

Reed-Solomon Encoder

January 10, 2000

Product Specification

Integrated Silicon Systems, Ltd.

50 Malone Rd Belfast BT9 5BS Northern Ireland Phone: +44 1232 664664 Fax: +44 1232 669664 E-Mail: info@iss-dsp.com URL: www.iss-dsp.com

Features

- Supports 4000X, Spartan, Spartan[™]-II, Virtex[™], and Virtex[™]-E devices
- Programmable solution for high data rate Reed-Solomon encoding
- ISS can configure to support a range of standards involving Reed-Solomon encoding, e.g. European Telecommunication Standard 300 421 and 300 429.
- Architecture can be customized using the following parameters:
 - Symbol size
 - Number of parity symbols
 - Field polynomial
 - Generator polynomial
- Single encoder implementation supports any valid data block length
- Systematic code structure where each code word can be partitioned into original data block and appended parity symbols
- · Encoder can process continuous or burst data
- Supports high speed (>570 Mbps) applications
- Symbol-wide inputs and outputs, clocked by a single symbol-rate clock
- Simple interface allows easy integration into larger system

Applications

- · Digital video and audio broadcast
- Digital satellite broadcast
- Data storage and retrieval systems (e.g. hard disks, CD-ROM etc)

AllianceCORE™ Facts				
Core Specifics				
Supported Family	4000XL, Spartan, Virtex			
Device Tested				
CLBs				
Clock IOBs	See Table 1			
Performance	See Table T			
Xilinx Tools				
Special Features				
Provided with Core				
Documentation	Core Documentation			
Design File Formats	XNF, EDIF ¹ netlist, VHDL RTL			
	Source available extra			
Constraints File	.ucf			
Verification	Test Vectors			
Instantiation Templates	VHDL, Verilog			
Reference Designs &				
Application Notes	None			
Additional Items	Bit-accurate C model is available			
Simulation Tool Used				
Synopsys VSS				
Support				
Support provided by ISS.				

Note:

1. Virtex design file format is EDIF.

General Description

The Reed-Solomon encoder is a Xilinx FPGA-based core for systems where data error detection/correction is required. The core implements the full functionality of a general Reed-Solomon encoder and all necessary interface circuitry using a single Xilinx FPGA.

The source code version of the core is extremely flexible due to its parameterized design, and can be rapidly configured for a wide variety of applications. Table 1 shows density and performance metrics for specific implementation examples. ISS will customize and provide a Xilinx-specific implementation of the core tailored to the needs of your application, (see Ordering Information).

Figure 1: Reed Solomon Encoder Block Diagram

Table 1: Example Encoder Implementations

	Example #1	Example #2	Example #3
Parity Symbols	16	8	16
Bits/Symbol 8		4	8
Device Tested	e Tested V50-4		4005XL-1
CLBs	82 ²	106	105
Clock IOBs	1	1	1
IOBs ¹	18	12	19
Performance	82 MHz	49.3 MHz	72.2 MHz
Xilinx Tools	M1.5	M1.3	M1.3
Special Features	None	RPM	RPM

Notes:

1. Assuming all I/O are routed off-chip

2. Utilization numbers for Virtex are in CLB slices

Functional Description

The Reed-Solomon encoder core is partitioned into modules as shown in Figure 1 and described below.

GF CMult

This block performs the multiplication of two symbol values over a Galois Field that is defined by the choice of the num-

ber of bits per symbol. For example, choosing 8 bits per symbol, the block performs multiplication over $GF(2^8)$. One of the multiplier inputs is a constant, corresponding to a coefficient value from the generator polynomial, which is also customizable by the user. Multiplication is carried out using a bit-parallel, polynomial basis architecture. One GF CMult block is required for each parity symbol to be generated.

GF Add

The GF Add block performs the addition of two symbol values over the appropriate Galois Field.

Parity Count

The parity count block counts the number of parity symbols produced by the encoder for each block of data. The number of valid parity symbols is twice the maximum number of errors that are to be corrected. Any additional symbols produced by the encoder are caused by spurious symbol values that may exist between successive data blocks when burst data is being processed. These spurious symbols are marked in the output data stream by changing the value of the "data_valid_out" signal from high to low.

Pinout

The pinout of the Reed-Solomon Encoder has not been fixed to specific FPGA I/O, allowing flexibility with a users application. Signal names are shown in the block diagram of Figure 1 and in Table 2.

Signal	Signal Direction	Description
DATA_IN [x:0]	Input	Input data symbols
INFO_PARITY_IN		Marks valid input infor-
	Input	mation symbols
CLK	Input	Symbol Clock
RESET		System Reset, active
	Input	high
DATA_OUT [x:0]	Output	Output data symbols
INFO_PARITY_OUT		Marks valid output infor-
	Output	mation symbols
DATA_VALID_OUT		Marks valid output infor-
		mation and parity sym-
	Output	bols.

Table 2: Core Signal Pinout

Verification Methods

The core has been fully tested across a wide range of parameter settings, using input sequences compatible with many international digital video, audio and satellite standards.

Recommended Design Experience

Familiarity with system standards relevant to the particular application is assumed. A basic understanding of Reed-Solomon encoding is useful, but not essential.

Available Support Products

A C model of the Reed-Solomon encoder is available to as-

sist in functional verification and system integration.

ISS also supplies a complete line of peripheral cores that can be integrated with the Reed Solomon Encoder and Decoder cores for a complete forward error correction system using Xilinx FPGAs. For more information, contact ISS directly regarding:

- Block and convolution interleavers and deinterleavers
- Scramblers and descramblers
- Sync detection and insertion
- Convolution encoders
- Viterbi decoders

Ordering Information

The Reed Solomon Encoder is available for purchase directly from ISS. The implementation will vary depending upon your application. To determine what is required for your system, fill out and fax the attached Implementation Request Form to ISS at +44 1232 669664.

Related Information

European Telecommunications Standards Institute

For information on European digital broadcasting systems standards contact:

European Telecommunications Standards Institute 06921 Sophia Antipolis Cedex France Phone : +33 92 94 42 00 Fax : +33 93 65 47 16

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 URL: www.xilinx.com

For general Xilinx literature, contact:

Phone: +1 800-231-3386 (inside the US) +1 408-879-5017 (outside the US)

E-mail: literature@xilinx.com

For AllianceCORE™ specific information, contact:

- Phone: +1 408-879-5381
- E-mail: alliancecore@xilinx.com
- URL: www.xilinx.com/products/logicore/alliance/ tblpart.htm

Alliance Reed-Solomon Implementation Request Form

To: FAX	Integrated Silicon Systems, Inc. +44 1232 669664		Yes No
E-ma	ail: info@iss-dsp.com	10.	Indicate error statistics reporting requirement(s): Signal to show position of corrected errors
From	n:		Signal to show position of uncorrected blocks Other (please specify)
Com	ipany:		
Nam	ne:	11.	Indicate required control signals:
Addr	ress:		low to high transition at start of codeword, high to low transition at end of codeword
Cour	ntry:		low to high transitional start of codeword, high
Phor	ne:		to low transition at start of parity symbols
Fax:			delayed control signals available at output other (please specify)
E-ma	ail:	12	Please specify any additional requirements:
ISS (Solo	configures and ships Xilinx netlist versions of the Reed mon cores customized to your specification. Please fill	12.	riease specify any auditional requirements.
out a ate o rics f	and fax this form so ISS can respond with an appropri- quotation that includes performance and density met- for the target Xilinx FPGA.	13.	If interleaver and/or deinterleaver functions are required, specify maximum depth of interleaving:
Impl	ementation Issues	14.	If the interleaver and/or deinterleaver are required is the depth of interleaving to be programmable and if
1.	Indicate your exact requirement:		so, to what degree?
	Reed-Solomon encoder		
	Reed-Solomon decoder	Bus	siness issues
	Interleaver	15	Indicate timescales of requirement:
	Deinterleaver	10.	a. date for decision
2.	Maximum symbol rate:		c. required delivery date
3.	Number of bits per symbol:	10	Indicate your erec of reasonability
		16.	decision maker
4.	Indicate clock availability:		budget holder
	Bit clock		recommender
	Symbol Clock		
	Bolli	17.	Has a budget been allocated for the purchase?
5.	Code generator polynomial (e.g. (x+a ¹)(x+a ²))		Yes No
		18.	What volume do you expect to ship of the product that
6.	Field generator polynomial (e.g. x8+x4+x3+x2+1)		will use this core?
		19.	What major factors will influence your decision?
7.	Number of errors:		cost
			customization
8.	Codeword length/format (e.g. 204, 188):		testing implementation size
9.	Erasure support required:	20.	Are you considering any other solutions?