

Variable x Variable Multiplier RPMs for Virtex

May 10, 1999

Application Note

This document is (c) Xilinx, Inc. 1999. No part of this file may be modified, transmitted to any third party (other than as intended by Xilinx) or used without a Xilinx programmable or hardwire device without Xilinx's prior written permission.

XILINX

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 FAX: +1 408-559-7114 Email: coregen@xilinx.com URL: http://www.xilinx.com/ipcenter

Features

- Library of fixed size, parallel multiplier point solutions
- Drop-in modules for the Virtex family
- Multiplies N-bit wide variable A times Mbit wide variable B
- 2's complement Signed or Unsigned inputs
- Full precision outputs
- Supports pipelined or fully combinatorial construction
- Pipelined multipliers have registered inputs and outputs
- High performance and density guaranteed through Relational Placed Macro (RPM) mapping and placement technology

Functional Description

This multipliers in this library are high speed parallel implementations that multiply an Nbit wide variable by an M-bit variable and produce an N+M bit wide result.

An area-efficient, high-speed algorithm is used to give an efficient, tightly packed design. Each stage is pipelined for maximum performance.

The ability to halt each internal pipelined stage is provided through a clock enable control input. Partially completed results are stored internally when CE is pulled Low, and the multiplier resumes normal operation when CE returns to a High state.

Pinout and Instantiation Template

Port names are described in Table 1. Instantiation template examples for the Combinatorial and Pipelined multipliers are shown in Tables 2 and 3, respectively.

Table 1: Core Signal Pinout (n=N-1, m=M-1)

Signal	Signal Direction	Description	
A[n:0]	Input	Parallel data in – A operand	
B[m:0]	Input	Parallel data in – B operand	
C (Pipelined only)	Input	Clock – Data inputs are captured, and new output data formed on rising clock transitions.	
CE (Pipelined only)	Input	CLOCK ENABLE – When active high, allows data to move through internal pipeline stages. When inactive, all activity within the module ceases.	
AR[n:0] (Pipelined with latency > 1 clock cycle only)	Output	Registered A operand	
BR[m:0] (Pipelined with latency > 1 clock cycle only)	Output	Registered B operand	
Y[m+n+1:0]	Output	Parallel data out – Product from multiply operation.	

Table 2: Co	ombinatorial	multplier	Instantiation
template			

VHDL Instantiation Template (.vhi)

component M1212SC is
 port map (
 A: in std_logic_vector(11 downto 0);
 B: in std_logic_vector(11 downto 0);
 PROD: out std_logic_vector(23 downto 0));
end component;

Verilog Instantiation Template (.vei)

module M1212SC (A,B,PROD);

input [11:0] A; input [11:0] B; output [23:0] PROD;

endmodule

Table 3: Registered multiplier Instantiation template

VHDL Instantiation Template (.vhi)

component **M1212SR5** is port map (A: in std_logic_vector(11 downto 0); B: in std_logic_vector(11 downto 0); C: in std_logic; CE: in std_logic; AR: out std_logic_vector(11 downto 0); BR: out std_logic_vector(11 downto 0); PROD: out std_logic_vector(23 downto 0)); end component;

Verilog Instantiation Template (.vei)

module M1212SR5 (A,B,C,CE,AR,BR,PROD);

input [11:0] A; input [11:0] B; input C; input CE; output [11:0] AR; output [11:0] BR; output [23:0] PROD; endmodule

Foundation users can generate a Foundation schematic symbol for a given multiplier by clicking on "Create macro symbol from netlist" under the "Hierarchy" menu of the Foundation schematic editor, The EDIF netlist for the appropriate multiplier should be specified as the input.

The archive also includes EDIF netlists with different bus delimiter formats to support Synplicitv Exemplar Synopsys, or requirements. For Synopsys FPGA Express and FPGA Compiler, use the EDIF netlists found under the EDN_angle_brackets directory, and for Synplicity and Exemplar, use the EDIF netlists in the EDN_parenthesis directory.

Module naming convention

The naming convention for multipliers is as follows:

- Total name length is 7 to 8 characters: c1 c2 c3 c4 c5 c6 c7 c8
- All multipliers start with the letter M (c1 = M)
- The next two characters (c2 and c3) represent the number of bits for the "A" variable. Example: 08 = 8 bits wide
- The next two characters (c4 and c5) represent the number of bits for the "B" variable
- The next character is either S, U, M, for Signed by Signed, Unsigned by Unsigned, Mixed (either signed or unsigned dynamically) by Signed.
- The next character, c7, is either an "R" or a "C", for Registered or Combinatorial.
- The last character, c8 is blank for combinatorial multipliers. For noncombinatorial multipliers it represents the latency of the multiplier in clock cycles.

Example:

M1212SC: 12x12 signed by signed, combinatorial

M1212SR5: 12x12 signed by signed, 5 clock latency

M0808UR4: 8x8 unsigned by unsigned, 4 clock latency

Resource Utilization and Performance

Table 4 shows the resource utilization for each point solution.

Table 4: Characterization Data

Core Name	AxB	# of Slices	Latency	RPM Area (Rows x Columns)	Virtex-6 MHz/ns	Virtex-5 MHz/ns	Virtex-4 MHz/ns
M0808SR1	8x8	39	1	6 x 4	88 MHz	77 MHz	65 MHz
M0808SR4	8x8	48	4	6 x 4	184MHz	160 MHz	131 MHz
M0808UR4	8x8	48	4	6 x 4	184 MHz	160 MHz	131 MHz
M0812SR5	8x12	81	5	7 x 6	157 MHz	141 MHz	118 MHz
M0912SR1	9x12	46	1	8 x 6	63 MHz	55 MHz	46 MHz
M0920SR1	9x20	136	1	11 x 10	47 MHz	40 MHz	33 MHz
M1008SR1	10x8	46	1	7 x 4	84 MHz	73 MHz	61 MHz
M1010SR5	10x0	79	5	8 x 5	165 MHz	142 MHz	118 MHz
M1010UR5	10x10	79	5	8 x 5	165 MHz	142 MHz	118 MHz
M1212SC	12x12	82	0	9 x 6	58 MHz	51 MHz	42 MHz
M1212SR1	12x12	86	1	9 x 6	65 MHz	57 MHz	48 MHz
M1212SR5	12x12	107	5	9 x 6	167 MHz	143 MHz	117 MHz
M1410SC	14x10	76	0	10 x 5	58 MHz	51 MHz	42 MHz
M1412SR5	14x12	120	5	10 x 6	156 MHz	134 MHz	111 MHz
M1518SR6	15x18	203	6	13 x 9	133 MHz	115 MHz	95 MHz
M1616SC	16x16	143	0	12 x 8	53 MHz	46 MHz	38 MHz
M1616SR5	16x16	168	5	12 x 8	162 MHz	139 MHz	115 MHz
M1818SR6	18x18	222	6	14 x 9	126 MHz	107 MHz	87 MHz
M32UR12	32x32	974	13	30 x 26	156 MHz	134 MHz	111 MHz

Xilinx Reference Design License

By using the accompanying Xilinx, Inc. Reference Designs (the "Designs"), you agree to the following terms and conditions. You may use the Designs solely in support of your use in developing designs for Xilinx programmable logic devices or Xilinx HardWire[™] devices. Access to the Designs is provided only to purchasers of Xilinx programmable logic devices or Xilinx HardWire[™] devices for the purposes set forth herein.

The Designs are provided by Xilinx solely for your reference, for use as-is or as a template to make your own working designs. The Designs may be incomplete, and Xilinx does not warrant that the Designs are completed, tested, or will work on their own without revisions. The success of any designs you complete using the Designs as a starting point is wholly dependent on your design efforts. As provided, Xilinx does not warrant that the Designs will provide any given functionality, and all verification must be completed by the customer.

Xilinx specifically disclaims any obligations for technical support and bug fixes, as well as any liability with respect to the Designs, and no contractual obligations are formed either directly or indirectly by use of the Designs. XILINX SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION DIRECT, INDIRECT, INCIDENTAL, SPECIAL, RELIANCE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF THE DESIGNS, EVEN IF XILINX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Xilinx makes no representation that the Designs will provide the functionality you are looking for, or that they are appropriate for any given use. Xilinx does not warrant that the Designs are error-free, nor does Xilinx make any other representations or warranties, whether express or implied, including without limitation implied warranties of merchantability or fitness for a particular purpose. The Designs are not covered by any other license or agreement you may have with Xilinx.

The Designs are the copyrighted, confidential and proprietary information of Xilinx. You may not disclose, reproduce, transmit or otherwise copy the Designs by any means for any purpose not set forth in this license, without the prior written permission of Xilinx.

You agree that you will comply with all applicable governmental export rules and regulations, and that you will not export or reexport the Designs in any form without the appropriate government licenses.

XILINX, INC., 2100 Logic Drive, San Jose, California 95124

This document is (c) Xilinx, Inc. 1999. No part of this file may be modified, transmitted to any third party (other than as intended by Xilinx) or used without a Xilinx programmable or hardwire device without Xilinx's prior written permission.