

EP201 PowerPC Bus Master

December 5, 2000

Product Specification

Eureka Technology, Inc.

4962 El Camino Real, Suite 108

Los Altos, CA 94022 USA
Phone: +1 650-960-3800
Fax: +1 650-960-3805
E-Mail: info@eurekatech.com
URL: www.eurekatech.com

Features

- Fully supports PowerPC[™] 60x bus protocol, including PowerPC 603, 604, 740, 750 and 8260
- Automatic bus arbitration for address bus and data bus based on internal bus request
- Separate address bus and data bus tenure with individual grant signals
- Supports address bus retry and data transfer error
- Qualified address bus grant and data bus grant through the use of bus busy signals
- User specified burst data transfer and single beat data transfer
- Supports two back-end user request ports with automatic arbitration
- · Efficient back-end bus for internal data transfer
- · Supports bus parking

Applications

The PowerPC bus slave is used in a wide variety of fields. The following are just a few examples:

- Defense
- Medical
- Communication
- · Any peripheral device using PowerPC microprocessor

AllianceCORE™ Facts		
Core Specifics		
Supported Family	Virtex	
Device Tested	V400-6	
CLB Slices	139	
Clock IOBs ¹	1	
IOBs ¹	333	
Performance (MHz)	80	
Xilinx Tools	3.2i	
Special Features	None	
Provided with Core		
Documentation	User guide	
Design File Formats	EDIF netlist	
Constraints File	Top201.ucf	
Verification	VHDL or Verilog test bench	
Instantiation Templates	VHDL, Verilog	
Reference designs &	None	
application notes		
Additional Items	None	
Simulation Tool Used		
Model Technology Modelsim™ 5.4b		
Support		
Support provided by Eureka Technology		

lotes

1. Assuming all core I/Os are routed off-chip

General Description

The PowerPC bus master is a bus interface unit designed for the PowerPC host bus. It is designed to work on any 60x compliant bus architecture. It performs all the data transfer functions necessary for any master device reside directly on the PowerPC host bus. It supports separate arbitration for the address bus and data bus to improve bus performance.

Single beat and burst data transfer are supported. Different data size and transfer types are allowed and can be specified through an internal back-end bus. The back-end bus provides a very simple interface to the internal logic to initiate bus operations.

December 5, 2000 3-1

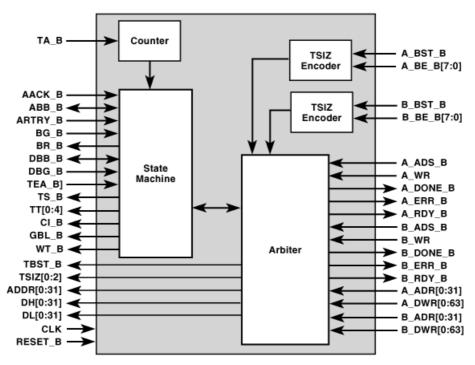


Figure 1: EP201 PowerPC Bus Master Block Diagram

Functional Description

The PowerPC master device performs the complex address and data tenure of the PowerPC host bus from the simple user interface. The following is a brief description of each individual block with respect to Figure 1.

Arbiter

The two backend bus requests A_ADS_B and B_ADS_B need to go to the arbiter to decide which request is to be served first. The arbiter used in the PowerPC bus master is on first-come first-serve basis. If both requests are received at the same cycle, the arbiter will give the previously served requestor a lower priority. The information will then pass to the state machine. The address and data bus go directly to the PowerPC bus from the arbiter.

TSIZ Encoder

A TSIZ encoder is used for each backend requestor to determine the information of TBST_B and TSIZ[0:2] based on BST_B and BE_B[0:7]. This information will then go to the arbiter before it goes to the PowerPC bus.

State Machine

The state machine will be triggered whenever it receives a request from the arbiter in idle state. Then it will follow the PowerPC bus protocol to initiate a request to the PowerPC bus. Once the data transfer is completed or there is an abnormal termination, the state machine will go back to idle.

Counter

This counter helps to inform the state machine when the data transfer is completed so that the state machine can go back to idle.

Pinout

The pinout of the EP201 core has not been fixed to specific FPGA I/O, thereby allowing flexibility with a user's application. Signal names are shown in Figure 1 and described in Table 2.

Core Modifications

The PowerPC bus master is designed in XCV400FG676 FPGA. Cores for other packages can also be supported. Eureka Technology will contract to modify the core to your specifications.

3-2 December 5, 2000

Verification Methods

Functional simulation has been done using Model Technology ModelsimTM 5.4b. Static timing analysis has been done for all paths using the timing analyzer in Xilinx Foundation Series 3.2i.

Recommended Design Experience

Users should decide the target device and there is no requirement in using the PowerPC bus master core.

Ordering Information

If you have inquiries or want to license our core, please contact Eureka Technology directly. Eureka Technology retains the right to make changes to these specifications at any time without notice.

Phone: (650)960 3800 Email: info@eurekatech.com

Related Information

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124

Phone: +1 408-559-7778 Fax: +1 408-559-7114 URL: www.xilinx.com

For general Xilinx literature, contact:

Phone: 408-231-3386 (inside the USA)

408-879-5017 (outside the USA)

Email: literature@xilinx.com

Table 1: Core Signal Pinout

Signal Signal		Description
_	Direction	-
A_ADR[0:28]	Input	Port A Address
A_ADS_B	Input	Port A address strobe
A_BST_B	Input	Port A burst request
A_BE_B]0:7]	Input	Port A byte enable
A_DONE_B	Output	Port operation done
A_DWR[0:63]	Input	Port A write data
A_ERR_B	Output	Port A operation error
A_RDY_B	Output	Port A transfer ready
A_WR	Input	Port A write/read request
B_ADR[0:28]	Input	Port B address
B_ADS_B	Input	Port A address strobe
B_BST_B	Input	Port A burst request
B_BE_B[0:7]	Input	Port A byte enable
B_DONE_B	Output	Port operation done
B_DWR[0:63]	Input	Port A write data
B_ERR_B	Output	Port A operation error
B_RDY_B	Output	Port A transfer ready
B_WR	Input	Port A write/read request
AACK_B	Input	Address acknowledge
ABB_B	Input/Outpout	Address busy busy
ADDR[0:31]	Output	PowerPC bus address
ARTRY_B	Input	Address retry
BG_B	Input	Bus grant
BR_B	Output	Bus request
CI_B	Output	Cache inhibit
CLK	Input	System clock
DBB_B	Input/output	Data bus busy
DBG_B	Input	Data bus grant
DH[0:31]	Output	PowerPC bus data high
DL[0:31]	Output	PowerPC bus data low
GBLB	Output	Global
RESET_B	Input	System reset
TA_B	Input	Transfer acknowledge
TBST_B	Output	Transfer Burst
TEA_B	Input	Transfer error acknowledge
TS_B	Output	Transfer start
TSIZ[0:2]	Output	Transfer size
TT[0:4]	Output	Transfer type
WT_B	Output	Wrote through

December 5, 2000 3-3