

Arbiter

January 10, 2000 Product Specification
CSELT S.p.A
Via G. Reiss Romoli, 274
I-10148 Torino, Italy
Phone: +39 011 228 7165
Fax: +39 011 228 7003
E-mail: viplibrary@cselt.it
URL: www.cselt.it

Features
• Supports Spartan, Spartan™-II, Virtex™, and

Virtex™-E devices
• The Arbiter core controls the access of different

masters to a shared resource. The arbitration algorithm
is based on request priorities and on request arrival
times

• Request priorities can change dynamically
• Two priority classes supported (strong priority/weak

priority)
• Strong priority requests can interrupt any lower priority

request being serviced
• Weak priority requests cannot interrupt any other

request being serviced
• Access counters available to evaluate the number of

resource accesses accomplished by a master
• Customizable VHDL source code available, allowing

generation of different netlist versions
• Customized testbench for pre- and post-synthesis

verification supplied with the module
• Core customization:

- Number of masters requesting access to shared
resource

- Number of request priorities
- Number of strong priorities
- Number of bits for each access counter

Applications
General purpose bus arbitration

AllianceCORE™ Facts
Core Specifics1

Supported Family Spartan Virtex
Device Tested S10-3 V50-6
CLBs2 154 182
Clock IOBs 1 1
IOBs3 20 20
Performance (MHz) 16 33
Xilinx Tools M1.5i/M2.1i M1.5i/M2.1i
Special Features None None

Provided with Core
Documentation User Manual
Design File Formats EDIF netlist, XNF netlist,

VHDL source available extra
Constraints File TOP_ARBITER_nl.ncf
Verification VHDL testbench
Instantiation
Templates

VHDL, Verilog

Reference Designs &
Application Notes

None

Additional Items None
Simulation Tool Used

Synopsys VSS
Support

Design and customization support provided by CSELT
Notes:
1. Data refer to the following customisation:

- 3 masters
- 3 request priorities
- 2 strong priorities, 1 weak priority
- 4-bit access counters

2. Utilization numbers for Virtex are in CLB slices
3. Assuming all core I/Os are routed off-chip
January 10, 2000 3-1

Arbiter

General Description
The Arbiter core manages the access to a resource shared
by different masters in a fast and flexible way.

Communication between the Arbiter core and the resource
masters is based on a request-acknowledge: each master
asking for access to the arbitrated resource sends a
request with associated priority information to the Arbiter
core. Arbiter grants access to a specific master by setting
the corresponding acknowledge output.

Priorities can be divided into two classes, strong priorities
and weak priorities. The difference between these two
classes lies in the capability of interrupting the service of
lower priority requests. Strong priority requests can, and
do, interrupt lower priority requests, while weak priority
requests cannot. The threshold between strong and weak
priorities is customizable.

For statistical purposes, the Arbiter can count how many
times a specific master has been granted access to the
arbitrated resource, independently from the number of
interruptions during each access.

The flexibility of Arbiter is shown, for example, when the
Unit set consists of a CPU and other units, all sharing the
same bus: assigning Strong priority to CPU and Weak Pri-
orities to other units, the bus arbitration is optimized.

The Absolute Maximum ratings, Operating Conditions, DC
Electrical Specifications and Capacitances depend on the
Xilinx device selected for implementation and can be
retrieved from the corresponding Xilinx datasheet.

Functional Description
The internal architecture of the Arbiter core is shown in Fig-
ure 1. A brief description of the operation of each module
follows.

Requests Manager
The Requests Manager Block receives as input Requests
and Priorities from all the connected masters (REQ and
PRIOR signals) and elaborates these signals in two
phases.

The first phase is Queue Management: each request is
checked and sorted according to its priority. The priority
value is read only when the request becomes active or
inactive and it should be stable throughout the time the
request is presented to the Arbiter (REQ signal set to ‘1’).

The Queue Management block sorts and updates the
active requests in the priority queues (insertion of new
pending requests and deletion of the inactive ones) and
accordingly updates the core status registers.

The second phase is Request Arbitration: it implements the
algorithm that manages the active Requests according to
their priority first, then to their arrival time and, finally, to a
static priority order depending on the request port number.

The Request Arbitration reads the priority queues, updates
the core status registers, and selects the active unit; it also
properly manages interruptions to have a fast and safe
access to the arbitrated resource.

Queues and Status Registers
The Queues and Status Registers Block is the process that
allows to read and write the registers (Request Queues and

Figure 1: Arbiter Block Diagram

X9065

External LogicExternal Logic

ARBITER CORE

ACK[2:0]
CLOCK

PRIOR[7:6,4:0]
Queue

Management

Request Queues
and

Status Registers

Request
Arbitration

Statistical
Counters

OBUF

IBUFG

REQ[2:0]IBUF

IBUF

RESETIBUF

SEL_UNIT_COUNT[1:0]IBUF

RESTART_COUNTIBUF

OUT_UNIT_COUNT[3:0] OBUF

Request Manager
 3-2 January 10, 2000

CSELT S.p.A

Status Registers) used by the Arbiter to accomplish its
operations.

The Request Queues store Active and Pending Requests,
sorted by priority and arrival time. The queues are imple-
mented using a set of register FIFOs, accessible for read
and write from the Request Manager in a single clock cycle.

The Queue Status Registers provide, the following informa-
tion for all the Priority Queues:

• The Start pointers, used to select the first data to read
from the FIFO;

• The End pointers, used to select the FIFO register to
write data in;

• Flags, used to discriminate an empty queue from a
queue full of data.;

• The Pending Request Status, that defines the units that
have sent a Request signals, and detects a transition of
their Request signal from Active to Inactive;

• The Weak-Priority Request Status, that keeps all the
information used by the Arbiter to manage interruptions
of weak-priority requests;

• The Acknowledge Status, used to set Active at any time
no more than one Acknowledge signal, and never
before a minimum delay of 1 clock cycle, starting from
any active input request (to avoid conflicts on the
shared resource).

Statistical counters
This block can be used for test or statistical analysis of the
Arbiter behavior; it consists of a set of counters, each of
which is used to keep track of the number of times a unit
has been successfully served, independently from transi-
tory interruptions.

Access to the counters is available at any time and does
not affect the other Arbiter operations.

Counters have a size defined from the C_COUNTER_BITS
generic; when this value is set to zero, the counters disap-
pear from the Arbiter.

A synchronous reset, active high, can be used to reset all
the counters to zero.

Pinout
The pinout of this core has not been fixed to a specific
FPGA I/O allowing flexibility with a user’s application. Sig-
nal names are shown in the block diagram in Figure 1 and
described in Table 1.

Core Modifications
CSELT provides netlist customized to user’s requirements.
The Arbiter core source code is parametric. Parameters
shown in Table 2 are implemented as a set of generics in
the synthesizable VHDL source code of the core. Parame-
ters allow the user to specify some architectural and func-

tional features of the synthesized core netlist, so as to
adapt it to a specific design or application.

Verification Methods
Extensive functional simulation has been performed for dif-
ferent values of the core parameters, using the Synopsys
VSS simulator. Simulation scenarios (including data and
command files) and parametric test bench used for design
verification are provided with the core.

Table 1: Core Signal Pinout

Signal
Signal

Direction
Description

CLOCK Input Master clock
RESET Input Asynchronous reset
REQ[2:0] Input Resource access re-

quest; vector range
depends on the
N_UNIT generic

PRIOR[7:6,4:0] Input Priority of the current
access request; vec-
tor range depends on
the N_UNIT generic

SEL_UNIT_
COUNT[1:0]

Input Access counter se-
lector; vector range
depends on the
N_UNIT generic

RESTART_COUNT Input Synchronous reset of
all the access
counters

ACK[2:0] Output Resource access
grant; vector range
depends on the
N_UNIT generic

OUT_UNIT_
COUNT[3:0]

Output Access counter val-
ue; vector range de-
pends on the
C_COUNER_BITS
generic

Table 2: Core Parameters (VHDL Generics)

Parameter Description
N_UNIT Number of masters accessing the arbi-

trated resource.
P_PRIORITY Number of priority values that each re-

quest can assume.
S_STRONG Number of strong priorities.
C_COUNTER
_BITS

Number of bits of each resource access
counter.
January 10, 2000 3-3

Arbiter

The parametric test bench is composed of a parametric test
vector generator and the Arbiter core. The generated sig-
nals test the request-acknowledge protocol using regular
patterns to check the correctness of the Arbiter behavior.
The time management and the Strong/Weak priority queu-
ing can be easily verified.

Recommended Design
Experience
Experience with the Xilinx design flow and logic system
design is recommended to the users of the netlist version of
the core. For the source code version, users should also be
familiar with the Synopsys FPGA synthesis tools (VHDL
Compiler, FPGA Compiler) and simulator (VSS).

Ordering Information
The Arbiter core is provided under license by CSELT S.p.A.
for use in Xilinx programmable logic devices. Please con-
tact CSELT S.p.A. for information about pricing, terms and
conditions of sale.

CSELT S.p.A. reserves the right to change any specifica-
tion detailed in this document at any time without notice,
and assumes no responsibility for any error in this docu-
ment.

All trademarks, registered trademarks, or servicemarks are
property of their respective owners.

Related Information

Xilinx Programmable Logic
For information on Xilinx programmable logic or develop-
ment system software, contact your local Xilinx sales office,
or:

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
URL: www.xilinx.com

For general Xilinx literature, contact:

Phone: +1 800-231-3386 (inside the US)
+1 408-879-5017 (outside the US)

E-mail: literature@xilinx.com

For AllianceCORE™ specific information, contact:

Phone: +1 408-879-5381
E-mail: alliancecore@xilinx.com
URL: www.xilinx.com/products/logicore/alliance/

tblpart.htm
 3-4 January 10, 2000

CSELT S.p.A

Arbiter
Implementation Request Form

To: CSELT S.p.A.

FAX: +39 011 228 7003

E-mail: viplibrary@cselt.it

CSELT configures and ships Xilinx netlist versions of the
Arbiter core customized to your specification. Please fill
out and fax this form so that CSELT can respond with an
appropriate quotation that includes performance and den-
sity metrics for the target Xilinx FPGA.

From: ______________________________________

Company:___________________________________

Address:____________________________________

City,State,Zip:________________________________

Country:____________________________________

Phone:_____________________________________

FAX:_______________________________________

E-mail:_____________________________________

Implementation Issues Business Issues
1. Number of Masters (2 to 16): _______________ 1. Indicate timescales of requirement:

______ date for decision
______ date for placing order
______ date of delivery

2. Number of Priorities (1 to 8)? _______________ 2. Indicate your area of responsibility:
______ decision maker
______ budget holder
______ recommender

3. Number of Strong Priorities? ________________ 3. Has a budget been allocated for the purchase?
Yes ______ No ______

4. Statistical Counters Width (0 to 16)? ___________ 4. What volume do you expect to ship of the product that
will use this core? ______

5. What major factors will influence your decision?
______ cost
______ customization
______ testing
______ implementation size

6. Are you considering any other solutions? _______
January 10, 2000 3-5

	CSELT S.p.A
	Features
	Applications
	General Description
	Functional Description
	Pinout
	Core Modifications
	Recommended Design Experience
	Ordering Information
	Related Information
	Arbiter

	Arbiter

