

C8251 Programmable Communication Interface

June 26, 2000

Product Specification

CAST, Inc.

24 White Birch Drive

Pomona, New York 10907 USA
Phone: +1 914-354-4945
Fax: +1 914-354-0325
E-Mail: info@cast-inc.com
URL: www.cast-inc.com

Features

- · Based on the Intel 8251A device
- · Pre-defined implementation for predictable timing
- · Verified against a hardware model of the original device
- · Synchronous and asynchronous operation
- Programmable data word length, parity and stop bits
- Parity, overrun and framing error checking instructions and counting loop interactions
- Divide-by 1,-16,-64 mode
- False start bit deletion
- · Automatic break detection
- · Internal and external synch character detection
- · Peripheral modem control functions

AllianceCORE™ Facts					
Core Specifics					
See Table 1					
Provided with Core					
Documentation	Core design document				
Design File Formats	XNF Netlist				
	VHDL Source RTL				
Constraints File	C8251.ucf				
Verification	VHDL Testbench, test vectors				
Instantiation Templates	VHDL, Verilog				
Reference designs &	None				
application notes					
Additional Items	None				
Simulation Tool Used					
1076-compliant VHDL simulator, Verilog simulator					
Support					
Support provided by CAST, Inc.					

Applications

The C8251 core is used in communication and modem applications.

Table 1: Core Implementation Data

Supported Family	Device Tested	CLB Slices ²	Clock IOBs ¹	IOBs ¹	Performance (MHz)	Xilinx Tools	Special Features
Virtex	V50-6	268	4	31	46	M2.1i	None
Virtex-E	V50E-8	268	4	31	54	M2.1i	None
Spartan-II	2S50-6	268	4	31	43	M2.1i	None

Notes

- 1. Assuming all core I/Os are routed off-chip.
- 2. Optimized for speed.

June 26, 2000 3-1

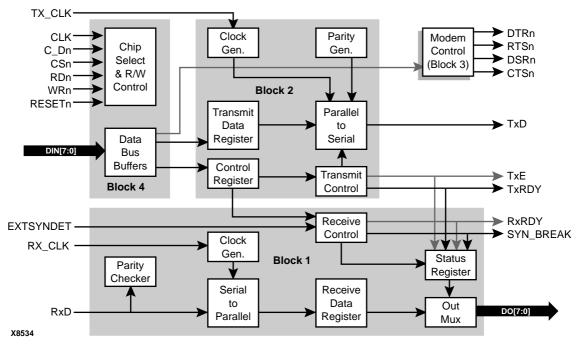


Figure 1: C8251 Programmable Communication Interface Block Diagram

General Description

The C8251 programmable communications interface (USART) core provides data formatting and control to a serial communication channel.

The core has select, read/write, interrupt and bus interface logic features that allow data transfers over an 8-bit bidirectional parallel data bus system. With proper formatting and error checking, the core can transmit and receive serial data, supporting both synchronous and asynchronous operation.

Functional Description

The C8251 core is partitioned into modules as shown in Figure 1 and described below.

Block 1

The Receiver Buffer and Control accepts serial data, converts it to parallel format, checks for parity, framing, overrun, and break, and sends the formatted data to the CPU.

Block 2

The Transmitter Buffer and Control logic accepts parallel data from the Data Bus Buffer, converts it to serial, inserts required characters or bits depending on the communication protocol, and outputs the formatted serial stream to the TxD output pin.

Modem Control Logic (Block 3)

This consists of a set of inputs and outputs that can be used to interface to almost any modem.

Block 4

The CPU interface shares common interface signals with the CPU: Data Bus, Read, Write, Chip selects, Reset and Master Cl K.

Core Modifications

The C8251 core can be customized to include:

- 16 bit Internal Baud Rate Generator
- Remove either synchronous or asynchronous sections in order to reduce area

Please contact CAST directly for any required modifications.

Pinout

The pinout of the C8251 core has not been fixed to specific FPGA I/O, allowing flexibility with a users application. Signal names are shown in the block diagram in Figure 1 and described in Table 2.

3-2 June 26, 2000

Core Assumptions

- · Active-low reset input
- Does not support 1.5 stop bit mode
- · EXTSYNDET and SYN_BREAK signals are separate
- The bi-directional data bus has been split in two separate data buses: DIN and DO

Verification Methods

The C8251 USART core's functionality was verified by means of a proprietary hardware modeler. The same stimulus was applied to a hardware model which contained the original Intel 8251A chip, and the results compared with the core's simulation outputs.

Recommended Design Experience

The user must be familiar with HDL design methodology as well as instantiation of Xilinx netlists in a hierarchical design environment.

Ordering Information

The C8251 core is available from CAST, Inc. Please contact CAST, Inc. directly for pricing and information. The core is licensed from Moxsyn S.r.l.

Related Information

Intel Microcommunications Data Book

Intel order number: 231658 ISBN: 1-55512-148-9

Document number: 205222-002

Contact:

Intel Corporation P.O. Box 7641

Mt. Prospect, IL 60056-7641 Phone: 800-548-4725 URL: www.intel.com

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124

Phone: +1 408-559-7778 Fax: +1 408-559-7114 URL: www.xilinx.com

June 26, 2000 3-3

Signal	Signal Direction	Description			
I/O Signals	!				
C_Dn	Input	Control/Data Select			
CSn	Input	Chip Select			
RDn	Input	Read control			
RESETn	Input	External reset			
DIN[7:0]	Input	Data Input Bus			
EXTSYNDET	Input	External synch detect			
RxD	Input	Receive Data			
DTRn	Output	Data Terminal Ready			
RTSn	Output	Request-to-Send			
DSRn	Input	Data Set Ready			
CTSn	Input	Clear-to-Send			
TxD	Output	Transmit Data			
TxE	Output	Transmitter empty			
TxRDY	Output	Transmit ready			
RxRDY	Output	Receiver ready			
SYN_BREAK	Output	Sync/Break detect			
D0[7:0]	Output	Data Output Bus			
Signals using CLKIOB Pins					
TX_CLK	Input	Transmit clock			
CLK	Input	Master clock			
WRn	Input	Write control			
RX_CLK	Input	Receive clock			

3-4 June 26, 2000