
12/01/00

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 1

January 12, 2000

Reed-Solomon
Encoder

Product Specification

Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
URL: http://www.support.xilinx.com/

support/techsup/tappinfo.htm

Features
• Reed-Solomon Encoder
• Implements many different Reed-Solomon

coding standards
• Automatically configured by user entered

parameters
• Fully synchronous design using a single clock
• Supports continuous output data with no gap

between code blocks
• Symbol width from 3 to 12 bits
• Code block length variable up to 4095 symbols

with up to 256 check symbols
• Supports shortened codes
• Supports any primitive field polynomial for a

given symbol width
• User-configured generator polynomial
• Can be optimized for area or speed
• Available for all Virtex™, Virtex™-E, Spartan™-

II, XC4000 and Spartan™ family members.

Functional Description
Reed-Solomon codes are usually referred to as (n,k)
codes, where n is the total number of symbols in a
code block and k is the number of information or
data symbols. This core generates systematic code
blocks where the complete code block is formed
from the k information symbols, followed by the n-k
check symbols. The maximum number of errors in a
block which can be guaranteed to be corrected is t =
(n-k)/2.

Normally n = 2(Symbol_Width)-1. If n is less than this
then the code is referred to as a “shortened code”.
The Encoder core handles both full length and
shortened codes.

A Reed-Solomon code is also characterized by two
polynomials: the field polynomial and the generator
polynomial. The field polynomial defines the Galois
field, of which the symbols are members. The
generator polynomial defines how the check symbols
are generated. Both these polynomials are usually
defined in the specification for any particular Reed-
Solomon code. The core GUI allows both of these
polynomials to be configured.

Pinout
The schematic symbol, with the signal names, is
shown below.

info
reset

enable

bypass

start

data_in

data_out

clk

Figure 1 – Core Symbol

Reed-Solomon Encoder

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 2

The following table summarizes the signal functions.
The signals are described in more detail in the
remainder of this section.

Signal Signal
Direction

Description

reset Input Active high
asynchronous clear

clk Input Clock – active on
rising edge

enable Input Input signals are
sampled when high.

bypass Input When high, ‘data_in’ is
passed to ‘data_out’
without affecting the
generated check
symbols.

start Input Active high. Informs
encoder that first
symbol of a new block
is on ‘data_in’.

data_in Input Input data
data_out Output Output data

info Output High when there is
information on
‘data_out’

Table 1 – Core Signal Pinout

Reset Input
All control signals are synchronous to the rising edge
of ‘clk’ except ‘reset’. When ‘reset’ is asserted (high)
all the core flip-flops are asynchronously initialized.
The core will remain in this state until ‘reset’ is de-
asserted.

Enable Input
Of the remaining control signals, ‘enable’ has the
highest priority. When ‘enable’ is de-asserted (low)
all the other synchronous inputs are ignored and the
core remains in its current state. The following
discussion and timing diagrams assume an area-
optimized core has been chosen, so all the
synchronous inputs have a two clock cycle latency.
Therefore if ‘enable’ changes state at one clock
edge, ‘data_out’ will not be affected until another two
rising clock edges have occurred (see Figure 2).

no change in core state

All other inputs
(except reset)

clk

data_out

enable

Figure 2 - Enable Timing

Bypass Input
‘Bypass’ has the next highest priority after ‘reset’ and
‘enable’. If ‘bypass’ is asserted (high) at a particular
rising clock edge, then ‘data_in’ at that clock edge is
passed straight through to ‘data_out’ with a two clock
cycle delay. This symbol will have no affect on the
generated check symbols. ‘Bypass’ may be asserted
at any time.
In Figure 3, data symbol D, on ‘data_in’, is passed
straight to ‘data_out’ without affecting the state of the
code generator. During the other clock cycles,
‘data_out’ is either a delayed version of ‘data_in’ or
one of the code block check symbols.

Ddata_in

??D???

clk

enable

data_out

bypass

Figure 3 – Bypass Timing

Start Input
If ‘start’ is asserted (high) at a particular rising clock
edge, then it is assumed that the symbol on ‘data_in’
at that time is the first symbol of a new code block.
‘Start’ may be asserted at any time. It is ignored if
‘enable’ is de-asserted or ‘bypass’ is asserted. In
Figure 4, D1 is taken to be the first symbol of a new
code block.

Xilinx Inc.

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 3

D5D4D3D2D1?data_in

D2D1???

clk

enable

data_out

start

bypass

Figure 4 – Start Timing

The core will sample k information symbols and
immediately follow the last information symbol on
‘data_out’ with the n-k check symbols. ‘Start’ has a
two clock cycle latency. If ‘start’ is re-asserted more
than two clock cycles before the last check symbol
has been shifted out, the core will abandon the
current code block and start afresh with a new one.
The following figure illustrates the timing at the end
of a code block. This shows the earliest time that
‘start’ may be reasserted, if all the previous check
symbols are to be shifted out. R=n-k and CR is the
(n-k)th check symbol to be shifted out for this code
block. The symbol on ‘data_in’ immediately prior to
D1 is the nth symbol from the start of the previous
block. The final n-k symbols of a block on ‘data_in’
are ignored.

CRCR-1CR-2

D4D3D2D1data_in

D1CR-3

clk

enable

data_out

start

bypass

Figure 5 – Consecutive Code Blocks

Info Output
The ‘info’ output is high when there is information on
‘data_out’ and low when there are check symbols on
‘data_out’. This is illustrated in Figure 6. ‘Info’ also
goes high when ‘bypass’ is asserted (with a two
clock cycle latency).

Figure 6 shows the point where ‘data_out’ changes
from outputting ‘data_in’, to outputting the first check
symbol. Dk is the last information symbol of the
block. The core counts the information symbols and
determines when to start outputting check symbols.
It automatically takes account of cycles where
‘bypass’ was asserted or ‘enable’ de-asserted.

Dk

C1DkDk-1

data_in

C2Dk-2

clk

enable

data_out

start

bypass

info

Figure 6 – Info Timing

Parameters
The core GUI provides a number of pre-set
parameter values for several common Reed-
Solomon standards. It also allows the user to define
the following parameters.

• Symbol Width
This is the bus-width of ‘data_in’ and ‘data_out’.

• Field Polynomial
This is used to generate the Galois field for the code.
It is entered as decimal number where the bits of the
binary equivalent correspond to the polynomial
coefficients. For example,

x8+x4+x3+x2+1 => 100011101 => 285

A value of zero causes the default polynomial for the
given Symbol_Width to be selected. If
Field_Polynomial is not primitive, the core GUI
highlights it in red.

Reed-Solomon Encoder

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 4

Symbol Width Default
Polynomial

Decimal
Representation

3 x3+x+1 11
4 x4+x+1 19
5 x5+x2+1 37
6 x6+x+1 67
7 x7+x3+1 137
8 x8+x4+x3+x2+1 285
9 x9+x4+1 529

10 x10+x3+1 1033
11 x11+x2+1 2053
12 x12+x6+x4+x+1 4179

Table 2 - Default Polynomials

• Generator Start
This is the Galois field logarithm of the first root of
the generator polynomial.
i.e.

∏
−−

=

+×−=
1

0

)_()()(
kn

i

iStartGeneratorhxxg α

Normally Generator_Start is 0 or 1, however it can
be any whole number.

• n
Number of symbols in an entire code block. If this is
a shortened code, then n should be the shortened
number.

• k
Number of information or data symbols in a code
block.

• h
Scaling factor for the generator polynomial root
index. Normally h is 1, however it can be any
positive integer.

• Optimization
This parameter selects whether the core is optimized
for area or speed. The area-optimized core has a
two clock cycle latency while the speed optimized-
core has a three clock cycle latency.
Selecting area optimization will only yield a smaller
core for XC4000/Spartan target devices. For other
device families the core will be the same size but
slower than if speed optimization had been selected.
The only point in selecting area optimization for non

XC4000/Spartan devices is if a two clock cycle
latency is required.

• Create RPM
When this option is selected, the core generator
adds placement information to the core to create a
relationally placed macro (RPM). RPMs can result in
more predictable performance when used with other
cores and user-defined logic, and usually require
less time to place and route.

If a small target device is used, the core shape may
not fit within the fixed rectangular CLB matrix of the
FPGA. In this case the Create_RPM option should
be de-selected.

Valid ranges for the parameters are given in Table 3.

Parameter Min Max
Symbol Width 3 12

n 3 2(Symbol_Width)-1
k 1 2(Symbol_Width)-3

r = n–k 2 min(n-k, 256)
Generator Start 0 -

h 1 -

Table 3 – Parameter Ranges

Latency
The latency of the core depends on whether the user
has chosen to optimize it for area or speed. An area-
optimized core has a two clock cycle latency,
therefore ‘data_out’ reflects what was happening on
the inputs (except ‘reset’) two rising clock edges
previously. A speed-optimized core has a three clock
cycle latency, therefore ‘data_out’ reflects what was
happening on the inputs (except ‘reset’) three clock
edges previously.

Core Resource Utilization
The area of the core increases with n-k and
Symbol_Width. Some example implementations are
shown in Table 4 to Table 7. The option to map
primary I/O registers into IOB flip-flops should be
selected if the core I/Os are to be connected directly
onto a PCB via the FPGA package pins. This will
give lower output clock-to-out times and predictable
set up and hold times.

Xilinx Inc.

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 5

The results were obtained with the “–c 1” packfactor
option applied during mapping. This causes the
Xilinx mapper to pack as much logic as possible into
each CLB.

Performance Characteristics
In general, performance increases as n-k and
Symbol_Width decrease. The clock frequencies
given in Table 4 to Table 7 can be comfortably
achieved when the corresponding period constraint
is specified for the core clock input. It may be
possible to improve slightly on these values by trying
different seed values for the place and route
software. If necessary, performance can easily be
increased by selecting a part with a faster speed
grade.

Table 5 shows four possible ways of implementing
the DVB Encoder standard (ETS 300 421) by
varying the Optimization and Create_RPM
parameters. Notice that de-selecting the
Create_RPM parameter can result in higher
maximum operating frequencies. However, this may
not always be true if the core is used with other
cores or user-defined logic. The RPM version of the
core is more likely to maintain its performance
characteristics when used with other cores and logic,
and should also require less time to place and route.

Ordering Information
This core can only be obtained by agreeing to the
terms of the Xilinx LogiCORE™ Reed-Solomon
license. Please contact Xilinx for further information.

Reed-Solomon Encoder

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 6

ATSC ATSC CCSDS CCSDS Custom
Symbol Width 8 8 8 8 4
Field Polynomial 285 285 391 391 19
n 207 207 255 255 15
k 187 187 223 223 13
Generator Start 0 0 112 112 0
h 1 1 11 11 1
Optimization Area Area Area Speed Speed
Create RPM Yes No Yes No Yes
Xilinx Part XCS10XL-5 XCS05XL-5 XC4013XLA-09 XC4013XLA-09 XC4013XLA-09
Use IOB Flip-Flops Yes Yes Yes Yes Yes
Area (CLBs) 91 95 139 166 14
CLBs Remaining 105 5 437 410 562
Latency 2 2 2 3 3
Max. Clock Freq.1 34 MHz3 45 MHz3 44 MHz 67 MHz 104 MHz

Notes:
1. Higher frequencies may be attainable by setting the packfactor option on the mapper to “-c 100” rather than “-c 1”.
2. Area and max clock frequencies are provided as a guide. They may vary with new releases of the Xilinx implementation tools, etc.
3. Higher frequencies are attainable by moving to the XC4000 or Virtex target device families.

Table 4 - Example XC4000/Spartan Encoder Implementations

DVB#1 DVB#2 DVB#3 DVB#4
Symbol Width 8 8 8 8
Field Polynomial 285 285 285 285
n 204 204 204 204
k 188 188 188 188
Generator Start 0 0 0 0
h 1 1 1 1
Optimization Area Area Speed Speed
Create RPM Yes No Yes No
Xilinx Part XC4013XLA-09 XC4013XLA-09 XC4013XLA-09 XC4013XLA-09
Use IOB Flip-Flops Yes Yes Yes Yes
Area (CLBs) 75 79 102 106
CLBs Remaining 501 497 474 470
Latency 2 2 3 3
Max. Clock Freq.1 47 MHz 54 MHz 62 MHz 71 MHz

Notes:
1. Higher frequencies may be attainable by setting the packfactor option on the mapper to “-c 100” rather than “-c 1”.
2. Area and max clock frequencies are provided as a guide. They may vary with new releases of the Xilinx implementation

tools, etc.

Table 5 - Example XC4000/Spartan DVB Encoder (ETS 300 421) Implementations

Xilinx Inc.

© 2000 Xilinx, Inc. All rights reserved. (Version 1.0) 7

ATSC ATSC CCSDS Custom1 Custom2
Symbol Width 8 8 8 4 12
Field Polynomial 285 285 391 19 4179
n 207 207 255 15 512
k 187 187 223 13 448
Generator Start 0 0 112 0 1
h 1 1 11 1 3
Optimization Speed Speed Speed Speed Speed
Create RPM Yes No Yes Yes Yes
Xilinx Part XCV50-6 XCV50-6 XCV50-6 XCV50-6 XCV50-6
Use IOB Flip-Flops Yes Yes Yes Yes Yes
Area (Slices) 118 123 167 19 571
Slices Remaining 650 645 601 749 197
Latency 3 3 3 3 3
Max. Clock Freq.1 109 MHz 112 MHz 102 MHz 172 MHz 71 MHz

Notes:
1. Higher frequencies may be attainable by setting the packfactor option on the mapper to “-c 100” rather than “-c 1”.
2. Area and max clock frequencies are provided as a guide. They may vary with new releases of the Xilinx implementation tools, etc.

Table 6 - Example Virtex Encoder Implementations

DVB#1 DVB#2 DVB#3
Symbol Width 8 8 8
Field Polynomial 285 285 285
n 204 204 204
k 188 188 188
Generator Start 0 0 0
h 1 1 1
Optimization Area3 Speed Speed
Create RPM Yes Yes No
Xilinx Part XCV50-6 XCV50-6 XCV50-6
Use IOB Flip-Flops Yes Yes Yes
Area (Slices) 107 107 112
Slices Remaining 661 661 656
Latency 2 3 3
Max. Clock Freq.1 81 MHz 110 MHz 113 MHz

Notes:
1. Higher frequencies may be attainable by setting the packfactor option on the mapper to “-c 100” rather than “-c 1”.
2. Area and max clock frequencies are provided as a guide. They may vary with new releases of the Xilinx implementation

tools, etc.
3. Selecting area optimization for Virtex core has no effect on the number of slices required but it does result in a latency of 2

rather than 3, at the expense of a reduced max clock frequency.

Table 7 - Example Virtex DVB Encoder (ETS 300 421) Implementations

