
Summary

The Virtex FPGA Series provides dedicated on-chip blocks of 4096 bit dual-port synchronous RAM, which are ideal for use
in FIFO applications. This application note describes a way to create a common-clock (synchronous) version and an
independent-clock (asynchronous) version of a 512x8 FIFO, with the depth and width being adjustable within the Verilog
code. A hand-placed version of the design runs at 170MHz in the -6 speed grade.

Xilinx Families

Virtex Series

Introduction
The Virtex Series of devices includes Block SelectRAM+™,
which are fully synchronous dual-ported RAMs with 4096
memory cells. These blocks are ideal for FIFO applications,
and each port can be configured independently as 4Kx1,
2Kx2, 1Kx4, 512x8 or 256x16.

This application note describes a 512x8 FIFO, but each
port structure can be changed if the control logic is
changed accordingly. First the design for a 512x8 FIFO with
common Read and Write clocks is described, and then the
design changes required for the more difficult case of inde-
pendent Read and Write clocks are presented. Signal
names in parenthesis are a reference to the name in the
Verilog code.

Port Definitions - Common-Clock
Design

Synchronous Design Using
Common Clocks
When both the Read and Write clocks originate from the
same source, it simplifies the operation and arbitration of
the FIFO, and the Empty and Full flags can be generated
more easily.

Linear Feedback Shift Registers (LFSRs) are used for both
the read (read_addr) and write (write_addr) address
counters. Because they are addressing a RAM, a binary
counting sequence is not necessary, and the pseudo-ran-
dom sequence of the LFSRs is acceptable. They use very
little logic, and are therefore much faster than a standard
binary implementation. The only drawback is that the FIFO
size is reduced by one, to 511x8.

To perform a read, Read Enable (read_enable) is driven
High prior to a rising clock edge, and the Read Data
(read_data) will be presented on the outputs during the
next clock cycle. To do a Burst Read, simply leave Read
Enable High for as many clock cycles as desired, but if
Empty goes active after reading, then the last word has
been read, and the next Read Data would be invalid.

To perform a write, the Write Data (write_data) must be
present on the inputs, and Write Enable (write_enable) is
driven High prior to a rising clock edge. As long as the Full
flag is not set, the Write will be executed. To do a Burst
Write, the Write Enable is left High, and new Write Data
must be available every cycle.

The Empty flag is set when the Next Read Address
(next_read_addr) is equal to the current Write Address, and
only a Read is being performed. This early decoding allows
Empty to be set immediately after the last Read. It is
cleared after a Write operation (with no simultaneous
Read). Similarly, the Full flag is set when the Next Write
Address (next_write_addr) is equal to the current Read
Address, and only a Write is being performed. It is cleared
after a Read operation (with no simultaneous Write). If both
a Read and Write are done in the same clock cycle, there is
no change to the status flags. During global reset (fifo_gsr),
both these signals are driven High, to prevent any external
logic from interfacing with the FIFO during this time.

A FIFO count (fifocount) is added for convenience, to deter-
mine when the FIFO is 1/2 full, 3/4 full, etc. It is a binary
count of the number of words currently stored in the FIFO.

170 MHz FIFOs Using the Virtex
Block SelectRAM+

XAPP131 December 10, 1998 (Version 1.1) 11 Application Note by Nick Camilleri

Signal Name Port Direction Port Width
clock_in input 1

fifo_gsr_in input 1

write_enable_in input 1

write_data_in input 8

read_enable_in input 1

read_data_out output 8

full_out output 1

empty_out output 1

fifocount_out output 4
XAPP131 December 10, 1998 (Version 1.1) 1-1

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
It is incremented on Writes, decremented on Reads, and
stays the same if both operations are performed within the
same clock cycle. In this application, only the upper 4 bits
are sent to I/O, but that can easily be modified.

Port Definitions - Independent-Clock
Design

Changes Required for Independent
Clocks
In order to operate a FIFO with independent Read and
Write clocks, some asynchronous arbitration logic is
needed to determine the status flags. The previous
Empty/Full generation logic and associated flip-flops are no
longer reliable, because they are now asynchronous with
respect to one another, since Empty is clocked by the Read
Clock, and Full is clocked by the Write Clock.

To solve this problem, and to maximize the speed of the
control logic, additional logic complexity is accepted for
increased performance. There are primary 9-bit Read and
Write binary address counters, which drive the address
inputs to the Block RAM. The binary addresses are con-
verted to Gray-code, and pipelined for a few stages to cre-
ate several address pointers (read_addrgray,
read_nextgray, read_lastgray, write_addrgray,
write_nextgray) which are used to generate the Full and
Empty flags as quickly as possible. Gray-code addresses
are used so that the registered Full and Empty flags are
always clean, and never in an unknown state due to the
asynchronous relationship of the Read and Write clocks. In
the worst case scenario, Full and Empty would simply stay
active one cycle longer, but this would not generate an
error.

When the Read and Write Gray-code pointers are equal,
the FIFO is empty. When the Write Gray-code pointer is
equal to the next Read Gray-code pointer, the FIFO is full,
having 511 words stored. Additional comparators are used

to determine when the FIFO is Almost Empty and Almost
Full, so that Empty and Full can be generated on the same
clock edge as the last operation. (Traditional control logic
uses an asynchronous signal to set the flags, but this is
much slower and limits the overall performance).

Because, different from the common-clock version, it is not
possible to keep a reliable count of the number of words in
the FIFO, a FIFO status output is used instead. It is 5 bits
wide, with the signals representing various ranges of full-
ness, as seen in the following table.

The FIFOstatus outputs are mutually exclusive, meaning
only one will be High at any one time, but the ranges that
they cover overlap. They are based on the Gray-code
pointers, and the quadrant deltas that exist between the
Read and Write addresses. Because of the nature of
Gray-code counting, more precision (such as one based on
octants) can be easily added, because the upper bits of a
Gray-code address are themselves Gray-coded, so there
will not be any incorrect status registered.

The overall worst-case path is the generation of Full and
Empty, and the delays for these paths are reported in the
following table. Delays shown for hand-placed versions are
near-optimal but not necessarily absolutely optimal.

The Independent Clock design has been bench-tested, and
simulation test benches for each of the FIFO designs are
provided, and have been simulated using the Model Tech
Simulator.

The design for Independent Read and Write clocks is
fifoctlr_ic.v (Figure 1), and the design for Common Read
and Write clocks is fifoctlr_cc.v (Figure 2), on WebLINX.

Signal Name Port Direction Port Width
write_clock_in input 1

read_clock_in input 1

fifo_gsr_in input 1

write_enable_in input 1

write_data_in input 8

read_enable_in input 1

read_data_out output 8

full_out output 1

empty_out output 1

fifostatus_out output 5

FIFO Status Bit Description
fifostatus[0] FIFO is between Empty and 1/4 Full

fifostatus[1] FIFO is between 1 word and 1/2 Full

fifostatus[2] FIFO is between 1/4 full and 3/4 Full

fifostatus[3] FIFO is between 1/2 Full and Full

fifostatus[4] FIFO is between 3/4 Full and Full

Design Version
 Speed Grade

-6 -5
Independent Clocks
(automatic placement)

6.6 ns
(150 MHz)

7.6 ns
(130 MHz)

Independent Clocks
(hand-placed)

5.9 ns
(170 MHz)

6.7 ns
(150 MHz)

Common Clocks
(automatic placement)

6.0 ns
(167 MHz)

6.9 ns
(145 MHz)
1-2 XAPP131 December 10, 1998 (Version 1.1)

/apps/xapp.htm

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
Figure 1: Verilog Source Code for fifoctlr_ic.v

/***\
* *
* Module : fifoctlr_ic.v Last Update: 10/19/98 *
* *
* Description : FIFO controller top level. *
* Implements a 511x8 FIFO with independent read/write *
* clocks. *
* *
* The following Verilog code implements a 511x8 FIFO in a Virtex *
* device. The inputs are a Read Clock and Read Enable, a Write Clock *
* and Write Enable, Write Data, and a FIFO_gsr signal as an initial *
* reset. The outputs are Read Data, Full, Empty, and the FIFOstatus *
* outputs, which indicate roughly how full the FIFO is. *
* *
***/

‘timescale 1ns / 10ps

‘define DATA_WIDTH 7:0
‘define ADDR_WIDTH 8:0

module fifoctlr_ic (read_clock_in, write_clock_in, read_enable_in,
 write_enable_in, fifo_gsr_in, write_data_in,
 read_data_out, fifostatus_out, full_out,
 empty_out);

input read_clock_in, write_clock_in;
input read_enable_in, write_enable_in;
input fifo_gsr_in;
input [‘DATA_WIDTH] write_data_in;
output [‘DATA_WIDTH] read_data_out;
output [4:0] fifostatus_out;
output full_out, empty_out;

wire read_enable = read_enable_in;
wire write_enable = write_enable_in;
wire fifo_gsr = fifo_gsr_in;
wire [‘DATA_WIDTH] write_data = write_data_in;
wire [‘DATA_WIDTH] read_data;
assign read_data_out = read_data;
reg [4:0] fifostatus;
assign fifostatus_out = fifostatus;
reg full, empty;
assign full_out = full;
assign empty_out = empty;

reg [‘ADDR_WIDTH] read_addr, write_addr;
reg [‘ADDR_WIDTH] write_addrgray, write_nextgray;
reg [‘ADDR_WIDTH] read_addrgray, read_nextgray, read_lastgray;

wire read_allow, write_allow;

wire [‘ADDR_WIDTH] ecomp, aecomp, fcomp, afcomp;
wire [‘ADDR_WIDTH] emuxcyo, aemuxcyo, fmuxcyo, afmuxcyo;
XAPP131 December 10, 1998 (Version 1.1) 1-3

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
wire emptyg, almostemptyg, fullg, almostfullg;
wire tempo1, tempo2, tempo3, tempo4;
wire ecin, fcin, aecin, afcin;

wire gnd = 0;
wire pwr = 1;

/***\
* *
* Global input clock buffers are instantiated for both the read_clock *
* and the write_clock, to avoid skew problems. *
* *
***/

BUFGP gclkread (.I(read_clock_in), .O(read_clock));
BUFGP gclkwrite (.I(write_clock_in), .O(write_clock));

/**\
* *
* BLOCK RAM instantiation for FIFO. Module is 512x8, of which one *
* address location is sacrificed for the overall speed of the design. *
* *
**/

RAMB4_S8_S8 bram1 (.ADDRA(read_addr), .ADDRB(write_addr), .DIB(write_data),
 .DIA({gnd, gnd, gnd, gnd, gnd, gnd, gnd, gnd}),
 .WEA(gnd), .WEB(write_allow), .CLKA(read_clock),
 .CLKB(write_clock), .RSTA(gnd), .RSTB(gnd),
 .ENA(read_allow), .ENB(pwr), .DOA(read_data));

/***\
* *
* Empty flag is set on fifo_gsr (initial), or when gray *
* code counters are equal, or when there is one word in *
* the FIFO, and a Read operation is about to be performed *
* *
***/

always @(posedge read_clock or posedge fifo_gsr)
 if (fifo_gsr) empty <= ‘b1;
 else empty <= (emptyg || (almostemptyg && read_enable && ! empty));

/***\
* *
* Full flag is set on fifo_gsr (initial, but it is cleared *
* on the first valid write_clock edge after fifo_gsr is *
* de-asserted), or when Gray-code counters are one away *
* from being equal (the Write Gray-code address is equal *
* to the Last Read Gray-code address), or when the Next *
* Write Gray-code address is equal to the Last Read Gray- *
* code address, and a Write operation is about to be *
* performed. *
* *
***/
1-4 XAPP131 December 10, 1998 (Version 1.1)

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
always @(posedge write_clock or posedge fifo_gsr)
 if (fifo_gsr) full <= ‘b1;
 else full <= (fullg || (almostfullg && write_enable && ! full));

/**\
* *
* Generation of Read address pointers. The primary one is *
* binary (read_addr), and the Gray-code derivatives are *
* generated via pipelining the binary-to-Gray-code result. *
* The initial values are important, so they’re in sequence. *
* Grey-code addresses are used so that the registered *
* Full and Empty flags are always clean, and never in an *
* unknown state due to the asynchronous relationship of the *
* Read and Write clocks. In the worst case scenario, Full *
* and Empty would simply stay active one cycle longer, but *
* it would not generate an error or give false values. *
* *
**/

always @(posedge read_clock or posedge fifo_gsr)
 if (fifo_gsr) read_addr <= ‘h0;
 else if (read_allow) read_addr <= read_addr + 1;

always @(posedge read_clock or posedge fifo_gsr)
 if (fifo_gsr) read_nextgray <= 9’b100000000;
 else if (read_allow)
 read_nextgray <= { read_addr[8], (read_addr[8] ^ read_addr[7]),
 (read_addr[7] ^ read_addr[6]), (read_addr[6] ^ read_addr[5]),
 (read_addr[5] ^ read_addr[4]), (read_addr[4] ^ read_addr[3]),
 (read_addr[3] ^ read_addr[2]), (read_addr[2] ^ read_addr[1]),
 (read_addr[1] ^ read_addr[0]) };

always @(posedge read_clock or posedge fifo_gsr)
 if (fifo_gsr) read_addrgray <= 9’b100000001;
 else if (read_allow) read_addrgray <= read_nextgray;

always @(posedge read_clock or posedge fifo_gsr)
 if (fifo_gsr) read_lastgray <= 9’b100000011;
 else if (read_allow) read_lastgray <= read_addrgray;

/**\
* *
* Generation of Write address pointers. Identical copy of *
* read pointer generation above, except for names. *
* *
**/

always @(posedge write_clock or posedge fifo_gsr)
 if (fifo_gsr) write_addr <= ‘h0;
 else if (write_allow) write_addr <= write_addr + 1;

always @(posedge write_clock or posedge fifo_gsr)
 if (fifo_gsr) write_nextgray <= 9’b100000000;
 else if (write_allow)
 write_nextgray <= { write_addr[8], (write_addr[8] ^ write_addr[7]),
 (write_addr[7] ^ write_addr[6]), (write_addr[6] ^ write_addr[5]),
XAPP131 December 10, 1998 (Version 1.1) 1-5

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
 (write_addr[5] ^ write_addr[4]), (write_addr[4] ^ write_addr[3]),
 (write_addr[3] ^ write_addr[2]), (write_addr[2] ^ write_addr[1]),
 (write_addr[1] ^ write_addr[0]) };

always @(posedge write_clock or posedge fifo_gsr)
 if (fifo_gsr) write_addrgray <= 9’b100000001;
 else if (write_allow) write_addrgray <= write_nextgray;

/**\
* *
* Generation of FIFOstatus outputs. Used to determine how *
* full FIFO is, based on how far the Write pointer is ahead *
* of the Read pointer. Additional precision can be gained *
* by using additional (top) bits of Gray-code addresses. *
* *
**/

always @(posedge write_clock or posedge fifo_gsr)
// for 0 to 1/4 full (quads equal)
 if (fifo_gsr) fifostatus[0] <= ‘b1;
 else fifostatus[0] <= (read_addrgray[8:7] == write_addrgray[8:7]) &&
 ! (fifostatus[3] || fifostatus[4]);

always @(posedge write_clock or posedge fifo_gsr)
// for 1 byte to 1/2 full (quad 1 ahead)
 if (fifo_gsr) fifostatus[1] <= ‘b0;
 else fifostatus[1] <=
 ((read_addrgray[8:7]==’b00)&&(write_addrgray[8:7]==’b01)) ||
 ((read_addrgray[8:7]==’b01)&&(write_addrgray[8:7]==’b11)) ||
 ((read_addrgray[8:7]==’b11)&&(write_addrgray[8:7]==’b10)) ||
 ((read_addrgray[8:7]==’b10)&&(write_addrgray[8:7]==’b00));

always @(posedge write_clock or posedge fifo_gsr)
// for 1/4 to 3/4 full (quad 2 ahead)
 if (fifo_gsr) fifostatus[2] <= ‘b0;
 else fifostatus[2] <=
 ((read_addrgray[8:7]==’b00)&&(write_addrgray[8:7]==’b11)) ||
 ((read_addrgray[8:7]==’b01)&&(write_addrgray[8:7]==’b10)) ||
 ((read_addrgray[8:7]==’b11)&&(write_addrgray[8:7]==’b00)) ||
 ((read_addrgray[8:7]==’b10)&&(write_addrgray[8:7]==’b01));

always @(posedge write_clock or posedge fifo_gsr)
// for 1/2 to full (quad 3 ahead)
 if (fifo_gsr) fifostatus[3] <= ‘b0;
 else fifostatus[3] <=
 ((read_addrgray[8:7]==’b00)&&(write_addrgray[8:7]==’b10)) ||
 ((read_addrgray[8:7]==’b01)&&(write_addrgray[8:7]==’b00)) ||
 ((read_addrgray[8:7]==’b11)&&(write_addrgray[8:7]==’b01)) ||
 ((read_addrgray[8:7]==’b10)&&(write_addrgray[8:7]==’b11));

always @(posedge write_clock or posedge fifo_gsr)
// for 3/4 to full (quad 4 ahead/equal)
 if (fifo_gsr) fifostatus[4] <= ‘b0;
 else fifostatus[4] <= (read_addrgray[8:7] == write_addrgray[8:7]) &&
 (fifostatus[3] || fifostatus[4]);

1-6 XAPP131 December 10, 1998 (Version 1.1)

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
/**\
* *
* Allow flags determine whether FIFO control logic can *
* operate. If read_enable is driven high, and the FIFO is *
* not Empty, then Reads are allowed. Similarly, if the *
* write_enable signal is high, and the FIFO is not Full, *
* then Writes are allowed. *
* *
**/

assign read_allow = (read_enable && ! empty);
assign write_allow = (write_enable && ! full);

/**\
* *
* The four conditions decoded with special carry logic are *
* Empty, AlmostEmpty, Full, and AlmostFull. These are *
* used to determine the next state of the Full/Empty *
* flags. Carry logic is used for optimal speed. *
* *
* When the Write/Read Gray-code addresses are equal, the *
* FIFO is Empty, and emptyg (combinatorial) is asserted. *
* When the Write Gray-code address is equal to the Next *
* Read Gray-code address (1 word in the FIFO), then the *
* FIFO potentially could be going Empty (if read_enable is *
* asserted, which is used in the logic that generates the *
* registered version of Empty). *
* *
* Similarly, when the Write Gray-code address is equal to *
* the Last Read Gray-code address, the FIFO is full. To *
* have utilized the full address space (512 addresses) *
* would have required extra logic to determine Full/Empty *
* on equal addresses, and this would have slowed down the *
* overall performance. Lastly, when the Next Write Gray- *
* code address is equal to the Last Read Gray-code address *
* the FIFO is Almost Full, with only one word left, and *
* it is conditional on write_enable being asserted. *
* *
**/

assign ecomp[0] = (write_addrgray[0] == read_addrgray[0]);
assign ecomp[1] = (write_addrgray[1] == read_addrgray[1]);
assign ecomp[2] = (write_addrgray[2] == read_addrgray[2]);
assign ecomp[3] = (write_addrgray[3] == read_addrgray[3]);
assign ecomp[4] = (write_addrgray[4] == read_addrgray[4]);
assign ecomp[5] = (write_addrgray[5] == read_addrgray[5]);
assign ecomp[6] = (write_addrgray[6] == read_addrgray[6]);
assign ecomp[7] = (write_addrgray[7] == read_addrgray[7]);
assign ecomp[8] = (write_addrgray[8] == read_addrgray[8]);

MUXCY_L emuxcyi (.DI(pwr), .CI(pwr), .S(pwr), .LO(ecin));
MUXCY_L emuxcy0 (.DI(gnd), .CI(ecin), .S(ecomp[0]), .LO(emuxcyo[0]));
MUXCY_L emuxcy1 (.DI(gnd), .CI(emuxcyo[0]), .S(ecomp[1]), .LO(emuxcyo[1]));
MUXCY_L emuxcy2 (.DI(gnd), .CI(emuxcyo[1]), .S(ecomp[2]), .LO(emuxcyo[2]));
MUXCY_L emuxcy3 (.DI(gnd), .CI(emuxcyo[2]), .S(ecomp[3]), .LO(emuxcyo[3]));
MUXCY_L emuxcy4 (.DI(gnd), .CI(emuxcyo[3]), .S(ecomp[4]), .LO(emuxcyo[4]));
XAPP131 December 10, 1998 (Version 1.1) 1-7

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
MUXCY_L emuxcy5 (.DI(gnd), .CI(emuxcyo[4]), .S(ecomp[5]), .LO(emuxcyo[5]));
MUXCY_L emuxcy6 (.DI(gnd), .CI(emuxcyo[5]), .S(ecomp[6]), .LO(emuxcyo[6]));
MUXCY_L emuxcy7 (.DI(gnd), .CI(emuxcyo[6]), .S(ecomp[7]), .LO(emuxcyo[7]));
MUXCY_L emuxcy8 (.DI(gnd), .CI(emuxcyo[7]), .S(ecomp[8]), .LO(emptyg));

assign aecomp[0] = (write_addrgray[0] == read_nextgray[0]);
assign aecomp[1] = (write_addrgray[1] == read_nextgray[1]);
assign aecomp[2] = (write_addrgray[2] == read_nextgray[2]);
assign aecomp[3] = (write_addrgray[3] == read_nextgray[3]);
assign aecomp[4] = (write_addrgray[4] == read_nextgray[4]);
assign aecomp[5] = (write_addrgray[5] == read_nextgray[5]);
assign aecomp[6] = (write_addrgray[6] == read_nextgray[6]);
assign aecomp[7] = (write_addrgray[7] == read_nextgray[7]);
assign aecomp[8] = (write_addrgray[8] == read_nextgray[8]);

MUXCY_L aemuxcyi (.DI(pwr), .CI(pwr), .S(pwr), .LO(aecin));
MUXCY_L aemuxcy0 (.DI(gnd), .CI(aecin), .S(aecomp[0]), .LO(aemuxcyo[0]));
MUXCY_L aemuxcy1 (.DI(gnd), .CI(aemuxcyo[0]), .S(aecomp[1]), .LO(aemuxcyo[1]));
MUXCY_L aemuxcy2 (.DI(gnd), .CI(aemuxcyo[1]), .S(aecomp[2]), .LO(aemuxcyo[2]));
MUXCY_L aemuxcy3 (.DI(gnd), .CI(aemuxcyo[2]), .S(aecomp[3]), .LO(aemuxcyo[3]));
MUXCY_L aemuxcy4 (.DI(gnd), .CI(aemuxcyo[3]), .S(aecomp[4]), .LO(aemuxcyo[4]));
MUXCY_L aemuxcy5 (.DI(gnd), .CI(aemuxcyo[4]), .S(aecomp[5]), .LO(aemuxcyo[5]));
MUXCY_L aemuxcy6 (.DI(gnd), .CI(aemuxcyo[5]), .S(aecomp[6]), .LO(aemuxcyo[6]));
MUXCY_L aemuxcy7 (.DI(gnd), .CI(aemuxcyo[6]), .S(aecomp[7]), .LO(aemuxcyo[7]));
MUXCY_L aemuxcy8 (.DI(gnd), .CI(aemuxcyo[7]), .S(aecomp[8]), .LO(almostemptyg));

assign fcomp[0] = (write_addrgray[0] == read_lastgray[0]);
assign fcomp[1] = (write_addrgray[1] == read_lastgray[1]);
assign fcomp[2] = (write_addrgray[2] == read_lastgray[2]);
assign fcomp[3] = (write_addrgray[3] == read_lastgray[3]);
assign fcomp[4] = (write_addrgray[4] == read_lastgray[4]);
assign fcomp[5] = (write_addrgray[5] == read_lastgray[5]);
assign fcomp[6] = (write_addrgray[6] == read_lastgray[6]);
assign fcomp[7] = (write_addrgray[7] == read_lastgray[7]);
assign fcomp[8] = (write_addrgray[8] == read_lastgray[8]);

MUXCY_L fmuxcyi (.DI(pwr), .CI(pwr), .S(pwr), .LO(fcin));
MUXCY_L fmuxcy0 (.DI(gnd), .CI(fcin), .S(fcomp[0]), .LO(fmuxcyo[0]));
MUXCY_L fmuxcy1 (.DI(gnd), .CI(fmuxcyo[0]), .S(fcomp[1]), .LO(fmuxcyo[1]));
MUXCY_L fmuxcy2 (.DI(gnd), .CI(fmuxcyo[1]), .S(fcomp[2]), .LO(fmuxcyo[2]));
MUXCY_L fmuxcy3 (.DI(gnd), .CI(fmuxcyo[2]), .S(fcomp[3]), .LO(fmuxcyo[3]));
MUXCY_L fmuxcy4 (.DI(gnd), .CI(fmuxcyo[3]), .S(fcomp[4]), .LO(fmuxcyo[4]));
MUXCY_L fmuxcy5 (.DI(gnd), .CI(fmuxcyo[4]), .S(fcomp[5]), .LO(fmuxcyo[5]));
MUXCY_L fmuxcy6 (.DI(gnd), .CI(fmuxcyo[5]), .S(fcomp[6]), .LO(fmuxcyo[6]));
MUXCY_L fmuxcy7 (.DI(gnd), .CI(fmuxcyo[6]), .S(fcomp[7]), .LO(fmuxcyo[7]));
MUXCY_L fmuxcy8 (.DI(gnd), .CI(fmuxcyo[7]), .S(fcomp[8]), .LO(fullg));

assign afcomp[0] = (write_nextgray[0] == read_lastgray[0]);
assign afcomp[1] = (write_nextgray[1] == read_lastgray[1]);
assign afcomp[2] = (write_nextgray[2] == read_lastgray[2]);
assign afcomp[3] = (write_nextgray[3] == read_lastgray[3]);
assign afcomp[4] = (write_nextgray[4] == read_lastgray[4]);
assign afcomp[5] = (write_nextgray[5] == read_lastgray[5]);
assign afcomp[6] = (write_nextgray[6] == read_lastgray[6]);
assign afcomp[7] = (write_nextgray[7] == read_lastgray[7]);
assign afcomp[8] = (write_nextgray[8] == read_lastgray[8]);
1-8 XAPP131 December 10, 1998 (Version 1.1)

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
MUXCY_L afmuxcyi (.DI(pwr), .CI(pwr), .S(pwr), .LO(afcin));
MUXCY_L afmuxcy0 (.DI(gnd), .CI(afcin), .S(afcomp[0]), .LO(afmuxcyo[0]));
MUXCY_L afmuxcy1 (.DI(gnd), .CI(afmuxcyo[0]), .S(afcomp[1]), .LO(afmuxcyo[1]));
MUXCY_L afmuxcy2 (.DI(gnd), .CI(afmuxcyo[1]), .S(afcomp[2]), .LO(afmuxcyo[2]));
MUXCY_L afmuxcy3 (.DI(gnd), .CI(afmuxcyo[2]), .S(afcomp[3]), .LO(afmuxcyo[3]));
MUXCY_L afmuxcy4 (.DI(gnd), .CI(afmuxcyo[3]), .S(afcomp[4]), .LO(afmuxcyo[4]));
MUXCY_L afmuxcy5 (.DI(gnd), .CI(afmuxcyo[4]), .S(afcomp[5]), .LO(afmuxcyo[5]));
MUXCY_L afmuxcy6 (.DI(gnd), .CI(afmuxcyo[5]), .S(afcomp[6]), .LO(afmuxcyo[6]));
MUXCY_L afmuxcy7 (.DI(gnd), .CI(afmuxcyo[6]), .S(afcomp[7]), .LO(afmuxcyo[7]));
MUXCY_L afmuxcy8 (.DI(gnd), .CI(afmuxcyo[7]), .S(afcomp[8]), .LO(almostfullg));

endmodule

Figure 2: Verilog source code for fifoctrl_cc.v

/**
* *
* Module : fifoctlr_cc.v Last Update: 10/19/98 *
* *
* Description : FIFO controller top level. *
* Implements a 511x8 FIFO with common read/write clocks. *
* *
* The following Verilog code implements a 511x8 FIFO in a Virtex *
* device. The inputs are a Clock, a Read Enable, a Write Enable, *
* Write Data, and a FIFO_gsr signal as an initial reset. The outputs *
* are Read Data, Full, Empty, and the FIFOcount outputs, which *
* indicate roughly how full the FIFO is. *
* *
***/

‘timescale 1ns / 10ps

‘define DATA_WIDTH 7:0
‘define ADDR_WIDTH 8:0

module fifoctlr_cc (clock_in, read_enable_in, write_enable_in,
 write_data_in, fifo_gsr_in, read_data_out,
 full_out, empty_out, fifocount_out);

input clock_in, read_enable_in, write_enable_in, fifo_gsr_in;
input [‘DATA_WIDTH] write_data_in;
output [‘DATA_WIDTH] read_data_out;
output full_out, empty_out;
output [3:0] fifocount_out;

wire read_enable = read_enable_in;
wire write_enable = write_enable_in;
wire fifo_gsr = fifo_gsr_in;
wire [‘DATA_WIDTH] write_data = write_data_in;
wire [‘DATA_WIDTH] read_data;
assign read_data_out = read_data;
reg full, empty;
assign full_out = full;
assign empty_out = empty;
XAPP131 December 10, 1998 (Version 1.1) 1-9

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
reg [‘ADDR_WIDTH] read_addr, write_addr, fcounter;

wire read_allow, write_allow;

assign read_allow = (read_enable && ! empty);
assign write_allow = (write_enable && ! full);

wire gnd = 0;
wire pwr = 1;

/***\
* *
* A global buffer is instantiated to avoid skew problems. *
* *
***/

BUFGP gclk1 (.I(clock_in), .O(clock));

/***\
* *
* BLOCK RAM instantiation for FIFO. Module is 512x8, of which one *
* address location is sacrificed for the overall speed of the design. *
* *
***/

RAMB4_S8_S8 bram1 (.ADDRA(read_addr), .ADDRB(write_addr), .DIB(write_data),
 .DIA({gnd, gnd, gnd, gnd, gnd, gnd, gnd, gnd}),
 .WEA(gnd), .WEB(write_allow), .CLKA(clock),
 .CLKB(clock), .RSTA(gnd), .RSTB(gnd),
 .ENA(read_allow), .ENB(pwr), .DOA(read_data));

/***\
* *
* Empty flag is set on fifo_gsr (initial), or when on the *
* next clock cycle, Write Enable is low, and either the *
* FIFOcount is equal to 0, or it is equal to 1 and Read *
* Enable is high (about to go Empty). *
* *
***/

always @(posedge clock or posedge fifo_gsr)
 if (fifo_gsr) empty <= 1;
 else empty <= (! write_enable && (fcounter[8:1] == 8’h0) &&
 ((fcounter[0] == 0) || read_enable));

/***\
* *
* Full flag is set on fifo_gsr (but it is cleared on the *
* first valid clock edge after fifo_gsr is removed), or *
* when on the next clock cycle, Read Enable is low, and *
* either the FIFOcount is equal to 1FF (hex), or it is *
* equal to 1FE and the Write Enable is high (about to go *
* Full). *
* *
***/
1-10 XAPP131 December 10, 1998 (Version 1.1)

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
always @(posedge clock or posedge fifo_gsr)
 if (fifo_gsr) full <= 1;
 else full <= (! read_enable && (fcounter[8:1] == 8’hFF) &&
 ((fcounter[0] == 1) || write_enable));

/**\
* *
* Generation of Read and Write address pointers. They use *
* LFSR counters, which are very fast. Because of the *
* nature of LFSR’s, one address is sacrificed. *
* *
**/

wire read_linearfeedback, write_linearfeedback;

assign read_linearfeedback = ! (read_addr[8] ^ read_addr[4]);
assign write_linearfeedback = ! (write_addr[8] ^ write_addr[4]);

always @(posedge clock or posedge fifo_gsr)
 if (fifo_gsr) read_addr <= ‘h0;
 else if (read_allow)
 read_addr <= { read_addr[7], read_addr[6], read_addr[5],
 read_addr[4], read_addr[3], read_addr[2],
 read_addr[1], read_addr[0], read_linearfeedback };

always @(posedge clock or posedge fifo_gsr)
 if (fifo_gsr) write_addr <= ‘h0;
 else if (write_allow)
 write_addr <= { write_addr[7], write_addr[6], write_addr[5],
 write_addr[4], write_addr[3], write_addr[2],
 write_addr[1], write_addr[0], write_linearfeedback };

/**\
* *
* Generation of FIFOcount outputs. Used to determine how *
* full FIFO is, based on a counter that keeps track of how *
* many words are in the FIFO. Also used to generate Full *
* and Empty flags. Only the upper four bits of the counter *
* are sent outside the module *
* *
**/

always @(posedge clock or posedge fifo_gsr)
 if (fifo_gsr) fcounter <= ‘h0;
 else if ((! read_allow && write_allow) || (read_allow && ! write_allow))
 begin
 if (write_allow) fcounter <= fcounter + 1;
 else fcounter <= fcounter - 1;
 end

assign fifocount_out = fcounter[8:5];

endmodule
XAPP131 December 10, 1998 (Version 1.1) 1-11

R

170 MHz FIFOs Using the Virtex Block SelectRAM+
The Programmable Logic CompanySM

© 1998 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the Program-
mable Logic Company is a service mark of Xilinx, Inc. All other trademarks and registered trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described herein; nor does it convey any license under its patent, copyright
or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and to supply
the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described other than circuitry entirely embodied in its products. Products
are manufactured under one or more of the following U.S. Patents: (4,847,612; 5,012,135; 4,967,107; 5,023,606; 4,940,909; 5,028,821; 4,870,302; 4,706,216;
4,758,985; 4,642,487; 4,695,740; 4,713,557; 4,750,155; 4,821,233; 4,746,822; 4,820,937; 4,783,607; 4,855,669; 5,047,710; 5,068,603; 4,855,619; 4,835,418; and
4,902,910. Xilinx, Inc. cannot assume responsibility for any circuits shown nor represent that they are free from patent infringement or of any other third party right.
Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.

Headquarters

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.
Tel: 1 (800) 255-7778

or 1 (408) 559-7778
Fax: 1 (408) 559-7114
Email: hotline@xilinx.com
Web: http://www.xilinx.com

North America

Irvine, California
Tel: (949) 727-0780

Englewood, Colorado
Tel: (303) 220-7541

Sunnyvale, California
Tel: (408) 245-9850

Schaumburg, Illinois
Tel: (847) 605-1972

Nashua, New Hampshire
Tel: (603) 891-1098

Raleigh, North Carolina
Tel: (919) 846-3922

West Chester, Pennsylvania
Tel: (610) 430-3300

Dallas, Texas
Tel: (972) 960-1043

Europe

Xilinx Sarl
Jouy en Josas, France
Tel: (33) 1-34-63-01-01
Email: frhelp@xilinx.com

Xilinx GmbH
München, Germany
Tel: (49) 89-93088-0
Email: dlhelp@xilinx.com

Xilinx, Ltd.
Byfleet, United Kingdom
Tel: (44) 1-932-3494013
Email: ukhelp@xilinx.com

XILINX Italia
Via Alberto Mario 26
20149 Milano
Italia
Tel: (39) 02-49-877-16
FAX: (39) 02-49-877-27
Email: roberto.rosaia@xilinx.com

Japan

Xilinx, K.K.
Tokyo, Japan
Tel: (81) 3-5321-7711
Email: jhotline@xilinx.com

Asia Pacific

XILINX Asia Pacific
Unit 4312, Tower II
Metroplaza
Hing Fong Road
Kwai Fong, N.T.
Hong Kong

Tel: 852-2-424-5200
FAX: 852-2-494-7159
Email: hongkong@xilinx.com

XILINX Korea
Rm. 901, Sambo-Hojung Bldg.
14-24, Yoido-Dong,
Youngdeungpo-Ku
Seoul, 150-715, Korea
Tel : 822-761-4277
FAX : 822-761-4278
Email: korea@xilinx.com

Xilinx Taiwan
Rm. 1006, 10F, No.2. Lane 150
Sec. 5, Hsin Yin Rd.
Taipei, Taiwan, R.O.C.
Tel: 886-2-2758-8373
Tel: 886-2-2758-8353
Fax: 886-2-2758-8367
1-12 XAPP131 December 10, 1998 (Version 1.1)

	Summary
	Introduction
	Port Definitions - Common-Clock Design
	Synchronous Design Using Common Clocks
	Port Definitions - Independent-Clock Design
	Changes Required for Independent Clocks
	Figure 1: Verilog Source Code for fifoctlr_ic.v
	Figure 2: Verilog source code for fifoctrl_cc.v

