

C6850 Asynchronous Communication Interface Adapter

June 26, 2000

<u>C/ST</u>

CAST, Inc.

24 White Birch Drive Pomona, New York 10907 USA Phone: +1 914-354-4945 Fax: +1 914-354-0325 E-Mail: info@cast-inc.com URL: www.cast-inc.com

Features

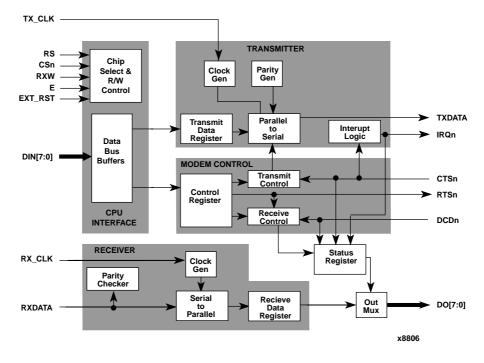
- · Programmable data word length, parity and stop bits
- Parity, overrun and framing error checking instructions and counting loop interactions
- Supports transmission rates over the 1.0 Mbps spec
- False start bit deletion
- Peripheral modem control functions
- Functionality based on the Motorola MC6850

Applications

The C6850 core is used in serial data communications and modem applications.

Product Specification

AllianceCORE™ Facts					
Core Specifics					
See Table 1					
Provided with Core					
Documentation	Core design document				
Design File Formats	EDIF, .ngo, .XNF Netlist;				
	VHDL Source RTL				
	available extra				
Constraints File	C6850.ucf				
Verification	VHDL testbench, test vectors				
Instantiantion Templates	Viewlogic				
Reference designs & ap-	None				
plication notes					
Additional Items	None				
Simulation Tool Used					
1076-compliant VHDL Verilog simulator					
Support					
Support provided by CAST, Inc.					


Supported Family	Device Tested	CLB Slices ²	Clock IOBs	IOBs ¹	Performance (MHz)	Xilinx Tools	Special Features
Virtex	V50-6	97	2	27	92	M2.1i	None
Virtex-E	V50E-8	97	2	27	129	M2.1i	None
Spartan-II	2S50-6	97	2	27	96	M2.1i	None

Notes:

1. Assuming all core I/Os are routed off-chip.

Table 1: Core Implementation Data

2. Optimized for speed.

Figure 1: C6850 Block Diagram

General Description

The C6850 asynchronous communications interface (ACIA) core provides data formatting and control to the asynchronous data communications of data bus systems.

The core has select, enable, read/write, interrupt and bus interface logic features that allow data transfers over an 8-bit bi-directional parallel data bus system. With proper formatting and error checking, the core can transmit and receive serial data.

In addition, a programmable control register provides the core with a transmit control, a receive control, an interrupt control, variable word lengths and clock division ratios. Three control lines are provided for peripheral or modem operation

Functional Description

The C6850 core is partitioned into modules as shown in Figure 1 and described below.

Modem Control

The Modem Control Logic consists of a set of signals that can be used to interface with almost any modem. These standard signals consist of CTSn, RTSn and DCDn. The Transmit and Receive Control Blocks and Control Register Block monitor and control these signals.

Receiver

The Receiver section accepts serial data and converts to parallel format. It also checks for parity, framing, overrun, and break and then sends the formatted data to the CPU. The Receiver section is made up of the Parity Checker, Clock Generator, Serial to Parallel and the Receive Data Register.

Transmitter

The Transmitter section accepts parallel data from the Data Bus Buffer, converts it to serial inserting all required bits depending on the communication protocol and outputs the formatted serial stream to the TxData output pin. The Transmitter section is made up of the Transmit Data Register, Transmit Control, Clock Generator, Parity Generator, Parallel to Serial and Interrupt Logic Blocks.

Status Register

Information on status of C6850 is available to CPU by reading the status register (read only register).

Output MUX

The Output MUX selects between the Status register and the data register.

CPU Interface

The CPU Interface receives control signals from the CPU. These signals consist of the data bus read and write signals, chip selects, reset and master clock signals. The Data Bus Buffer Block is used by the CPU to write data to the device using the above signals.

Core Modifications

The C6850 core can be customized to include a 16 bit Internal Baud Rate Generator. Features which are not required can be removed to improve the efficiency of the layout.

Please contact CAST directly for any required modifications.

Pinout

The pinout of the C6850 core has not been fixed to specific FPGA I/O, allowing flexibility with a user's application. Signal names are shown in the block diagram in Figure 1 and described in Table 2.

Verification Methods

The C6850 core's functionality was verified by means of a proprietary hardware modeler. The same stimulus was applied to a hardware model which contained the original Motorola chip, and the results compared with the core's simulation outputs.

Recommended Design Experience

The user must be familiar with HDL design methodology as well as instantiation of Xilinx netlists in a hierarchical design environment.

Ordering Information

The C6850 core is available from CAST, Inc. The C6850 core is licensed from Moxsyn S.r.I. Please contact CAST, Inc. directly for pricing and information.

Related Information

Microprocessor, Microcontroller and Peripheral Data Book (Vol. II),1988

Contact:

Motorola Inc. Literature Distribution Center 6501 William Cannon Drive West Austin, Texas 78735-8598 URL: http://motorola.com

Table 2: Core Signal Pinout

Signal	Signal Direction	Description
TX_CLK	Input	Transmit clock; uses 1 glo-
		bal IOB pin
RS	Input	Register Select
CSn	Input	Chip Select
RXW	Input	Read /Write
E	Input	Enable (clock); uses 1 glo-
		bal IOB pin
EXT_RST	Input	External reset
DIN[7:0]	Input	Data Input Bus
RX_CLK	Input	Receive clock; uses 1 global
		IOB pin
RXDATA	Input	Receive Data
TXDATA	Output	Transmit Data
IRQn	Output	Interrupt Request
CTSn	Input	Clear-to-Send
RTSn	Output	Request-to-Send
DCDn	Input	Data Carrier Detect; uses 1
		global IOB pin
D0[7:0]	Output	Data Output Bus

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 URL: www.xilinx.com