHz. Also assume that the
input sample precision is 12 bits and that the impulse response is not symmetrical. For this set of
parameters the valid values of L (and these are presented on the core GUI) are 12, 6, 4, 3, 2 and
1. The corresponding filter sample rate (or throughput) for each value of L is 150/12=12.5,
150/6=25, 150/4=37.5, 150/3=50, 150/2=75 and 150/1=150 MHz respectively. If the filter employs
a symmetrical impulse response the valid values of L are different – and this is associated with
the hardware architecture that is employed to exploit the coefficient symmetry in order to produce
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the most compact (in terms of FPGA logic resources) realization. So for a filter with 12-bit
precision input samples and a symmetrical impulse response, the valid values of L are 13, 7, 5, 4,
3, 2 and 1. Again, using a filter core master clock frequency of 150 MHz, the sample rate for each
value of L is 11.539, 21.429, 30, 37.5, 50, 75 and 150 MHz respectively.

The higher the degree of filter parallelism (fewer number of clock cycles per output sample or
smaller L), the greater the FPGA logic resources required to implement the design.

Specifying the number of clock cycles per output sample is an extremely powerful mechanism
that allows the designer to tradeoff silicon area with filter throughput.

2.3 Exploiting Filter Symmetry

The impulse response for many filters possess significant symmetry. This symmetry can be
exploited to minimize arithmetic requirements and produce area efficient filter realizations.
Figure 5 shows the impulse response for a 9-tap symmetric FIR filter.
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Figure 5: Symmetric FIR – odd number of terms.

Instead of implementing this filter using the architecture shown in Figure 1, the more efficient
signal flow-graph in Figure 6 can be used. In general the former approach requires N
multiplications and (N-1) additions. In contrast, the architecture in Figure 6 requires only

N / 2  multiplications and approximately N additions. This significant reduction in the

computation workload can be exploited to generate efficient filter hardware implementations.
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Figure 6: Exploiting coefficient symmetry – odd number of filter taps.

Coefficient symmetry for an even number of terms can be exploited as shown in Figure 7.
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Figure 7: Exploiting coefficient symmetry – even number of filter taps.

The impulse response for a negative, or odd, symmetric filter is shown in Figure 8.

a3

a5=-a4

a2

a1

a0

a4

a6=-a3

a7=-a2

a8=-a1

a9=-a0

Figure 8: Negative Symmetric impulse response.

This symmetry is easily exploited in a manner similar to that shown in Figure 6 and Figure 7. In
this case the middle layer of adders are replaced by subtracters as illustrated in Figure 9.
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Figure 9: FIR architecture exploiting negative symmetry.

Again, as highlighted above, the symmetry properties can be utilized to produce an efficient
hardware realization.

The example considered here illustrates a filter with an even number of terms, the filter structure
for an odd number of terms is a simple extension of the same principle.
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Even though none of the filter classes supported by the filter core use explicit multipliers, the
various symmetries can still be exploited using a distributed arithmetic implementation to produce
efficient  FPGA realizations.

The filter compiler interface allows the filter symmetry to be specified. When the impulse
response does exhibit symmetry, the filter logic requirements can be significantly reduced in
comparison to an implementation that does not exploit the impulse response structure. For
example a 100 tap non-symmetric filter with 12-bit data samples and 12-bit coefficients consumes
519 Virtex logic slices [3]. In contrast, a 100 tap symmetric filter is realized with 354 slices. This
represents approximately a 30% savings in area.

3 Filter Throughput

The signal sample rate for a filter is a function of the core bit clock frequency, fclk Hz, the input
data sample precision B, the number of channels, the number of clock cycles (L) per output
sample and the coefficient symmetry. For a single channel non-symmetrical FIR filter using L=B
clock cycles per output sample, the filter sample frequency, or sample throughput, is fclk/B Hz. If
the filter is symmetrical, then the sample rate is fclk/(B+1) Hz. If the number of clock cycles per
output sample is changed to L=1, the sample throughput is simply fclk Hz. For L=2, the
throughput is fclk/2 Hz.

As a specific example, consider a filter with a core clock frequency equal to 100 MHz, 10-bit input
samples, L=10 and a non-symmetrical coefficient set. The filter sample rate is 100/10 = 10 MHz.
Observe that this figure is independent of the number of filter taps. If a symmetrical realization
had been generated, the sample throughput would be 100/11 = 9.0909 MHz. For L=1 the sample
rate would be 100 MHz (non-symmetrical FIR).

If the input sample precision is changed to 8 bits, with L=8, the filter sample rate for a non-
symmetrical filter would be 100/8 = 12.5 MHz.

4 Processing Multiple Channels
In many applications the same filter must be applied to several data streams. A common example
is the simple digital down converter shown in Figure 10. Here a complex base-band signal
x n x n jx nI Q( ) ( ) ( )= + is applied to a matched filter M(z). The in-phase and quadrature

components are each processed by the same filter.

M(z)

M(z)

(DDS)

v(n)

xI(n)

xQ(n)

I

Q

DDS = Direct Digital Synthesizer

Figure 10: Digital down converter.

One candidate solution to this problem is to simply employ two separate filters. However, this can
be wasteful of logic resources. A more efficient design can be realized using a filter architecture
that shares logic resources between multiple sample streams. All of the filter classes supported
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by the filter core provide in-built support for multi-channel processing and can accommodate up to
8 independent data streams. As more channels are processed by a filter core, the sample
throughput is commensurately reduced. For example, if the sample rate (not the core bit clock
CLK) for a single channel filter is fs, a two-channel version of the same filter will process two
sample streams, each with a sample rate of fs/2. A three channel version of the filter will process
three data streams, and support a sample rate of fs/3 for each of the streams.

A multi-channel filter implementation is very efficient in terms of the amount of logic resources
utilized. A filter with two or more channels can be realized using virtually the same amount of
logic resources as a single channel version of the same filter. The tradeoff that needs to be
addressed when employing multi-channel filters is one of sample rate versus logic requirements.
As the number of channels is increased, the logic area remains approximately constant, but the
sample rate for an individual input stream will decrease.

The number of channels to be supported by a filter core is specified through the filter
customization GUI.

5 Filter Configurations

Four classes of filters are supported by the filter compiler: conventional single-rate FIR, half-band
FIR, Hilbert transform [5] and interpolated FIR [4] [6]. The interpolated FIR should not be
confused with an interpolation filter. Interpolated filters are single rate systems that can be
employed to produce efficient realizations of narrow-band filters, and with some minor
enhancements, wide-band filters can also be accommodated.

Each of the filter categories supported by the DA FIR core are described in separate sections
below.

5.1 Single Rate FIR

The basic FIR filter core is a single-rate (input sample rate = output sample rate) finite impulse
response filter. Figure 11 shows the schematic symbol for a single channel instance of this
module. Filter input data is supplied on the DIN port and filter output samples are presented on
the DOUT port. The CLK signal is the bit-rate clock for the core, and is recognized as being
different (higher frequency) to the input signal sample frequency. The ND, RDY and RFD signals
are filter interface/control signals that permit a simple and efficient data-flow style interface for
supplying input samples and reading output samples from the filter. The core interface signals are
discussed in detail in the Interface and Control section of the product guide.

DIN[N-1:0]

ND

CLK RFD

DOUT[R-1:0]

RDY

Figure 11: Single channel FIR symbol.



DISTRIBUTED ARITHMETIC FIR FILTER

© 2000 Xilinx, Inc.  All rights reserved.  (Version 2.0) 9

A P-channel filter core is shown in Figure 12. The output ports SEL_I and SEL_O are provided to
indicate the active input and output data stream respectively. The SEL_I signal can be used to
multiplex several input sources on to the time-shared input bus DIN. SEL_I is employed as the
multiplexer select signal in this example. In a similar manner, the SEL_O signal may be used to
de-multiplex the time-division multiplexed filter output bus DOUT. This is useful for generating P
separate filter output samples to present to down-stream processes.

DIN[N-1:0]

ND

CLK RFD

DOUT[R-1:0]

RDY

SEL_I[CEIL(LOG_2(P)-1:0]

SEL_O[CEIL(LOG_2(P)-1:0]

Figure 12: Multi-channel FIR symbol.

The pin definitions are provided in Table 1.

5.2 Half-Band FIR

The frequency response for a half-band filter is shown in Figure 13.
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Figure 13: Half-band filter – magnitude frequency response.

Observe from the figure that the magnitude frequency response is symmetrical about quarter
sample frequency π/2 radians. The sample rate is normalized to 2π radians/sec. The passband
and stopband frequencies are positioned such that

Ω Ωp s= −π

The passband and stopband ripple, δ p and δ s  respectively, are equal δ δp s= . These

properties are reflected in the filter impulse response. It can be shown [5] that approximately half
of the filter coefficients will be zero for an odd number of taps. This is illustrated in Figure 14 for
an 11-tap half-band filter.
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Figure 14: Half-band filter impulse response.

The interleaved zero values in the coefficient data can be exploited to realize an efficient
realization like that shown in Figure 15.
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Figure 15: Half-band filter architecture.

This same structure, can of course, be utilized to generate an efficient DA FPGA implementation.
The Half-Band filter selection in the compiler is intended for this purpose. This filter is available in
the Filter Type field of the user interface. The user must supply the complete list of filter
coefficients, including the 0 value samples, when using the half-band filter. The filter coefficient
file format is discussed in greater detail in the Filter Coefficient Data section.

The half-band filter core has the same port definitions as the single-rate FIR filter.

5.3 Hilbert Transform

Hilbert transformers [5] are used in a variety of ways in digital communication systems.

An ideal Hilbert transform provides a phase shift of 90 degrees for positive frequencies and –90
degrees for negative frequencies. It can be shown [5] that the impulse response corresponding to
this frequency domain characteristic is odd-symmetric and has interleaved zero’s as shown in
Figure 16.
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Figure 16: Impulse response of a Hilbert transformer.

Both the alternating zero-valued coefficients and the negative symmetry can be utilized to
produce an efficient hardware realization. A Hilbert transformer accepts a real-valued signal and
produces a complex (I,Q) output signal. The quadrature (Q) component of the output signal is
produced by a FIR filter with an impulse response like that shown in Figure 16. The in-phase (I)
component is simply the input signal delayed by an appropriate amount to compensate for the
phase delay of the FIR process employed for generating the Q output. This is easily and
efficiently achieved by accessing the center tap of the sample history delay of the Q channel FIR
filter as shown in Figure 17. In this figure x(n) is the real-valued input signal and yI(n) and yQ(n)
are the in-phase and quadrature outputs respectively.

x(n)

yQ (n)
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a4

z-1 z-1 z-1 z -1

-a2-a4

z-1z -1

a2a0

z-1

-a0
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Figure 17: FIR filter realization of a Hilbert transformer.

Figure 18 shows the architecture for a Hilbert transformer that exploits both the zero-valued and
the negative symmetry characteristics of the impulse response.

z-1z-2z-2

z-2 z-1z-2

a4a2a0

x(n)

yQ(n)

+ + +

yI(n)

Figure 18: Hilbert transformer exploiting zero-valued filter coefficients and negative symmetry.

The DA equivalent of this architecture is used for realizing the Xilinx Hilbert transformer.
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Figure 19 shows the symbol for the Hilbert transform core. The DIN port is the filter input signal,
and the ports DOUT_I and DOUT_Q are the I and Q outputs respectively.

DIN[N-1:0]

ND

CLK

RFD

DOUT_I[N-1:0]

RDY

DOUT_Q[R-1:0]

Figure 19: Hilbert transform symbol.

The Hilbert transform core has the same data-flow interface and control signals (ND, RDY,RFD)
as the single-rate FIR filter core.

The Hilbert transform core also supports multiple channels as shown in Figure 20.

DIN[N-1:0]

ND

CLK

RFD

DOUT_I[N-1:0]

RDY

DOUT_Q[R-1:0]

SEL_I[CEIL(LOG_2(P)-1:0]

SEL_O[CEIL(LOG_2(P)-1:0]

Figure 20: Multi-channel Hilbert transform core.

5.4 Interpolated FIR

An interpolated FIR (IFIR) [4] [6] has a similar architecture to a conventional FIR filter, but with the
unit delay operator replaced by k-1 units of delay. k is referred to as the zero-packing factor. An
N-tap IFIR filter is shown in Figure 21.

z-Dz-Dx(n)

y(n)

z-D z-D z-D

a(0) a(1) a(2) a(3) a(4) a(N-1)

D = k-1

Figure 21:Interpolated FIR (IFIR). The zero-packing factor is k.
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This architecture is functionally equivalent to inserting k-1 zeros between the coefficients of a
prototype filter coefficient set.

Interpolated filters are useful for realizing efficient implementations of both narrow-band and wide-
band filters. A filter system based on an IFIR approach requires not only the IFIR but also an
image rejection filter. References [4] and [6] provide the details of how these systems are
realized, and how to design the IFIR and the image rejection filters.

The IFIR filter core takes advantage of the k-1 zeros in the impulse response to realize and area
efficient FPGA implementation. The FPGA area required by an IFIR filter is not a strong function
of the zero-packing factor.

Table 1: FIR core signal pinout.

Signal Name Direction Description

CLK Input BIT CLOCK (active rising edge)

ND Input NEW DATA (active high) – When this signal is
asserted the data sample presented on the DIN
port is loaded into the PSC shown in Figure 2
and an inner-product computation is started. ND
should not be asserted while RFD is low. Doing
so will corrupt the calculation.

DIN[N-1:0] Input FILTER INPUT DATA SAMPLE – N-bit wide
filter input sample.

RDY Output FILTER OUTPUT SAMPLE READY (active
high) Indicates that a new filter output sample is
available on the DOUT port.

RFD Output READY FOR DATA – (active high) Indicates
when the final bit of the current data sample is
about to be processed and new data may be
supplied to the filter.

SEL_I[ceil(log_2(P))-1:0] Output INPUT CHANNEL SELECT This is a standard
binary count generated by the core that
indicates the current filter input channel number.

SEL_O[ceil(log_2(P))-1:0] Output OUTPUT CHANNEL SELECT This is a standard
binary count generated by the core that
indicates the current filter output channel
number.

DOUT[R-1:0] Output FILTER OUTPUT SAMPLE R-bit wide output
sample bus for the FIR, half-band and
interpolated filters. R depends on the filter
parameters (data precision, coefficient
precision, number of taps and coefficient
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optimization selection) and is always supplied
as a full-precision output port to avoid any
potential for overflow.

DOUT_I[N-1:0] Output FILTER OUTPUT SAMPLE, Hilbert transform  –
In-phase (I) component. A Hilbert transform
accepts real valued input data and produces a
complex result. This port is the real or in-phase
component of the result. Since this output port is
simply an access point to the center of the filter
memory buffer, it carries the same precision as
the input sample data stream, i.e., N bits.

DOUT_Q[R-1:0] Output FILTER OUTPUT SAMPLE, Hilbert transform  –
quadrature (Q) component. A Hilbert transform
accepts real valued input data and produces a
complex result. This port is the imaginary or
quadrature component of the result.
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6 CORE Generator Parameters

The CORE Generator parameterization screen for the filter is shown in Figure 22.

Figure 22: Filter parameterization screen.

The user supplied parameters are:

• Component Name: The user defined filter component name.

• Filter Type: Four filter types are supported 1. Single rate FIR, 2. Half-band FIR, 3. Hilbert
transform, and 4. Interpolated FIR
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• Number of Channels: The number of channels processed by the filter. One to a maximum of
8 channels can be accommodated by a single filter core.

• Zero Packing Factor: This field is applicable to the interpolated filter only. The zero packing
factor specifies the number of 0’s inserted between the coefficient data supplied by the user
in the .coe (filter coefficient file). This is an integer value between 2 and 8 inclusive. A zero
packing factor of k will insert k-1 0’s between the supplied coefficient values.

• Input Data Width: The precision (in bits) of the filter input data samples. The input sample
precision is an integer value between 1 and 32 inclusive.

• Input Data Type: The filter input data can be specified as either signed or unsigned. The
signed option employs conventional two’s complement arithmetic.

• Number of Taps: The number of filter taps. For a symmetric impulse response (either even
or odd symmetric) the number of filters taps is between 2 and 256 inclusive. For a non-
symmetrical coefficient set the range is 2 to 128 inclusive.

• Impulse Response: Indicates structure present in the coefficient set. The user may specify a
symmetric, negative (odd)-symmetric or non-symmetric impulse response.

• Implementation Option: Selecting the Serial option generates an SDA FIR filter. This is a
fully serial DA FIR filter. In this case, if a non-symmetric impulse response is specified, B (B is
the bit precision of the input data) clock cycles are required to generate a new output sample
(B clock cycles per output point). If a symmetric impulse response is employed, B+1 clock
cycles are required per output point.

If the Parallel filter is specified a fully parallel PDA filter is produced. The fully parallel filter
produces a new output sample on every clock edge. Choosing the Num Clock Cycles per
Output Sample option allows the degree of filter parallelism to be specified using the
associated pull-down menu. The menu presents the valid set of values (L) that can be
selected to specify the number of cycles per output sample. For example, selecting L=3 will
result in a filter that generates a new output sample every 3 clock cycles. If L=5, new output
samples are produced every 5 clock cycles.

• Coefficient Width: The bit precision of the coefficient data. This is an integer value between
1 and 32 inclusive.

• Coefficient Data Type: The coefficient data can be specified as either signed or unsigned.
When the signed option is selected conventional two’s complement representation is
assumed.

• Optimize Coefficients: The look-up tables employed in the filter mechanization can be
optimized to minimize the amount of FPGA logic fabric employed by the core. The
optimization is data (filter coefficient set) dependent.

• Load Coefficients: The filter coefficients are supplied in a coefficient or coe file. This is an
ASCII file with a “.coe” extension. The file format is described in detail above. Activating this
button brings-up a browser window that lets the user select a coefficient file.

• Show Coefficients: Selecting this button on the GUI activates a dialog box that displays the
filter coefficient data.
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• Output Options: The filter output bus can be registered or unregistered. When the registered
output option is selected, the filter output bus DOUT is maintained at the core output between
successive assertions of RDY. In the unregistered mode the output sample is only valid when
RDY is active. At other times the port will change on successive clock cycles.

• Design Info: This field reports the filter latency (the number of clock cycles between
presenting an input data sample and the corresponding filter output sample) and the number
of clock cycles per output sample. The filter latency is also available in the .vho file that is
generated when the core is produced.

7 Interface, Control and Timing

All of the filter classes employ a data-flow style interface for supplying input samples to the core
and for reading the filter output port. ND (New Data), RFD (Read For Data) and RDY (Ready) are
used to co-ordinate I/O operations. In addition, for multi-channel filters, SEL_I and SEL_O are
supplied to indicate the active input and output stream respectively.

The timing for a single channel filter, with L clock cycles per output sample and a registered
output port is shown in Figure 23. The ND input signal is used for loading a new input sample into
the filter. It is effectively used internally as a clock enable, and the actual sample load operation
occurs on the rising of the clock (CLK). When the core is ready to accept a new input sample the
RFD signal is asserted. When a new output sample is available RDY is asserted for a single clock
period. When the registered output option is selected the output sample will remain valid between
successive assertions of RDY.

CLK

ND

RFD

1 L-3 L-2 L-1 0 10L-1L-2
PSC
DATA
OUT

RDY

DIN VALID

new filter input sample x(n)

VALID

new filter input sample x(n+1)

DOUT

new filter output sample

y(n) y(n+1)

new filter output sample

interval depends on filter latency†

INPUT SAMPLE LOADED ON THIS CLOCK EDGE

i i+1 i i+1

† The latency is reported on the filter GUI

Figure 23: Single channel FIR filter timing. L clock cycles per output sample, registered output.
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Figure 24 shows the timing for a single channel filter with an unregistered output port. The input
timing is the same as for the registered output example, but now the filter result is valid for only a
single clock period and is framed by RDY.

For the two cases described so far, the host system is supplying input samples at the highest
frequency possible, that is, every L clock ticks. This does not have to be the case, data samples
can be supplied at a lower rate without disturbing the operation of the filter as shown in Figure 25.
In this example, even though the filter has been designed specifying L clock cycles per output
sample, new data is supplied to the filter every L+2 clock periods. Observe that RFD is still
asserted on the Lth clock cycle of a data sample epoch, but the host system only supplies a new
input sample 2 clock cycles later. RFD remains active until the new input sample has been
accepted by the filter core. This occurs synchronously with the positive going edge of the clock
and with ND effectively acting as an active high clock enable.

CLK

ND

RFD

PSC
DATA
OUT

RDY

DIN VALID

new filter input sample x(n)

VALID

new filter input sample x(n+1)

DOUT

new filter output samplenew filter output sample

interval depends on filter latency†

VALID VALID

1 L-3 L-2 L-1 0 10L-1L-2 i i+1 i i+1

† The latency is reported on the filter GUI

Figure 24: Single channel FIR filter timing. L clock cycles per output sample, unregistered output.
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CLK

ND

RFD

PSC
DATA
OUT

RDY

DIN VALID

new filter input sample x(n)

VALID

new filter input sample x(n+1)

DOUT y(n) y(n+1)

new filter output sample

interval depends on filter latency†

1 L-3 L-2 L-1 0 10 i i+1 i i+1

† The latency is reported on the filter GUI

Figure 25: Single channel FIR filter timing. L clock cycles per output sample, registered output.
Input samples supplied every L+2 clock periods.

As a specific example of the filter interface timing, consider a non-symmetric single-channel  FIR
filter with 10-bit precision input samples and a full serial realization (L=10). The timing diagram is
shown in Figure 26. Ten clock cycles are needed to process each new input sample.

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN VALID VALID VALID

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

y(n+1)y(n)

0 1 2

Figure 26: Single channel FIR filter timing. Full serial implementation, 10-bit input samples,
registered output. For L=10, there are 10 clock periods between successive output samples.

A symmetrical filter with B-bit precision input samples requires in general B+1 clock periods for a
full serial (SDA) implementation. Figure 27 shows the timing for a single channel symmetrical FIR
employing 10-bit input samples. In this case, eleven clock cycles (L=11) are required to process
each new piece of data.
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RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN VALID VALID VALID

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

y(n+1)y(n)

Figure 27: Single channel FIR filter timing. Full serial implementation, 10-bit input samples,
symmetrical impulse response, registered output. 11 clock periods are required to process each
new input sample.

The previous two figures illustrated the timing for full serial, or SDA filter implementations with
symmetrical and non-symmetrical coefficient data. The Core Generator filter core supports
various types of parallel filter realizations. The greater the degree of filter parallelism employed,
the higher the filter sample rate. Filter parallelism is specified in terms of the number of clock
cycles (L) required to compute an output sample. This value is accessed via the filter core GUI
when the Multi clock cycles per output sample is selected in the Implementation Option field. The
associated drop-down menu indicates valid options for L. The valid options for L depend on the
filter parameters – symmetrical/non-symmetrical coefficient data and precision of the input
samples. For example, for an input sample precision B=10 and using a non-symmetrical impulse
response, the valid values for L are {1, 2, 3, 4, 5, 10}. For B=10 and a symmetrical impulse
response L={1, 2, 3, 4, 6, 11}.

Figure 28, Figure 29 and Figure 30 illustrate the timing diagrams for a filter with B=10 bit
precision input samples, with L=2, 4 and 6 respectively.

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN x(n)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

y(n+1)y(n)

0 1 01

x(n+2)x(n+1) x(n+3) x(n+4) x(n+5) x(n+6) x(n+7) x(n+8) x(n+9) x(n+10) x(n+11)

y(n+2) y(n+3) y(n+4) y(n+5) y(n+6) y(n+7) y(n+8) y(n+9) y(n+10)

Figure 28: Single channel FIR filter timing. PDA FIR with B=10-bit input samples, L=2 clock
cycles per output sample, registered output. There are 2 clock periods between successive
output samples.
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RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN x(n)

2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

y(n+1)y(n)

0 1 23

x(n+1) x(n+2) x(n+3) x(n+4) x(n+5)

y(n+2) y(n+3) y(n+4)

interval depends
on filter latency

Figure 29: Single channel FIR filter timing. PDA FIR with B=10-bit input samples, L=4 clock
cycles per output sample, registered output. There are 4 clock periods between successive
output samples.

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN x(n)

2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1

y(n)

2 3 45

x(n+1) x(n+2) x(n+3)

y(n+1) y(n+2)

interval depends
on filter latency

Figure 30: Single channel FIR filter timing. Symmetrical PDA FIR with B=10-bit input samples,
L=6 clock cycles per output sample, registered output. There are 6 clock periods between
successive output samples.

Figure 31 illustrates the filter timing for a fully parallel DA (PDA) FIR filter. Observe that after the
initial start-up latency a new output sample is available on every clock edge. The number of clock
cycles in the start-up latency period is a function of the filter parameters. This value is reported in
the filter design GUI in addition to the associated .vho file.

The figure shows ND valid on every clock edge – so a new input sample is delivered to the filter
on each clock edge. Of course, ND may be removed for an arbitrary number of clock cycles in
order to temporarily suspend the filter operation. No internal state information is lost when this is
done, and the filter will resume normal operation when ND is re-applied (placed in the active
again).
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RDY

ND

CLK

DOUT

RFD

DIN x(n) x(n+1) x(n+12)x(n+2) x(n+3) x(n+4) x(n+5) x(n+6) x(n+7) x(n+8) x(n+9) x(n+10) x(n+11) x(n+13) x(n+14) x(n+15) x(n+16) x(n+17) x(n+18) x(n+19) x(n+20) x(n+21) x(n+22)

x(n+5)x(n) x(n+1) x(n+2) x(n+3) x(n+4) x(n+6) x(n+7) x(n+8) x(n+9)

interval depends
on filter latency

Figure 31: Fully parallel implementation.  Single channel filter. With a fully parallel implementation
a new output sample is available on each clock edge (after the start-up latency) independent of
the filter length or the bit precision of the input data samples.

Figure 32 and Figure 33 demonstrate the timing for a multi-channel filter. Multi-channel filters
provide two additional output ports, SEL_I and SEL_O, that indicate the active input and output
channel respectively. Figure 32 illustrates a filter with an unregistered output while Figure 33
shows the timing for registered output samples.

RDY

PSC
DATA
OUT

SEL_I CHAN 0 CHAN 1 CHAN 2 CHAN 0CHAN N-1

ND

CLK

SEL_O CHAN 0 CHAN 1 CHAN 2 CHAN N-1

INTERVAL DEPENDS ON FILTER PARAMETERS

DOUT

RFD

B0 B1 BB-1 B0 B1 BB-1 B0 B1
BB-1 B0 B1

BB-1 B0 B1
BB-1

DIN VALID VALID VALID VALID VALID VALID

VALID VALID VALID VALID VALID VALID

Figure 32: Multi-channel FIR filter timing. Non-symmetrical impulse response, B-bit input
samples, unregistered output.
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RDY

PSC
DATA
OUT

SEL_I CHAN 0 CHAN 1 CHAN 2 CHAN 0CHAN N-1

ND

CLK

SEL_O CHAN 0 CHAN 1 CHAN 2 CHAN N-1

INTERVAL DEPENDS ON FILTER PARAMETERS

DOUT y0,n y1,n y2,n yN-1,n y0,n+1

RFD

B0 B1 BB-1 B0 B1 BB-1 B0 B1
BB-1 B0 B1

BB-1 B0 B1
BB-1

DIN VALID VALID VALID VALID VALID VALID

CHAN 0

Figure 33: Multi-channel FIR filter timing. Non-symmetrical impulse response, B-bit input
samples, registered output.

8 Filter Coefficient Data

The filter coefficients are supplied to the filter compiler using a coefficient file with a .coe
extension. This is an ASCII text file with a single line header that defines the radix of the number
representation used for the coefficient data, followed by the coefficient values themselves. This is
shown in Figure 34 for an N-tap filter.

radix=coefficient_radix;
coefdata=
a(0),
a(1),
a(2),
….
a(N-1);

Figure 34: Filter coefficient file format.

The filter coefficients must be supplied as integers in either base-10, base-16 or base-2
representation. This corresponds to coefficient_radix=10, coefficient_radix=16 and
coefficient_radix=2 respectively.

The coefficient values may also be placed on a single line as shown in Figure 35.

radix=coefficient_radix;
coefdata=a(0),a(1),a(2),….,a(N-1);

Figure 35: Filter coefficient file format – coefficient data on a single line.

The coefficient file format for each of the filter classes supported by the core are discussed below.
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8.1 Fir

The coefficient file for the single-rate FIR filter is straightforward and consists of a one-line header
followed by the filter coefficient data. For example, the filter coefficient file for an 8-tap filter using
a base-10 representation for the coefficient values is shown in Figure 36.

radix=10;
coefdata=20,-256,200,255,255,200,-256,20;

Figure 36: Filter coefficient file – 8-tap filter, base-10 coefficient values.

Irrespective of the filter possessing positive or negative symmetry, the coefficient file should
contain the complete set of coefficient values. The filter coefficient file for the non-symmetric
impulse response shown in Figure 37 is presented in Figure 38.

255

200

-180

80

220

180
100

-48

40

Figure 37: Non-symmetric impulse response.

radix=10;
coefdata=255,200,-180,80,220,180,100,-48,40;

Figure 38: Coefficient file for the non-symmetric impulse response in Figure 37.

The coefficient file for the negative-symmetric filter characterized by the impulse response in
Figure 39 is shown in Figure 40.

200

-200

-100

10080

-40

30

-80

40

-30

Figure 39: Symmetric impulse response.
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radix=10;
coefdata=30,-40,80,-100,-200,200,100,-80,40,-30;

Figure 40: Coefficient file for the symmetric impulse response in Figure 39.

8.2 Half-Band Filter

As described in a previous section, every second filter coefficient for a half-band filter with an odd
number of terms will be zero. When specifying the filter coefficient data for this filter class, the
zero value entries need to be included in the coefficient file. For example, the filter coefficient file
that specifies the filter impulse response in Figure 41 is shown in Figure 42.

2047

1283 1283

0

-375

0
220

0

-375

220
0

Figure 41: 11-tap half-band filter impulse response.

radix=10;
coefdata=220,0,-375,0,1283,2047,1283,0,-375,0,220;

Figure 42: Coefficient file for the half-band filter impulse response shown in Figure 41.

The filter coefficient set is parsed by the filter compiler. If either the alternating zero entries are
absent, or the coefficient set is not even-symmetric, this will be flagged as an error and the filter
will not be generated. A dialog box will be presented to indicate the nature of the problem under
these circumstances.

Technically, the zero-valued entries for a half-band filter can occur at the filter impulse response
extremities as shown in Figure 43. However, observe that these values do not contribute to the
result.

a3

2047

1283 1283

0

-375

0 0

-375

0

Figure 43: 9-tap half-band filter impulse response.
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This condition is detected when the filter is specified. If the number of taps is such that the zero-
valued coefficients form the first and last entry of the impulse response, the filter length is
reported as an invalid value. The number of taps N for a half-band filter must obey N = 3 + 4n,
where n=0,1,2,3,…. For example, a half-band filter may have 11,15,19 and 23 taps, but not 9, 13,
17 or 21 taps.

8.3 Hilbert Transform

The impulse response for a 10-term approximation to a Hilbert transformer is shown in Figure 44.
The odd-symmetry and zero-valued coefficients are both exploited to generate an efficient FPGA
realization. The coefficient data file for the Hilbert transform must contain the zero-valued entries.
For example, the .coe file corresponding to Figure 44 is shown in Figure 45.

4096

1365

0

-1365

0 0
819

0

-819

-4096

0

Figure 44: Hilbert transform – impulse response.

radix=10;
coefdata=-819,0,-1365,0,-4096 ,0,4096 ,0 ,1365,0,819;

Figure 45: Coefficient file for the Hilbert transformer with the impulse response shown in Figure 44.

In practice, some optimization methods used for designing a Hilbert transform may lead to the
presence of small even-numbered coefficients.  If the Hilbert Transform filter class is used in the
filter compiler, these terms must be forced to zero by the user.

Just like the half-band filter, the zero-valued entries for a Hilbert transformer can occur at the filter
impulse response extremities. However, these values do not contribute to the result.

This condition is detected when the filter is specified. If the number of taps is such that the zero-
valued coefficients form the first and last entry of the impulse response, the filter length is
reported as an invalid value. The number of taps N for a Hilbert transformer must obey N = 3 +
4n, where n=0,1,2,3,…. For example, a Hilbert transform filter may have 11,15,19 and 23 taps,
but not 9, 13, 17 or 21 taps.

8.4 Interpolated Filter

In a previous section it was explained that an IFIR filter is similar to a conventional FIR, but with
the unit delay operator replaced by k-1 units of delay. k is referred to as the zero-packing factor.
One way to realize this substitution is by the insertion of k-1 zeros between the coefficient values
of a prototype filter. When specifying an IFIR architecture, the full set of prototype coefficients are
supplied in the coefficient file, without the zeros implied by the zero-packing factor. The zero-
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packing factor is defined through the filter user interface. For example, consider the filter
coefficient data in the .coe file shown in Figure 46.

radix=10;
coefdata=-200,1200,2047,1200,-200;

Figure 46: Prototype coefficient data for IFIR example.

If a zero-packing factor of k=2 is specified, the equivalent filter impulse response will be as shown
in Figure 47.

2047

-200

12001200

0 00 0

-200

Figure 47: Equivalent IFIR impulse response for the coefficient data shown in Figure 46 with a
zero-packing factor k=2.

If the zero-packing factor is changed to k=3, the impulse response will be as shown in Figure 48.

2047

0 00 0

-200

1200 1200

-200

00 0 0

Figure 48: Equivalent IFIR impulse response for the coefficient data shown in Figure 46 with a
zero-packing factor k=3.

• These examples have utilized a symmetrical prototype impulse response, this is not a
restriction of the filter compiler. The prototype filter coefficient set can be symmetrical, non-
symmetrical or negative symmetric.

9 Core Resource Utilization

The logic utilization for a filter is a function of the filter length, coefficient precision, coefficient
symmetry and input data precision. Table 2 through Table 7 provide logic resource requirements
for a number of filter configurations.
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Table 2: Virtex logic slice utilization for several filter FIR filter configurations. 10-bit filter
coefficients. Filter coefficient optimization is off. Single channel. Signed input, signed coefficients,
unregistered output.

Filter Length Symmetry Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

Symmetrical4
Non-symmetrical

31
29

34
33

41
36

43
43

66
67

Symmetrical8
Non-symmetrical

36
45

38
50

44
53

49
60

72
82

Symmetrical32
Non-symmetrical

103
141

108
146

113
151

117
154

157
196

Symmetrical80
Non-symmetrical

247
363

251
369

255
373

261
376

332
454

Symmetrical128
Non-symmetrical

370
532

377
536

380
537

385
543

493
646

Symmetrical256 731 747 740 749 940

Table 3: Virtex logic slice utilization for several filter FIR filter configurations. 12-bit filter
coefficients. Filter coefficient optimization is off. Single channel. Signed input, signed coefficients,
unregistered output.

Filter Length Symmetry Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

Symmetrical4
Non-symmetrical

34
30

35
35

41
39

47
45

69
66

Symmetrical8
Non-symmetrical

36
50

41
53

45
56

52
62

75
87

Symmetrical32
Non-symmetrical

111
160

114
161

118
168

125
173

166
214

Symmetrical80
Non-symmetrical

268
408

273
414

277
413

279
424

353
498

Symmetrical128
Non-symmetrical

402
595

415
601

417
599

421
607

521
718

Symmetrical256 797 806 819 810 1003
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Table 4: Virtex logic slice utilization for several half-band  filter configurations. 14-bit filter
coefficients. Filter coefficient optimization is off. Single channel. Signed input, signed coefficients,
unregistered output.

Filter Length Symmetry Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

7 Symmetrical 38 42 47 53 77

31 Symmetrical 84 96 100 104 147

79 Symmetrical 171 194 203 206 274

Table 5: Virtex logic slice utilization for several Hilbert transformer configurations. 14-bit filter
coefficients. Filter coefficient optimization is off. Single channel. Signed input, signed coefficients,
unregistered output.

Filter Length Symmetry Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

7 Odd symmetric 41 49 57 66 99

31 Odd symmetric 75 88 96 104 157

79 Odd symmetric 158 187 198 204 289

Table 6: Virtex logic slice utilization for several interpolated filter configurations. 16-bit filter
coefficients. Filter coefficient optimization is off. Single channel. Signed input, signed coefficients,
unregistered output. Zero packing factor is 4.

Filter Length Symmetry Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

Symmetrical8
Non-symmetrical

44
56

54
66

63
71

69
84

107
122

Symmetrical32
Non-symmetrical

146
189

170
214

198
239

201
264

303
366

Symmetrical80
Non-symmetrical

359
488

410
550

474
609

477
668

705
897
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Table 7: Virtex logic slice utilization for several PDA FIR filter configurations. 12-bit filter
coefficients. 12-bit input data, 60-taps. Filter coefficient optimization is off. Single channel. Signed
input, signed coefficients, unregistered output, non-symmetrical impulse response. Filter master
clock frequency is 150 MHz.

Number of Clock
Cycles per Output Sample

Slice Count Filter Sample Rate† (MHz)

1 3072 150
2 1571 75
3 994 50
4 802 37.5
6 511 25
12 268 12.5

† The filter sample rate is not at all dependent on the number of filter taps.
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