
 — Printed in U.S.A.

Xilinx
System
Generator v1.0.1
for Simulink

Xilinx Blockset
Reference Guide

Introduction

Xilinx Blockset Overview

Blockset Elements

-2 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

About This Manual

This guide should be used as a reference guide for system designers who are

unfamiliar with the Xilinx Blockset elements. This is the Blockset provided with the

Xilinx System Generator v1.0.1 for Simulink software.

Note This Xilinx software release is certified as Year 2000 compliant.

Manual Contents
This guide covers the following topics.

• Chapter 1, “Introduction”

• Chapter 2, “Xilinx Blockset Overview” gives an explanation of Xilinx Blockset

elements, how to instantiate them within your Simulink model, how to configure

them through their Parameterization GUI, common options that can be used in

several of the elements, and the nature of the signals used in the System

Generator.

• Chapter 3, “Blockset Elements” describes the details of each Blockset element,

including options, use of Xilinx LogiCOREs, and filenames pointing to

descriptions of the cores on your local computer.

Additional Resources

For additional information, go to http://support.xilinx.com . The following

table lists some additional resources.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to verification and

debugging.

http://support.xilinx.com/support/techsup/tutorials/index.htm

IP Center Information on Xilinx Cores and IP solutions.

http://www.xilinx.com/ipcenter/

Xilinx DSP Xilinx DSP product information.

http://www.xilinx.com/products/logicore/dsp

Technical Tips Latest news, design tips, and patch information for the Xilinx design environment.

http://support.xilinx.com/support/techsup/journals/index.htm

The

MathWorks

MATLAB , Simulink , DSP design, and other company information.

http://www.mathworks.com

-3

Conventions

This manual uses the following conventions. An example illustrates each convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files that the system

displays.

speed grade: - 100

• Courier bold indicates literal commands that you enter in a syntactical

statement. However, braces “{ }” in Courier bold are not literal and square

brackets “[]” in Courier bold are literal only in the case of bus specifications, such

as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a menu.

File → Open

• Italic font denotes the following items.

♦ Variables in a syntax statement for which you must supply values

edif2ngd design_name

♦ References to other manuals

See the Development System Reference Guide for more information.

♦ Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the two nets are not
connected.

• Square brackets “[]” indicate an optional entry or parameter. However, in bus

specifications, such as bus [7:0], they are required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose one or more.

lowpwr = { on | off }

• A vertical bar “|” separates items in a list of choices.

lowpwr = { on | off }

• A vertical ellipsis indicates repetitive material that has been omitted.

-4 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

IOB #1: Name = QOUT’

IOB #2: Name = CLKIN’

.

.

.

• A horizontal ellipsis “….” indicates that an item can be repeated one or more

times.

allow block block_name loc1 loc2 ... locn;

-5

Contents

About This Manual
Manual Contents
Additional Resources

Conventions
Typographical

Contents

Introduction 7
Product Overview 7
Bit true and Cycle true representation 7

Xilinx Blockset Overview 9
What is a Xilinx Blockset Element? 9
Instantiating Xilinx Blockset elements within a Simulink model 10
The Parameterization GUI 10
The Nature of Signals in the Xilinx Blockset 10
Use of Xilinx Smart-IP Cores by the System Generator 12
Xilinx LogiCORE Versions 12
Common Options in Xilinx Blockset Parameterization GUI 13

Arithmetic Type 13
Implement with Xilinx Smart-IP Core (if possible) 13
Generate Core 13
Latency 14
Number of Bits 14
Overflow and Quantization 14
Override with Doubles 14
Precision 15
Sample Period 15

Blockset Elements 17
Basic Elements 17

System Generator 17
Black Box 18
Concat 20

-6 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

Constant 20
Convert 21
Counter 22
Delay 23
Down Sample 23
Get Valid Bit 24
Mux 25
Register 26
Set Valid Bit 27
Slice 27
Up Sample 29

DSP 29
FFT 29
FIR 32

Math 34
Accumulator 34
AddSub 35
CMult 36
Inverter 37
Logical 38
Mult 39
Negate 41
Relational 41
Scale 42
Shift 43
Threshold 44

MATLAB I/O 44
Gateway Blocks 44
Quantization Error blocks 46
Display 46

Memory 47
Dual Port RAM 47
ROM 48
Single Port RAM 50

-7

Introduction

Chapter 1

Introduction

Product Overview
The Xilinx System Generator enables the development of high-performance DSP

systems for Xilinx FPGAs using the popular MATLAB and Simulink products

from The MathWorks, Inc. This software tool automatically generates Hardware

Description Language (HDL) code from a system representation in Simulink. The

HDL design is optimized for synthesis and implementation in Xilinx Virtex and

Spartan®-II FPGAs. To maximize predictability, density, and performance, the tool

automatically maps the system design to Xilinx optimized LogiCORE modules.

Because the HDL is automatically generated, you must verify only the system repre-

sentation of the design. With only one design representation, risk of errors is mini-

mized.

More information about the System Generator product and features can be found in

the System Generator Quick Start Guide.

Bit true and Cycle true representation
The Xilinx System Generator supports bit true and cycle true modeling of hardware.

The definitions of bit true and cycle true modeling are explained here.

Simulink is an event driven simulator for dynamic systems, including

• continuous time and space systems defined via state space equations (i.e.

differential equations), and

• discrete time and discrete space (countable, and for all intents and purposes, finite

index sets).

Discrete time and space simulation is important because it allows System Generator

to model the evolution of hardware over time. In theory, it is possible to understand

the bit and cycle behavior of the generated VHDL from Simulink, as opposed to from

a behavioral VHDL simulator.

Signals in System Generator are represented as arbitrary precision fixed point data,

which in VHDL corresponds to standard logic vectors. If you examine a System

Generator signal in Simulink, you will see that its fixed point value consists of the

same bits as the corresponding bits of the standard logic vector in VHDL. This is an

example of how System Generator is bit true.

In addition to the fixed point value, every System Generator signal is sampled, and

has an associated sample period. If you examine a signal in Simulink (using a

Simulink Scope block), you will see that transitions occur only at multiples of the

sample period for the block that drives the signal. In the VHDL generated by System

Generator, the corresponding standard logic vector is driven by a block that is clocked

(or if combinational, has an “inherited” clock period from its inputs) at a particular

-8 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

clock rate. The corresponding sample period in Simulink is guaranteed to be a

multiple of the hardware clock period. At the clock transitions that correspond to

sample period multiples, the bits in the standard logic vector (VHDL) match the fixed

point data in the Simulink signal (software). This is an example of how System

Generator is cycle true.

You may sometimes refer to models that are bit true, but not cycle true. Whatever that

may mean, with System Generator, there is no ambiguity: the bits in a standard logic

vector are identical to the bits in the corresponding fixed point System Generator

Simulink signal at the hardware clock transitions that correspond with multiples of

the Simulink sample period.

Xilinx Blockset
The Xilinx Blockset is a collection of Simulink blocks that can be used to create and

simulate designs within the Simulink environement. This Reference Guide explains

the contents of the Xilinx Blockset and describes each element of the blockset in detail.

The Xilinx Blockset conforms to familiar Simulink idioms wherever possible, for

example in propagating signal types through a model. Consequently, the Simulink

documentation can often provide useful reference information and insight about the

mechanics of models built from the Xilinx Blockset.

-9

Xilinx Blockset Overview

Chapter 2

Xilinx Blockset Overview

This chapter gives an overview of the Xilinx Blockset, including background

information on underlying blockset implementation, which will help you understand

how each element can be used to create and simulate your designs.

This chapter contains the following sections.

• “What is a Xilinx Blockset Element?”

• “Instantiating Xilinx Blockset elements within a Simulink model”

• “The Parameterization GUI”

• “The Nature of Signals in the Xilinx Blockset”

• “Use of Xilinx Smart-IP Cores by the System Generator”

• “Common Options in Xilinx Blockset Element Parameterization GUI”

 What is a Xilinx Blockset Element?
The Xilinx Blockset is a Simulink library, accessible

from the Simulink library browser. It consists of

building blocks that can be instantiated within a

Simulink model, and like other Simulink blocksets,

elements can be combined to form subsystems and

arbitrary hierarchies. The Xilinx Gateway blocks

(from the Xilinx Blockset’s MATLAB I/O library) are

used to interface between the Xilinx Blockset fixed-

point data type and other Simulink blocks.

Every Xilinx Blockset element can be configured via

a parameterization GUI, with few exceptions even

during simulation. Many blocks share common

parameters, which are described later in this

document. Most also have parameters specific to the

function computed.

System Generator has the ability to generate an

FPGA implementation consisting of RTF VHDL and

Xilinx Smart-IP Cores from a Simulink subsystem built from the Xilinx Blockset.

The overall design, including test environment, may consist of arbitrary Simulink

blocks. However the portion of a Simulink model to be implemented in an FPGA

must be built exclusively of Xilinx Blockset elements, with the exception of

subsystems denoted as black boxes.

-10 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

Instantiating Xilinx Blockset elements within a Simulink
model

Xilinx blocks can be dragged (from the Simulink library browser, or from an

expanded sheet showing the blocks in the library) onto a Simulink model sheet.

Double-clicking on a block will open its parameterization GUI and allow

customization of that instance of the block. It is also possible to build user libraries of

customized blocks and subsystems. Refer to the manual: Using Simulink from The

MathWorks.

The Xilinx Blockset elements operate on fixed-point data, using an arbitrary precision

arithmetic type. The Gateway blocks found in the Xilinx MATLAB I/O library

comprise the interface between Xilinx blocks and other Simulink blocks, and enable

Xilinx blocks to be freely instantiated within a Simulink model. Of course, the only

blocks that System Generator will convert to hardware are those from the Xilinx

Blockset.

The Parameterization GUI
Most Xilinx blocks have parameters that can be configured. The typical element has a

parameterization GUI with several common parameters (common to most blocks in

the blockset) and some specific parameters (specific to the particular block only).

Double-clicking on any block on a sheet will open its parameterization GUI. Details of

the use of each element’s parameterization GUI may be found elsewhere in this

document.

Each parameterization GUI contains four buttons: OK, Cancel, Help, and Apply.

Apply applies your configuration changes to the block, leaving the GUI still visible on

your screen. Help launches HTML help on the block. Cancel closes the GUI without

saving any changes, and OK applies your configuration changes and closes the

parameterization GUI window.

Figure: buttons common to each parameterization GUI

The Nature of Signals in the Xilinx Blockset
Simulink blocks use double-precision, floating point signals and arithmetic. However,

when these signals pass through a Xilinx Gateway In block, they are converted to

fixed point signals. Later, when passing through the Xilinx Gateway Out block, the

signals are converted back into double-precision floating point signals.

The fixed point signals use arbitrary precision arithmetic internally. In an arbitrary

precision system, there is no danger of overflow or rounding error, because the system

computes the amount of precision necessary to perform the requested arithmetic

functions, and uses the correct number of bits to represent the output. Xilinx blocks

typically default to full precision which enables their arbitrary precision calculations to

use the full number of bits necessary.

You have the option of changing blocks to user defined precision in which specific

numbers of bits for precision can be specified. For example, shown below is the

-11

Xilinx Blockset Overview

Multiplier GUI with full precision chosen, then with user defined precision chosen.

Note the additional options that you may set if you choose user defined precision.

Figure: User-Defined precision options (available if selected instead of Full
precision)

Valid and Invalid Data

In the Xilinx Blockset portion of a Simulink model, every data sample that flows

through the model is accompanied by a handshake validation signal. In the

corresponding hardware, every data-carrying bus has a companion net that carries a

valid or invalid status indicator. This is a handshaking mechanism often seen in

dataflow tools. There are different circumstances under which the status indicator

may be set to invalid. For example, invalid data might mean that a pipelined dataflow

hasn’t yet filled up, or it may denote bursty outputs, as with an FFT. Elements in the

Xilinx Blockset can use this valid bit signal to decide what to do with the input data.

Some of the Xilinx blocks, for example the storage elements and the FFT, use the valid

bit to determine when it is time to store input data.

Port Data Types

Selecting the Port Data Types option (under the Format menu in the Simulink GUI)

shows the data type and precision of a signal. An example port data type string is

Fix_11_9, which indicates that the signal is a signed 11-bit number with the binary

point 9 bits from the right side. Similarly, an unsigned signal is indicated by the UFix_
prefix.

-12 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

Use of Xilinx Smart-IP Cores by the System Generator
All Xilinx blocks generate synthesizable VHDL code, and if requested, testbench code

and testbench data vectors. Most blocks also generate a Xilinx LogiCORE using the

Xilinx CORE Generator. Xilinx LogiCOREs are particularly suited for optimal

implementations of specific functions for Xilinx FPGA devices.

Some Xilinx blocks generate VHDL, but no Xilinx LogiCORE. For example, the Xilinx

Constant block does not use a core.

Some Xilinx blocks generate a Xilinx LogiCORE if possible and if requested, or

synthesizable VHDL otherwise. For example, the Xilinx Multiplier block generates a

core if you specify inputs of up to 32 bits. If either input is larger than 32 bits, a Xilinx

LogiCORE will not be used, and the multiplier will instead be created entirely in

synthesizable VHDL.

Some Xilinx blocks require a Xilinx LogiCORE. For example, the Xilinx FFT block

cannot be generated as synthesizable VHDL. You are required to use one of the

supported parameter configurations for the Xilinx FFT, any of which will generate a

configuration of the Xilinx FFT LogiCORE. The descriptions of the specific Xilinx

Blockset elements note which Xilinx LogiCOREs are used by each.

For those Xilinx blocks that have associated Xilinx LogiCOREs, you also have options

regarding when to generate the core and core files. You may want to defer invoking

the Xilinx CORE Generator until you have finished debugging your design and are

ready to implement. Or, you may already have a Xilinx LogiCORE previously

generated, and may not wish to take the time to re-generate the core every time you

invoke the System Generator code-generation software. The System Generator’s

optional invocation of the Xilinx CORE Generator can be configured as part of each

Xilinx block’s parameterization GUI, or from the System Generator token’s

parameterization GUI.

Xilinx LogiCORE Versions
The Xilinx LogiCOREs that are used in v1.0.1 of the Xilinx System Generator are

listed below, with the version numbers being supported by the System Generator:

Xilinx Blockset
element

Xilinx LogiCORE Version

Accumulator ACCUMULATOR v2.0

Counter COUNTER_BINARY v2.0

Dual Port Ram MEM_DP_BLOCK v1.0

FFT FFT and MEM_DP_BLOCK v1.0, v1.0

FIR filter DA_FIR v3.0 (SysGen v1.0)

v4.0 (SysGen v1.0.1)

Inverter GATE_BUS_ v1.0

Logical GATE_BUS v1.0

Multiplier MULT_VGEN v2.0

Mutiplexer MUX_BUS v2.0

Negate TWOS_COMP v2.0

Relational COMPARE v2.0

-13

Xilinx Blockset Overview

Common Options in Xilinx Blockset Parameterization GUI
Each Xilinx block has several configurable parameters, seen in the Block

parameterization GUI. Many of these parameters are specific to that particular block,

and those parameters are described in the specific block documentation in the next

chapter of this Reference Guide.

The remainder of the parameters in each block’s parameterization GUI are common to

several blocks. These common parameters are described below.

Arithmetic Type
In the Type field of the Xilinx Blockset parameterization GUI, you can choose

unsigned or signed (two’s complement) as the datatype of the output signal.

Implement with Xilinx Smart-IP Core (if possible)
This checkbox (sometimes referred to as the use core checkbox) specifies to the System

Generator code-generation software to instantiate a core in the generated VHDL. If

you do not select this checkbox, then you are specifying that the System Generator

should create synthesizable VHDL, and should not use the Xilinx LogiCORE at all.

Selecting this option does not guarantee that a Xilinx LogiCORE will be used. If the

parameters for your block are such that a core cannot be generated (for example if you

have specified a multiplier that is larger than available Xilinx LogiCOREs), then

synthesizable VHDL will be generated instead. The System Generator software makes

this decision at code-generation time.

If you select this checkbox, the Xilinx CORE Generator software will also generate the

behavioral VHDL model that models the simulation of the Xilinx LogiCORE.

Generate Core
When the Generate Core checkbox is selected, the Xilinx CORE Generator will be

invoked during System Generator code-generation. If Generate Core is not selected,

then a Xilinx LogiCORE will not be generated, and if the core doesn’t already exist in

your project directory, subsequently running the Xilinx Implementation tools will

produce an error.

If you select “Implement with Xilinx Smart-IP Core” but do not select “Generate

Core,” you will be able to simulate your generated VHDL because (1) a core will be

instantiated in the VHDL, and (2) the behavioral VHDL models will be available for a

simulator to use. However, you will not be able to complete implementation into a

Xilinx FPGA until you have also generated the core.

In some blocks, only the Generate Core option is available. If the Implement with

Smart IP-Core option is not available, then there is only a core implementation

available from the System Generator, no synthesizable VHDL implementation.

Single Port RAM MEM_SP_BLOCK and DIST_MEM v1.0, v2.0

ROM MEM_SP_BLOCK and DIST_MEM v1.0, v2.0

Xilinx Blockset
element

Xilinx LogiCORE Version

-14 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

Latency
Many elements in the Xilinx Blockset have a latency option, which defines the number

of input sample periods required for an input to affect a block output. This sample

period may correspond to multiple clock cycles in the corresponding FPGA

implementation, for example when the hardware is overclocked with respect to the

Simulink model. System Generator does not perform extensive pipelining; additional

latency is usually implemented as a shift register on the output of the block.

Number of Bits
If you have specified user-defined precision, then you will be asked to specify how

many bits you would like the output to have.

 Binary Point

You will also be asked to specify how many bits are to the right of the binary point

(i.e., the size of the fraction). The binary point position must be between zero and the

number of bits in the number’s container.

Overflow and Quantization
When user-defined precision is selected, there is the possiblity of data error due to

overflow or quantization. Overflow occurs if the data value lies outside of the

representable range of the fixed point number. Quantization error occurs if the

number of fractional bits is insufficent to represent the fractional portion of the data.

The Xilinx fixed-point data type supports several options for user-defined precision.

In the case of overflow, the options are to saturate to the largest positive (or smallest

negative) value when the data value exceeds the representation, wrap the value (i.e.

discard any significant bits beyond the most-significant bit in the fixed-point number),

or flag an overflow as a Simulink error during simulation.

In the case of quantization, the options are: (a) to round to the nearest representable

value or to the values toward +/- infinity if there are two equidistant nearest

representable values, or (b) to truncate the data (i.e. discard bits to the right of the

least significant bit).

It is important to realize that whatever option is selected, the generated HDL model

will have identical bit-true behavior as the Simulink model.

Override with Doubles
Regular Simulink blocks use double-precision, floating point signals and arithmetic.

However, when these signals pass through the Xilinx Gateway In block (input to the

FPGA portion of your Simulink design), they are converted to fixed point signals.

Later, when passing out of the FPGA portion of your design through the Xilinx

Gateway Out block, the signals are converted back into double-precision floating

point signals.

For the purpose of simulation in the Simulink environment, the override with doubles
option allows you to simulate the entire design in double-precision floating point.

This option is useful in selecting fixed point widths, or if you are not getting the

simulation results that you expect when simulating the Xilinx portion of your design

with fixed-point signals. If you find simulation errors with fixed-point signals, you

can choose to simulate your entire design, or only specific blocks, using double-

-15

Xilinx Blockset Overview

precision floating point signals and arithmetic operations. This option will help you

discover which part of your design has quantization error.

You may choose override with doubles on a particular block. You may also choose

this option for an entire sheet, or an entire subsystem (the sheet plus underlying

hierarchy) by instantiating a System Generator token on the sheet, and choosing

override with doubles on the token’s parameterization GUI.

When the output of one block with override with doubles set is connected to the input

of another block where the option is also set, data samples will be transmitted

between them in double precision. Thus, there will be no quantization effect due to

the transmission of data between them.

You can easily identify which blocks are currently set to override with doubles. When

this option is set, affected Xilinx blocks are displayed in gray, rather than in their

normal blue or yellow colors.

Precision
The fundamental computational mode in the Xilinx Blockset is arbitray precision

fixed-point arithmetic. Most blocks give you the option of choosing the precision, i.e.

the number of bits in the number and the number of fractional bits (binary point

position).

By default, the output of Xilinx blocks is full precision, that is, a sufficient number of

total and fractional bits to represent the result without error. Most blocks have a user-
defined precision option which fixes the number of total and fractional bits.

Sample Period
The data streams are processed at a specific sample rate, or clock period, as they flow

through a dataflow system such as Simulink. Typically, each block detects the input

sample rate and produces the correct sample rate on its output. Xilinx Blockset

elements Up Sample and Down Sample provide a means to increase or decrease

sample rates.

Use Explicit Sample Period

If you select Use Explicit Sample Period rather than the default, you may set the

sample period required for all the block outputs. This is useful when implementing

features in your design such as feedback loops. In a feedback loop, it is not possible

for the System Generator to determine a default sample rate, because the loop makes

an input sample rate depend on a yet-to-be-determined output sample rate. The

System Generator therefore requires you to supply a hint to establish sample periods

throughout a loop.

-16 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

The following images (the Concat block’s parameterization GUI) show the results

with Use Explicit Sample Period selected and unselected.

Figure: Use Explicit Sample Period options (available if selected)

-17

Blockset Elements

Chapter 3

Blockset Elements

This chapter describes specific details of the each Xilinx Blockset element. Xilinx

blocks are grouped within these five categories, also shown in the Simulink library

browser:

• “Basic Elements”

• “DSP”

• “Math”

• “Matlab IO”

• “Memory”

Basic Elements
The Xilinx Basic Elements Library includes the standard building blocks for digital

designs. Using these elements, you may insert delay, change the sample rate, and

introduce constants, counters, multiplexers, etc.

In addition, there are two special elements in the Basic Elements Library: the System

Generator and the Black Box.

System Generator
The System Generator is a special Xilinx block.

The System Generator invokes the tool’s Code Generation Software. By

placing the System Generator token on your Simulink project sheet, you

can generate HDL and Xilinx LogiCOREs for all the Xilinx blocks on that

sheet and on any sheets beneath it in the hierarchy.

-18 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

Double-clicking on the System Generator token produces a customization GUI, which

allows you to tailor your Simulink simulation and code-generation.

Figure: System Generator customization GUI

The System Generator token allows you to hierarchically override fixed point values

with double-precision values for your Simulink simulation, which is particularly

useful during design and debugging. The override with doubles directive from a

System Generator token is applied to all Xilinx block on the same sheet and

recursively through all subsystems on the sheet. Additional System Generator tokens

can be inserted into the subsystems to selectively mask this effect. For an explanation

of the Override with Doubles behavior, seethe Common Parameters section of the

previous chapter.

You may determine whether Xilinx LogiCOREs should be generated (as edif) along

with the HDL files, via the Generate Cores pulldown menu.

By checking the Create Testbench box, you instruct the tool to save test vectors that

are imported and used during behavioral simulation.

Finally, selecting the Generate button invokes the code generation software, and your

Simulink design is converted to VHDL and Xilinx LogiCOREs. Note that the Cancel

button is active during code generation; if you wish to cancel the code-generation

phase while it is running, you may do so by selecting Cancel during code-generation.

Black Box
You may wish to include functionality in your Simulink model that does

not exist in the current blockset. Any Simulink subsystem may be treated as

a black box if you so choose. You may want to build a model out of non-

Xilinx blocks for an HDL representation of functionality that you wish to

turn into a Simulink model.

The Xilinx Black Box token gives you the ability to instantiate your own specialized

functions in your model, and subsequently into a generated design.

Like the System Generator token, the Black Box token may be placed in any Simulink

subsystem, identifying the subsystem as a black box.

The black box customization GUI encapsulates the design information necessary for

the compiler to create the correct instantiation interfaces. This black box support

-19

Blockset Elements

allows you to abstract commonly used control signals and ports, and then infer them

within the generated VHDL.

Figure: Black Box customization GUI

The parameters that are specified as a cell array (generic names, types, and values)

permit several methods for entering data. You may specify your data directly in the

GUI as shown. You may also specify the cell arrays as MATLAB expressions. This is

useful if you have many elements in your cell arrays.

Generic types can be any VHDL type.

The black box configuration GUI allows you to specify multiple clocks on a black box.

In order to handle more than one clock in your black box design, the System

Generator needs to know how fast each clock should run. To specify a clock’s speed,

you must associate the clock to a port on the black box: The frequency of the clock is

then the frequency of the signal passing through the port. The System Generator

allows more than one port to be associated to a clock, but only if all the associated

ports have the same frequency (note: constant inputs will match any paired

frequency).

For example, assume you have a black box with two ports: a fast input, and a slow

output. Say the black box should have clocks called fast_clk and slow_clk
whose frequencies should match those of the input and output ports respectively. In

-20 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

order to configure the black box, enter the following in the black box configuration

GUI:

Figure: Customizing clocks in the Black Box GUI

This configuration indicates that the black box should have clocks named fast_clk
and slow_clk . The fast_clk should have the same frequency as the samples

presented to input port #1, and the slow_clk should have the same frequency as

output port #1.

Concat
The Xilinx Concat block performs a concatenation of two bit-vectors

represented by unsigned integer numbers, i.e. two unsigned numbers with

binary points at position zero.

The block has two input ports and one output port. The two input ports are

labeled hi and low . The number input to the hi port will occupy the most significant

bits of the output and the number that is input to the low port will occupy the least

significant bits of the output.

The Concat block may be configured via its parameterization GUI.

Figure: Concat block parameterization GUI

Parameters used by this block are explained in the Common Parameters section of the

previous chapter of the Reference Guide.

The Concat block does not use a Xilinx LogiCORE.

Constant
The Xilinx Constant block generates a constant. This element is similar to the

Simulink constant block, but can be used to drive the inputs on Xilinx blocks.

-21

Blockset Elements

The Constant block may be configured via its parameterization GUI.

Figure: Constant block parameterization GUI

You may specify the value of the constant, as well as its arithmetic type, number of

bits (in a user-defined precision), plus effect of overflow or quantization on the value.

The input displayed on the block will represent the specified quantization and

overflow effects.

The sampled constant option allows a sample period to be associated with the

constant output and inherited by blocks that the constant block drives. (This is a

useful option solely because the blocks eventually target hardware and the sample

periods of Simulink are used to establish hardware clock periods.)

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

The Constant block does not use a Xilinx LogiCORE.

Convert
The Xilinx Convert block converts each input sample to a number of a

desired arithmetic type. For example, a number can be converted to a

signed (two’s complement) or unsigned value.

-22 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

The Convert block may be parameterized via its Block Parameters GUI.

Figure: Convert block parameterization GUI

All the parameters of the Convert block are parameters common to more than one

block. Please refer to the Common Parameters section in the previous chapter for

more details about the parameters that you may set for this element.

Parameters defining the desired output type are:

• Output Arithmetic Type

• Number of Bits

• Binary Point

Parameters defining the quantization effect and the overflow effect are:

• Quantization Behavior

• Overflow Behavior

The Convert block does not use a Xilinx LogiCORE.

Counter
The Xilinx Counter block implements a counter. It may be an up counter or

a down counter. It may be configured to start and end at any value, and to

increment by any value. The increment must be evenly divisible by the

difference between the counter’s starting and ending values.

-23

Blockset Elements

The Counter parameterization GUI may be invoked by double-clicking on the block

icon.

Figure: Counter block parameterization GUI

Parameters specific to the block are:

• Start Count at: this is the initial value of the counter. The default value is zero.

• Count to Value: this is the “Stop counter” value, the number at which the counter

will stop. The default value is “Inf” which is a MATLAB internal value

interpreted hear to mean the largest representable output, ala the “max” option

for the core. Note that the “Inf” value may not be used in VHDL.

• Count By Value: this is the counter’s increment. The default value is 1. This

number cannot be the same as the start count.

• Count direction: choice of up- or down-counter.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

Xilinx LogiCORE

The Counter block always uses the Binary Counter Xilinx LogiCORE. The Core

datasheet may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\baseblox_v2_0\com\xilinx\ip\baseblo
x_v2_0\doc\C_COUNTER_BINARY_V2_0.pdf

-24 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

Delay
The Xilinx Delay block is a delay line (also called shift register) of

configurable length, allowing you to add latency to your design. You may

wish to add latency to balance pipelining elsewhere in your design. The

System Generator implements latency by adding the appropriate number of

registers to your design at the position where this block is placed.

Data presented at input will appear at the output after a user specified number of

sample periods. Initial output samples are designated as “invalid data.”

The Delay block differs from the Register block because the Register only allows

latency of 1, and contains an Initial Value parameter. The Delay block supports a user

specified latency, but no initial value.

The Delay block is configurable via its parameterization GUI.

Figure: Delay block parameterization GUI

You may enter the amount of latency in the Latency field.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

The Delay block does not use a Xilinx LogiCORE, but the synthesizable output will be

efficiently mapped to utilize the SRL16 feature of the Xilinx parts.

Down Sample
The Xilinx Down Sample block reduces the sample rate at the point

where the block is placed in your design. The input signal is under-

sampled so that every nth input sample is presented at the output and

held.

Output sample period is k*(input sample period) where the ratio k is a configurable

block parameter.

-25

Blockset Elements

The Down Sample block is configured via its parameterization GUI:

Figure: Down Sample block parameterization GUI

The Sampling Rate field must contain an integer, greater or equal to 2. This is the ratio

of the output sample period to the input, and is essentially a sample rate divider. For

example, a ratio of 2 indicates a 2:1 divider of the input sample rate. If a non-integer

ratio is desired, the Up Sample block can be used in combination with the Down

Sample block to create smaller differences in sample rate.

The Zero initial output checkbox lets you choose what the first value of the new sample

(before it has valid data) will be. By selecting Zero Initial Output, you can validate the

first sample with valid data of zero. Otherwise, an invalid data (“NaN = not a

number”) will be the block’s first output.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

The Down Sample block does not use a Xilinx LogiCORE.

Get Valid Bit
The Xilinx Get Valid Bit element sets its output to 1 when its input is a

valid data value. The output is set to 0 otherwise.

In the Xilinx Blockset, every data sample that flows through the model is

accompanied by a handshake validation signal. In the corresponding

hardware, every data-carrying bus has a companion net that carries a valid or invalid

status indicator. There are different circumstances under which the status indicator

may be set to invalid. For example, invalid data might mean that a pipelined dataflow

hasn’t yet filled up, or it may denote bursty outputs, as with an FFT. This block simply

reports the valid status of the samples presented to it.

There are no configurable parameters for this block.

Mux
The Xilinx Mux block implements a multiplexer. Inputs include

the select line and a configurable number of data lines. From 2 to

8 lines may be set, with the input of the select line determining

which input line of the multiplexer will be passed through to the

block’s output.

-26 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

The Mux block can be configured via its parameterization GUI.

Figure: Mux block parameterization GUI

You may select the number of inputs, and after applying this selection to the block, the

Mux token on your sheet will change to graphically show the proper number of

inputs.

The multiplexer precision defaults to Full. If User-Defined precision is selected, the

parameterization GUI will then also include configurable parameters: Arithmetic

Type, Number of Bits, Quantization and Overflow. These parameters are explained in

the Common Parameters section of the previous chapter of the Reference Guide.

Xilinx LogiCORE

The Multiplexer block always uses the Xilinx Bus Multiplexer V2.0 LogiCORE.

The Core datasheet may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\baseblox_v2_0\com\xilinx\ip\baseblo
x_v2_0\doc\C_MUX_BUS_V2_0.pdf

Register
The Xilinx Register block inserts one register into your design. Each

register adds a latency of 1 to your design. There are two inputs to the

block: a data line and a reset line. Data presented at input will appear at the

output after one sample period. The initial output value is configurable.

The Register block differs from the Delay block because the Register always gives

latency of 1, and contains an Initial Value parameter. The Delay block allows a

configurable latency amount, but has no value.

-27

Blockset Elements

The Register block may be configured via its parameterization GUI:

Figure: Register block parameterization GUI

The Register Valid Data checkbox, if selected, will not register invalid data as output.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

The Register block does not use a Xilinx LogiCORE.

Set Valid Bit
The Xilinx Set Valid Bit block flags input data as invalid when the signal

on the valid bit input port is zero. This block only sets data invalid;

invalid input data cannot be changed to valid. Invalid data is converted to

NaN (Not a Number) by the Xilinx Gateway-out block.

In the Xilinx Blockset, every data sample that flows through the model is

accompanied by a handshake validation signal. In the corresponding hardware, every

data-carrying bus has a companion net that carries a valid or invalid status indicator.

This block provides some explicit control over this hanshake mechanism.

The Set Valid Bit block may be configured via the parameterization GUI:

Figure: Set Valid Bit block parameterization GUI

Slice
The Xilinx Slice block allows you to “slice off” a sequence of bits from your

input data and create a new data value. This new value is presented as the

output from the block. The output is of type UFix_N_0.

-28 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

Specifications as to how to extract your data slice and how to construct the new data

value are included in the parameterization GUI. Two views of the GUI are shown:

Figure: Slice block parameterization GUI showing different options

You may choose one of three ways to specify the range of bits to slice:

• Two Bit Locations: specify the starting bit position to extract, and the ending bit

position.

• Upper Bit Location + width: specify the bit that you want as the upper bit of your

output, and number of bits to extract.

• Lower Bit Location + width: specify the bit that you want to be the lower bit of

your output, and number of bits to extract.

All bit slice positions are specified relative to the Most Significant Bit (MSB), Least

Significant Bit (LSB), or Binary point of the top or bottom of the slice. The

“Offset”values are always towards the MSB.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

The Slice block does not use a Xilinx LogiCORE.

-29

Blockset Elements

Up Sample
The Xilinx Up Sample block increases the sample rate at the point where

the block is placed in your design. The input signal is over-sampled so

that every nth input sample is presented at the output, or presented once

with (n-1) zeroes interspersed.

The output sample period is (input sample period)/k where the ratio k is a

configurable block parameter.

The Up Sample block may be configured via its parameterization GUI.

Figure: Up Sample block parameterization GUI

The Sampling Rate field must contain an integer, greater or equal to 2. This is the ratio

of the output sample period to the input, and is essentially a sample rate multiplier.

For example, a ratio of 2 indicates a 2*1 multiplier of the input sample rate. If a non-

integer ratio is desired, the Up Sample block can be used in combination with the

Down Sample block to create smaller differences in sample rate.

The Copy Samples checkbox lets you choose what to do with the additional samples

produced by the increased clock rate. By selecting Copy Samples, the same sample

will be duplicated (copied) during the extra sample times. If this checkbox is not

selected, then this additional samples output will contain zeroes.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

The Up Sample block does not use a Xilinx LogiCORE.

DSP
Blockset elements of Digital Signal Processing (DSP) specific functions.

FFT
The Xilinx FFT Block computes the Discrete Fourier Transform (DFT) using the radix-

4 Cooley-Tukey algorithm, explained below:

The N-point DFT of a complex vector

x(n) = [x(0), x(1), ..., x(N-1)]

is the vector X(k) = [X(0), X(1), ..., X(N-1)],

where the k-th element:

X k() x m()WN
mk

m 0=

N 1–

∑=

-30 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

for k=0, 1, ... , N-1, where

is a principal N-th root of unity.

The FFT block accepts as input a stream of complex data represented as a pair of

Xilinx fixed-point data{x(0), x(1), ...}and computes successive DFTs of nonoverlapping

frames of N data samples.

The Block Interface (inputs and outputs as seen on the FFT icon) are as

follows:

The FFT parameterization GUI is accessible by double-clicking the FFT icon on your

Simulink model sheet.

Figure: FFT block parameterization GUI

Parameters specific to the FFT block are:

• Number of points: you can choose 16, 64, 256, or 1024.

• Memory usage: choose Single, Double, Triple (16 pt: Single only).

• Output scaling: choose 1/N or 1/(2N).

Input signals:

xn_r real component of input data stream

xi_r imaginary component of input data stream

reset reset signal

inv 0 for forward transform, 1 for inverse

Output signals:

Xk_r real component of output data stream

Xk_i imaginary component of output data stream

done active high on first output sample in a frame

rfd active high when block can accept input data

WN e
i–()2π

N

=

-31

Blockset Elements

• Overflow characteristic: you may choose to Invalidate transform (if checkbox

selected) or to stop the simulation in the event of an overflow (if checkbox not

selected).

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

Block Timing

Below is a timing diagram that illustrates the behavior of the FFT block indicating the

number of sample periods between the taking of input samples and the production of

the output samples for a particular frame. (Note that the timing characteristics

depend on the number of points in the FFT and the memory usage mode selected. For

Triple Memory configurations the timing numbers are specified in terms of the output

data sample period.)

Figure: FFT Timing Diagram

Table: FFT Timing Characteristics

For the 16-point FFT, there is no stall time and the frame_0 time is 84 ticks and

subsequent frames are delivered continuously, so frame = 16.

Single Memory Double Memory Triple Memory

64-point

stall_0 = 275

stall = 275

frame_0 = 277

frame = 339

stall_0 = 146

stall = 128

frame_0 = 276

frame = 192

stall_0 = 0

stall = 0

frame_0 = 406

frame = 192

256-point

stall_0 = 1074

stall = 1074

frame_0 = 1076

frame = 1330

stall_0 = 789

stall = 768

frame_0 = 1075

frame = 1024

stall_0 = 0

stall = 0

frame_0 = 1589

frame = 768

1024-point

stall_0 = 5170

stall = 5170

frame_0 = 5172

frame = 6194

stall_0 = 4117

stall = 4096

frame_0 = 5171

frame = 5120

stall_0 = 0

stall = 0

frame_0 = 8246

frame = 4096

-32 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

Xilinx LogiCORE

The Xilinx FFT block is implemented with the Xilinx FFT LogiCORE v1.0,

consequently the number of points supported are N=16, 64, 256, or 1024. The 64, 256,

and 1024 point FFTs also contain external memories implemented with the Dual Port

Block Memory LogiCORE v1.0. The number of logical memory blocks (either 1, 2, or

3) determines the timing characteristics and size of the implementation. There is no

synthesizable implementation. A realizable implementation requires 16-bit data

inputs, although the block will simulate with other input sizes.

To help avoid overflow in the internal arithmetic calculations, the output is always

scaled; you can choose whether to scale the output by 1/N or by 1/(2N).

Scaling by 1/(2N) will always avoid overflow, but will limit your range.

Core operation

The timing characteristics of the FFT block depends on the number of points and

block parameters. Synchronization is accomplished using the two output control

signals, rfd (ready for data), and done (beginning of new output frame). The block

accepts data only when the rfd output signal is active high, otherwise any input

samples are ignored. The done output signal is asserted active high for the first

sample of each output frame and is low otherwise. For example, the rfd signal can be

used to drive the control port of an enabled subsystem that is feeding data to the FFT

block.

The block initially wakes up in “reset” mode, in which it ignores invalid data samples.

The first coincident valid xn_r and xn_i data is considered the beginning of a new

input frame, and upon receipt, the block begins processing data. Asserting reset will

immediately return the block to reset mode, interrupting the current output frame.

The output data will remain invalid until the subsequent frame is processed as

indicated by the done signal.

The four Xilinx LogiCORE datasheets (one for each of the 16, 64, 256, and 1024-point

FFTs) may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\vfft_v1_0\com\xilinx\ip\vfft\doc\c_
fft1024_v1_0.pdf
%XILINX%\coregen\ip\xilinx\vfft_v1_0\com\xilinx\ip\vfft\doc\c_
fft16_v1_0.pdf
%XILINX%\coregen\ip\xilinx\vfft_v1_0\com\xilinx\ip\vfft\doc\c_
fft256_v1_0.pdf
%XILINX%\coregen\ip\xilinx\vfft_v1_0\com\xilinx\ip\vfft\doc\c_
fft64_v1_0.pdf

The Dual Port Block Memory LogiCORE datasheet may be found on your local disk

at:

%XILINX%\coregen\ip\xilinx\blkmemv2dp_v2_0\com\xilinx\ip\blkmemv2dp_v

2_0\doc\BLKMEMV2DP_V2_0.pdf

FIR
The Xilinx FIR Filter Block implements a finite-impulse response (FIR)

digital filter. An N-tap filter is defined by N filter coefficients, or taps, each

represented as a Xilinx fixed-point number. h(i) are the set of user-defined

coefficients.

-33

Blockset Elements

The filter block accepts a stream of Xilinx fixed-point data samples x(0), x(1), ..., and at

time n computes the output:

The FIR block takes one input xn: a Xilinx Blockset signal fixed-point data sample.

The block produces one output signal yn: a Xilinx Blockset fixed-point output sample.

The FIR parameterization GUI may be accessed by double-clicking on the token on

your Simulink model sheet:

Figure: FIR block parameterization GUI

Parameters specific to this block are:

• Coefficents - vector of filter coefficients; note that these can be evaluated from a

MATLAB workspace variable and may in turn be computed by a MATLAB tool

(also see the Quickstart Guide and Tutorials examples).

• Coefficient structure - Xilinx Smart-IP core preferred implementation depends on

the structure of the sequence of filter taps. You may choose one of: inferred from

coefficients, none, symmetric, negative symmetric, half band, and interpolated fir.

• Number of bits per coefficient - Xilinx fixed-point parameter.

• Binary point for coefficients - Xilinx fixed-point parameter.

• Coefficient arithmetic type - Xilinx fixed-point parameter.

y n() h i()x n i–()
i 0=

N 1–

∑=

-34 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

• Polyphase behavior - Decimation, Interpolation, Single rate.

• Latency - specify input sample period latency.

• Hardware over clocking - Hardware clocks per sample.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

Xilinx LogiCORE

The block is implemented with the Xilinx Distributed Arithmetic FIR Filter v4.0

LogiCORE. (Version 4.0 of the LogiCORE is an update from version 3.0, which was

supported in System Generator v1.0. If you have upgraded to the System Generator

v1.0.1, you will need to install the newer version of this core, available online in the IP

Update #2 from the Xilinx IP Center.)

The Simulink model operates on a sample in/sample out basis, but the core has the

capability of using serial arithmetic by overclocking. Although this adds latency, it has

the benefit of reducing the number of hardware resources required for the filter. Refer

to the Core Data Sheet for more details of the filter modes and parameters. The

datasheets for versions 3.0 and 4.0 may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\da_fir_v3_0\com\xilinx\ip\da_fir_v3
_0\doc\C_DA_FIR_V3_0.pdf

%XILINX%\coregen\ip\xilinx\da_fir_v3_0\com\xilinx\ip\da_fir_v3
_0\doc\C_DA_FIR_V4_0.pdf

Math
The Math section of the Xilinx Blockset contains mathematical functions.

Accumulator
The Xilinx Accumulator block is an adder-based or a subtractor-based

accumulator.

The block has a data input port b, a reset port rst, and an output port q.

The output must have the same width as the input data. The output is

produced as:

if rst=1, then q(n)=0;

if rst=0, then q(n) = q(n-1) * FeedbackScaling +/- b(n-1).

-35

Blockset Elements

The Accumulator Block parameterization GUI can be invoked by double-clicking on

the icon in your Simulink model:

Figure: Accumulator block parameterization GUI

Parameters specific to the Accumulator block are:

• Number of Bits (output width): specifies the output width and must be the same

as the input width

• Operation: a list of two choices, Add and Subtract. This determines if the block is

an adder-based or subtractor-based accumulator.

• Feedback Scaling: there are nine choices of feedback multiplier: 1, 1/2, 1/4, 1/8,

1/16, 1/32, 1/64, 1/128, and 1/256.

The output is produced as:

if rst=1, then q(n)=0;

if rst=0 and the operation is Add, then q(n) = q(n-1) * FeedbackScaling + b(n-1);

if rst=0 and the operation is Subtract, then q(n) = q(n-1) * FeedbackScaling - b(n-1).

The arithmetic type of the output is the same as that of the input. The block always

has a latency of 1.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

Xilinx LogiCORE

The Accumulator block always uses the Xilinx LogiCore: Accumulator V2.0. The data

width must be between 1 and 66, inclusive.

The Core datasheet may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\baseblox_v2_0\com\xilinx\ip\baseblo
x_v2_0\doc\C_ACCUM_V2_0.pdf

AddSub
The Xilinx AddSub block performs an addition or a subtraction. The

operation can be fixed, or can be specified dynamically through an optional

mode port.

-36 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

The AddSub block can be configured via the Block Parameters GUI:

Figure: AddSub block parameterization GUI

The GUI contains one parameter which is specific to the AddSub block.

The Mode parameter is a list of three choices: Addition, Subtraction, and

Addition/Subtraction. When Addition is selected, the block is a two-

input adder. When Subtraction is selected, the block is a two-input

subtractor. When Addition/Subtraction is selected as the Mode

parameter, the block is an Adder/Subtractor and the operation it will perform is

determined by the third input port (titled *sub). The *sub input port is a 1-bit

unsigned number. When it is 0, the block will perform an addition. Otherwise, it will

perform a subtraction.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

The AddSub block does not use a Xilinx LogiCORE.

CMult
The Xilinx CMult block multiplies an input by a constant. The constant is

specified as one of the block parameters. The block has one input and one

output.

-37

Blockset Elements

The CMult block can be configured via the Block Parameters GUI:

Figure: CMult block parameterization GUI

Parameters specific to the CMult block are:

• Value of Constant: The value entered as the Value of Constant parameter may not

fit the container. In this case, System Generator rounds and saturates to force the

constants into ints container. Whether the constant is unsigned or signed is

determined automatically by the System Generator.

• Number of Bits in Constant - defines the width of the constant.

• Binary Point of Constant - defines the binary point of the constant.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

The CMult block does not use a Xilinx LogiCORE.

Inverter
The Xilinx Inverter block calculates a bit-wise complement on its input

value, which is presented as the output. The block has two

implementations: a Xilinx LogiCORE version and a VHDL synthesized

version.

-38 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

The Inverter block can be configured via the Block Parameters GUI:

Figure: Inverter block parameterization GUI

Parameters used by this block are explained in the Common Parameters section of the

previous chapter of the Reference Guide.

Xilinx LogiCORE

The Inverter uses the Xilinx LogiCORE Bus Gate V2.0 when possible. When the Use

Explicit Sample Period parameter is checked, system generator will use a core if the

input width is from 1 to 64, inclusive. Otherwise it will use the VHDL synthesized

version.

The Core datasheet may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\baseblox_v2_0\com\xilinx\ip\baseblo
x_v2_0\doc\C_GATE_BUS_V2_0.pdf

Logical
The Xilinx Logical block performs a bit-wise logical operation on 2, 3, or 4

numbers. It can have 2, 3, or 4 inputs and one output. Operands are

aligned at the binary point, zero or sign extend appropriately, then the bit-

wise logical operation is performed.

The block has two implementations: a Xilinx LogiCORE version and a VHDL

synthesized version.

Note that in trees of logical gates, it is typically better to not map the blocks to cores as

the synthesized versions can be combined, optimized, and trimmed by the design

synthesis tools that run downstream.

-39

Blockset Elements

The Logical block can be configured via the Block Parameters GUI:

Figure: Logical block parameterization GUI

Parameters specific to the block are:

• Number of Inputs - a list of three choices: 2, 3, or 4.

• Logical Function - a list of six choices: AND, NAND, OR, NOR, XOR, and XNOR.

This parameter specifies which logical operation the block will perform.

• Align Binary Point - a checkbox specifying whether the System Generator should

align automatically. If this box is checked, numbers are automatically aligned at

the binary point. Otherwise, all inputs of the Logical block must have the same

binary point position.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

Xilinx LogiCORE

A Logical block will use the Xilinx LogiCORE Bus Gate V2.0 if possible. When the Use

Xilinx Smart-IP Core checkbox is selected, the System Generator will use a core if the

logical operation width is between 1 and 64, inclusive. The logical operation width is the

width after binary point alignment, and after appropriate sign or zero extension. If the

operation width is greater than 64, a VHDL synthesized implementation will be used.

The Core datasheet may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\baseblox_v2_0\com\xilinx\ip\baseblo
x_v2_0\doc\C_GATE_BUS_V2_0.pdf

Mult
A Xilinx Multiplier block performs a multiplication on two numbers. The

block can have one of three implementations:

• a pipelined multiplier using a Xilinx LogiCORE

-40 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

• a parallel multiplier using a Xilinx LogiCORE

• a parallel multiplier implemented in synthesizable VHDL

The Multiplier block can be configured via its Block Parameters GUI:

Figure: Multiplier block parameterization GUI

The pipeline option parameter is specific to the Multiplier block. This parameter

indicates whether to use the pipelined version of a multiplier. When this is checked,

the block latency and the input widths must fall within the capabilities of the Xilinx

LogiCORE.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter.

Xilinx LogiCORE

The Multiplier block uses the Xilinx LogiCORE Variable Parallel Multiplier V2.0.

When the generate-core parameter is checked, the System Generator will generate a

core if possible. Both input widths must be between 2 to 32 inclusive, if a Xilinx

LogiCORE is to be used. If an input exceeds this range, then synthesizable VHDL will

be used. When the Pipeline-the-Multiplier checkbox is selected, the Multiplier block

latency must not be less than the latency of the core. The latency of the core is a

function of the B input width as described in the following table:

Table: Multiplier latency

If the latency is greater than the latency of the Xilinx LogiCORE, registers are added

after the core.

For pipelined implementation, the B input width must be greater than 2.

The Core datasheet for the variable parallel virtex multiplier may be found on your

local disk at:

B input width (number of bits) Xilinx LogiCORE Latency

(number of clocks)

3 and 4 1

5 to 8 2

9 to 16 3

17 to 32 4

-41

Blockset Elements

%XILINX%\coregen\ip\xilinx\mult_vgen_v2_0\com\xilinx\ip\mult_v
gen_v2_0\doc\mult_vgen_v2_0.pdf

Negate
The Xilinx Negate block negates its input. It has one input and one

output. The block has two implementations: a Xilinx LogiCORE, and

synthesizable VHDL.

The Negate block is configurable via its Block Parameters GUI:

Figure: Negate block parameterization GUI

Parameters used by this block are explained in the Common Parameters section of the

previous chapter of the Reference Guide.

Xilinx LogiCORE

A Negate block will use the Xilinx LogiCORE Twos Complementer V2.0 if possible.

When the Use Xilinx Smart-IP Core checkbox is selected, the System Generator will

use a core provided the input width is between 1 and 64, inclusive. Otherwise

sysnthesizable VHDL will be used.

The Core datasheet may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\baseblox_v2_0\com\xilinx\ip\baseblo
x_v2_0\doc\C_TWOS_COMP_V2_0.pdf

Relational
The Xilinx Relational block compares two numbers and produces the

result of the comparison as its output. The six comparisons the block can

perform are:

• equal-to (=),

• not-equal-to (!=),

• less-than (<),

• greater-than (>),

-42 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

• less-than-or-equal-to (<=),

• greater-than-or-equal-to (>=)

The output of a Relational block is a 1-bit unsigned number. It is set to 1 if the

comparison result is true and 0 if the result is false.

Parameters of a Relational block can be set through the parameterization GUI.

Figure: Relational block parameterization GUI

The comparison operation parameter is particular to this block. This parameter is a

pulldown menu and can be set to one of the six comparisons a Relational block can

perform. Other parameters used by this block are explained in the Common

Parameters section of the previous chapter of the Reference Guide.

Xilinx LogiCORE

The inputs to the block must be between 1 and 64 bits wide, inclusive. If requested,

the block will be implemented with the Xilinx LogiCORE: Comparator V2.0.

The Core datasheet may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\baseblox_v2_0\com\xilinx\ip\baseblo
x_v2_0\doc\C_COMPARE_V2_0.pdf

Scale
The Xilinx Scale block scales its input by a power of two. The power can

be either positive or negative. The block has one input and one output.

The scale operation has the effect of moving the binary point without

changing the bits in the container.

-43

Blockset Elements

The Scale block may be configured via its parameterization GUI:

Figure: Scale block parameterization GUI

The only parameter that is specific to the Scale block is Scale Factor. It can be a

positive or negative integer. The output of the block is Output = Input × 2k where i is

the input value and k is the scale factor. The effect of scaling is to move the binary

point, which in hardware has no cost (a “shift,” on the other hand, may add logic).

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

The Scale block does not use a Xilinx LogiCORE.

Shift
The Xilinx Shift block performs a left or right shift on the input number.

The result of the shift will have the same fixed number container as that of

the input number. The block has one input and one output.

The Shift block may be configured via its parameterization GUI:

Figure: Shift block parameterization GUI

Parameters specific to the Shift block are those that specify how to do the shift

operation.

• Shift Direction is a list with two choices: Left and Right. The Left shift operation

shifts the input number to the left within its fixed number container . Appropriate

sign extension will be performed. Bits that are shifted out of the container are

discarded. The Right shift operation shifts the input number to the right within its

-44 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

container. Zeroes will be appended to the least significant bits. Bits that are shifted

out of the container are discarded.

• Number of Bits specifies how many bits are shifted. If the Number of Bits is a

negative number, the block will shift in the opposite direction from the selected

shift direction.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

The Shift block does not use a Xilinx LogiCORE.

Threshold
The Xilinx Threshold block tests the sign of the input number. If the input

number is negative, the output of the block is -1, otherwise the output is

1. The output is a signed fixed-point integer which is 2 bits long. The

block has one input and one output.

The Threshold block may be configured via its parameterization GUI:

Figure: Threshold block parameterization GUI

The block parameters do not control the output data type because the output is

always a signed fixed-point integer which is 2 bits long.

All the parameters used by this block are explained in the Common Parameters

section of the previous chapter of the Reference Guide.

The Threshold block does not use a Xilinx LogiCORE.

MATLAB I/O
The MATLAB I/O section includes Xilinx Gateway blocks, blocks to report

quantization error, the enabled subsystem gateway, and display elements.

Gateway Blocks
The Xilinx Gateway blocks have several functions:

• Convert data from double-precision floating-point to the System Generator fixed-

point type and vice-versa during Simulink simulation.

• Define I/O ports for the top level of the HDL design generated by System

Generator. A Gateway In block defines a top level input port, and a Gateway Out

block defines a top level output port.

• Define testbench stimulus and predicted output files and HDL components in the

generated HDL design when the System Generator “Create Testbench” option is

-45

Blockset Elements

selected. In this case, during HDL code generation, Simulink simulation data is

logged as logic vectors into a data file for each top level port defined by a

Gateway block. An HDL component is inserted in the top level testbench for each

top level port, which during HDL simulation, reads the data from the file and

compares it to the internally calculated value.

Note - Gateway blocks (“gateway in,” “gateway out,” and “enable adapter” blocks)
cannot be used within an enabled subsystem.

Gateway In

The Xilinx Gateway In block is the input into the Xilinx FPGA part of

your Simulink design. It converts Simulink double precision input to

the System Generator fixed point type, and defines an input port for

the top level of the HDL design generated by System Generator.

The Gateway In block is configurable via its parameterization GUI:

Figure: Gateway In block parameterization GUI

Parameters used by this block are explained in the Common Parameters section of the

previous chapter of the Reference Guide.

Gateway Out

The Xilinx Gateway Out block is output from the Xilinx FPGA part of

your Simulink design. It converts System Generator fixed point data

to Simulink double precision, and defines an output port for the top-

level of the HDL design generated by System Generator.

Enable Adapter

When using an enabled subsystem that contains Xilinx blocks, the enable

port must be driven by a Xilinx Enable Adapter block. This block is a

required interface to any enabled subsystem that contains a System

-46 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

Generator block. The Enable Adapter block’s output port must drive the subsystem’s

enable port.

Quantization Error blocks
Quantization error occurs in a design when your fixed-point data differs from the

double-precision value in the least significant bits (LSB), i.e. in the fraction of your

design. The System Generator tracks the degree of quantization error throughout the

design by comparing the fixed-point value with the double-precision value. You can

monitor the degree of quantization error by using the following blocks in your design.

Quantization Error

The Xilinx Quantization Error block extracts the quantization error from

a fixed-point signal. This error is tracked as the difference between the

expected value (exact to machine precision) and the actual value of the

fixed-point signal. You may view the quantization error by sending the

output of the block into a display or scope.

Clear Quantization Error

The Clear Quantization Error block clears the quantization error

tracking mechanism on a trace. Inserting this block has no effect on the

computation other than the error analysis sections.

Display
This is the Simulink Display block, linked into the Xilinx Blockset’s

MATLAB I/O section as a convenience. It is presented as output to

the Sample Time display (described below).

Figure: Display block parameterization GUI

Sample Time

The Sample Time block reports the sample period of its input. It is meant to

be displayed using the Display block, above.

-47

Blockset Elements

Memory
This section contains Xilinx Blockset elements that use Xilinx memory LogiCOREs.

Dual Port RAM
The Xilinx Dual Port random access memory (RAM) has two

independent sets of ports that allow read and write access. Data of a

dual port RAM is stored by word, with all words having the same

arithmetic type, width, and binary point position.

Each port set has one output port and three input ports for address,

input data, and write enable (WE). Both data input ports must be of

the same arithmetic type, width, and binary point position. The data

out ports, labeled A and B, have the same types as the input data ports.

Each data word is associated with exactly one address. A valid address can be any

unsigned fixed point integer from 0 to d-1, where d denotes the RAM depth (number

of words in the RAM). An attempt to read past the end of the memory will be caught

as an error in the simulation. The initial RAM contents can be specified through the

block mask parameters.

The write enable port must be a 1-bit unsigned fixed point value with binary point

zero. If the WE port is 1, the value on the data input is written to the memory contents

indicated by the address input port. Write contention is an error caught during

simulation. A checkbox in the GUI allows the user to specify that only valid data

should be stored in the RAM. The RAM block has latency 1.

The Dual Port RAM block may be configured via its parameterization GUI:

Figure: Dual Port RAM block parameterization GUI

Parameters specific to the block are:

• Depth: specifies the number of words in the block. The depth must be a positive

integer.

-48 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

• Initial Value Vector: specifies the initial value. When the vector is longer than the

RAM, the vector’s trailing elements are discarded. When the RAM is longer than

the vector, the RAM’s trailing words are set to zero.

• Store Only Valid Data: configures the block to accept only valid data.

• Zero Initial Output (otherwise NaN, “not a number”): if this box is checked, the

data out ports have a value of zero at clock 0; otherwise the ports have a value of

NaN.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

Xilinx LogiCORE

A Dual Port RAM block always uses the LogiCORE: Dual Port Block Memory V1.0.

The memory depth must be from 16 to 220, the address width must equal log2Depth,
and the word width must be between 1 and 576.

The Core datasheet may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\blockkmemex_v1_0\com\xilinx\ip\bloc
kmemex_v1_0\doc\c_mem_dp_block_v1_0.pdf

ROM
The Xilinx ROM block is a single port read-only memory. Data is

stored by word and all words have the same arithmetic type, width,

and binary point position.

Each word is associated with exactly one address. A valid address

can be any unsigned fixed point integer from 0 to d-1, where d denotes the ROM

depth (number of words in the ROM). Data in the ROM can only be read. The initial

content of a ROM is specified through block mask parameters. The block has one

input port for the memory address and one output port for the data out. The address

port must be an unsigned fixed point integer. A ROM block has two possible

implementations, either as Xilinx LogiCORE block memory or a Xilinx LogiCORE

distributed memory.

-49

Blockset Elements

The ROM block may be configured via its parameterization GUI:

Figure: ROM block parameterization GUI

Parameters specific to this block are:

• Depth: specifies the number of words in the block. The depth must be positive.

• Initial Value Vector: specifies the initial value. When the vector is longer than the

ROM, the vector’s trailing elements are discarded. When the ROM is longer than

the vector, the ROM’s trailing words are set to zero.

• Zero Initial Output (otherwise NaN, “not a number”): if this box is checked, the

data out ports have a value of zero at clock 0; otherwise the ports have a value of

NaN.

• Use Distributed Memory: If this box is checked, the block is implemented with a

Xilinx LogiCORE distributed memory. Otherwise, a block memory is used.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

Xilinx LogiCORE

A ROM always uses a Xilinx LogiCORE. When the distributed memory parameter is

not selected, Xilinx LogiCORE: Single Port Block Memory V1.0 is used. In this case,

memory depth must be between 16 and 220. The word width must be between 1 and

576. When distributed memory parameter is selected, LogiCORE: Distributed

Memory V2.0 is used. The memory depth must be between 16 and 256, and the word

width must be between 1 and 256.

The Core datasheet for the Single Port Block Memory may be found on your local disk

at:

-50 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

%XILINX%\coregen\ip\xilinx\blockmemex_v1_0\com\xilinx\ip\block
memex_v1_0\doc\c_mem_sp_block_v1_0.pdf

The Core datasheet for the Distributed Memory may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\baseblox_v2_0\com\xilinx\ip\baseblo
x_v2_0\doc\C_DIST_MEM_V2_0.pdf

Single Port RAM
The Xilinx Single Port RAM is a memory which can read/write one

word at a time. All words have the same arithmetic type, width, and

binary point position. The block has one output port and three input

ports for address, input data, and write enable (WE).

Each data word is associated with exactly one address. A valid

address can be any unsigned fixed point integer from 0 to d-1, where d denotes the

RAM depth (number of words in the RAM). An attempt to read past the end of the

memory will be caught as an error in the simulation. The initial RAM contents can be

specified through the block mask parameters.

The write enable port must be a 1-bit unsigned fixed point integer. If the WE port is 1,

the value on the data input is written to the memory contents indicated by the address

input port. A checkbox in the GUI allows the user to specify that only valid data

should be stored in the RAM. The RAM block has latency 1.

The output has the same type as the data in. Regardless of the WE value, the data out

port always has the value at the location specified by the address line.

A Single port RAM block has two possible implementations, either as Xilinx

LogiCORE block memory or a Xilinx LogiCORE distributed memory.

The RAM block may be configured via its parameterization GUI:

Figure: Single Port RAM block parameterization GUI

Parameters specific to this block are:

-51

Blockset Elements

• Depth: specifies the number of words stored; must be a positive integer.

• Initial Value Vector: specifies the initial value. When the vector is longer than the

RAM, the vector’s trailing elements are discarded. When the RAM is longer than

the vector, the RAM’s trailing words are set to zero.

• Store Only Valid Data: configures the block to accept only valid data.

• Zero Initial Output (otherwise NaN, “not a number”): if this box is checked, the

data out ports have a value of zero at clock 0; otherwise the ports have a value of

NaN.

• Use Distributed Memory: If this box is checked, the block is implemented with a

Xilinx LogiCORE distributed memory. Otherwise, a block memory is used.

Other parameters used by this block are explained in the Common Parameters section

of the previous chapter of the Reference Guide.

Xilinx LogiCORE

A RAM block must use a Xilinx LogiCORE. When distributed memory is not selected,

a Xilinx LogiCORE Single Port Block Memory V1.0 is used. The memory depth must

be between 16 and 220. The word width must be between 1 and 576. When distributed

memory is selected, a Xilinx LogiCORE Distributed Memory V2.0 is used. The

memory depth must be between 16 and 256. The word width is between 1 and 256.

The Core datasheet for the Single Port Block Memory may be found locally at:

%XILINX%\coregen\ip\xilinx\blkmemex_v1_0\com\xilinx\ip\blockme
mex_v1_0\doc\c_mem_sp_block_v1_0.pdf

The Core datasheet for the Distributed Memory may be found on your local disk at:

%XILINX%\coregen\ip\xilinx\baseblox_v2_0\com\xilinx\ip\baseblo
x_v2_0\doc\C_DIST_MEM_V2_0.pdf

-52 Xilinx Development System

Xilinx System Generator v1.0.1 Reference Guide

