

XF-TWSI Two-Wire Serial Interface Master

January 10, 2000

7810 South Hardy Drive, Suite 104 Tempe, Arizona 85284 USA Phone: +1 888-845-5585 (USA)

+1 480-753-5585 Fax: +1 480-753-5899 E-mail: info@memecdesign.com URL: www.memecdesign.com

Features

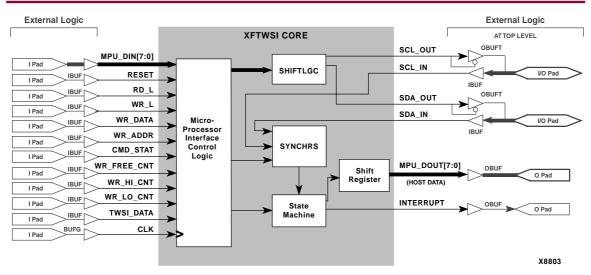
- Supports 4000X, Spartan, Spartan[™]-II, Virtex[™], and Virtex[™]-E devices
- I²C-compatible two-wire serial interface core; *PC is a trademark of Philips, Inc.*
- Compatible with Xilinx CORE Generator tool
 Xilinx netlist version available on enCORE CD-ROM
- Multi-master operation with arbitration and clock synchronization
- Support for reads, writes, burst reads, burst writes, and repeated start
- User-defined timing and clock frequency
- Fast mode and standard mode operation
- Compatible with popular protocols

Applications

- Embedded microprocessor boards
- · Consumer and professional audio/video
- Home and automotive radio

Product Specification

AllianceCORE [™] Facts			
C	Core Specifics		
Device Family	XC4000E/XL	Spartan	
CLBs Used			
Core	102	97	
Core+Ext logic	102	97	
Core I/O			
Core ¹	32	32	
Core+Ext logic	30	30	
System Clock f _{max}	10+ MHz ²		
Device Features Used	Tbufs, global	clock buffers	
Provided with Core			
Documentation	User's guide,	Application notes,	
	Implemen	tation instructions	
Design File Formats		.ngo netlist	
Constraint Files		.ucf	
Verification Tool	Te	stbench for VHDL	
Symbols		VHDL	
Evaluation Model		None	
Reference designs &	Sample	e design in Verilog	
Application notes			
Additional Items		Warranty by MDS	
		letlist only version	
		nCORE CD-ROM	
Design Tool Requirements			
Xilinx Core Tools		ce/Foundation 1.4	
Support			


Support provided by Memec Design Services.

Notes:

1. Assuming all core signals are routed off-chip.

2. Minimum guaranteed speed.

XF-TWSI Two-Wire Serial Interface Master

Figure 1: XF-TWSI Block Diagram

General Description

The XF-TWSI is a "core" logic module specifically designed for Xilinx FPGAs that provides the functionality of the industry standard two-wire serial interface supporting multiple masters. This core is master only; it is not a slave. This core does not support General Call Addressing, 10-bit slave addressing, or START byte data transfers. It facilitates upgrading current systems by allowing the designer to incorporate the XF-TWSI function as well as other logic into a single, state of the art FPGA.

MDS cores are designed with the philosophy that no global elements should be embedded within the core itself. Global elements include any of the following components: STAR-TUP, STARTBUF, BSCAN, READBACK, Global Buffers, Fast Output Primitives, IOB Elements, Clock Delay Components, and any of the Oscillator Macros. MDS cores only contain resources present in the CLB array. This is done to allow flexibility in using the cores with other logic. For instance, if a global clock buffer is embedded within the core, but some external logic also requires that same clock, then an additional global buffer would have to be used.

In any instance, where one of our cores generates a clock, that signal is brought out of the core, run through a global buffer, and then brought back into the core. This philosophy allows external logic to use that clock without using another global buffer.

A result of this philosophy is that the cores are not self-contained. External logic must be connected to the core inorder to complete it. MDS cores include tested sample designs that add the external logic required to complete the functionality. This datasheet describes both the core and the supplied external logic. The Absolute Maximum Ratings, Operating Conditions, DC Electrical Specifications, and Capacitance are device dependent and can be found in the Xilinx datasheet for the target device.

Functional Description

The XF-TWSI is partitioned into modules as shown in Figure 1 and described below. Refer to XF-TWSI User's Guide for detailed technical information. The User's Guide is available, directly from MDS.

Microprocessor Interface Control Logic

There are three registers used to interface to the host: the Data Register, the Address Register, and the Command Register. The strobes WR_DATA, WR_ADDR, and CMD_STAT are directly connected to the clock enable pins of these register flip-flops for ease of interface.

Shift Logic

The basic cycle on the XF-TWSI serial interface consists of an address cycle followed by a data cycle. The address consists of seven bits and the read/write bit (the LSB). The MSB is always transmitted first on the SDA line. The data cycle can either be a read or a write. For a write operation the macro shifts the data from the Data Register onto the SDA line. For a read operation the macro captures the data into the Shift Register. The data cycle can end in three different ways:

1. A stop can be generated which terminates the current cycle.

- 2. Another data cycle can take place (a burst).
- 3. A repeated start can be generated by the interface.

There is always one interrupt generated for each data cycle, independent of the type of cycle. For example, for a burst read cycle an interrupt will be generated for each byte read. For a burst write cycle an interrupt will be generated when each byte transfer is completed.

A repeated start is used to turn the bus around; when a read cycle must be followed directly by a write cycle without a stop in-between. Since the READ bit is a part of the address, if a read followed by write is desired without a stop command, a second address must be issued following the data cycle. The sequence of events in a repeated start cycle is: start, address cycle, data cycle, repeated start, address cycle, data cycle, stop. If bursting is desired, each of the data cycles can be repeated. And if desired, the stop cycle could be another repeated start.

Synchrs

The SDA and SCL inputs are passed through this module that performs a dual-rank synchronization and glitch filtering when enabled by the FILTER_EN signal. The synchronized versions of the SDA and SCL signals are used in all macro modules.

The XF-TWSI core treats both the SDA and SCL lines as data lines. The SDA line is actually sampled some number of clocks after the rising edge of SCL is detected. This allows for greater noise immunity and more robust operation.

State Machine

The control for the serial interface comes from the TWSI_SM state machine. This state machine controls the loading and enabling of all shift registers and counters, and is responsible for implementing the basic interface protocol.

Shift Register

There is a single parallel-in, parallel-out, serial-in, serial-out shift register called NUPSHIFT, which performs the shifting of data for address cycles, write cycles, and read cycles. The parallel output drives the macro interface pins MPU_DOUT which are used to return read data to the host.

Core Modifications

Implementation beyond 10MHz and other customizing is available through Memec Design Services.

Pinout

The XF-TWSI may be implemented as stand-alone logic or may be implemented internally with the user's design. Both versions are included with the Core deliverables. Signal names are provided in the block diagram shown in Figure 1 and Table 1.

Verification Methods

Complete functional and timing simulation has been performed on the XF-TWSI using ModelSim. (Simulation vectors used for verification are provided with the core.). This core has also been used successfully in customer designs.

Recommended Design Experience

For the source version, users should be familiar with VHDL simulation/synthesis and Xilinx design flows. For the netlist version, users should be familiar with Workview office, Xilinx Foundation, or VHDL simulation/synthesis. Users should also have experience with microprocessor systems.

Ordering Information

The XF-TWSI Two Wire Serial Interface Core is provided under license from Memec Design Services for use in Xilinx programmable logic devices and Xilinx HardWire gate arrays. Please contact Memec for pricing and more information.

Information furnished by Memec Design Services is believed to be accurate and reliable. Memec Design Services reserves the right to change specifications detailed in this data sheet at any time without notice, in order to improve reliability, function or design, and assumes no responsibility for any errors within this document. Memec Design Services does not make any commitment to update this information.

Memec Design Services assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction, if such be made, nor does the Company assume responsibility for the functioning of undescribed features or parameters. Memec Design Services will not assume any liability for the accuracy or correctness of any support or assistance provided to a user.

Memec Design Services does not represent that products described herein are free from patent infringement or from any other third-party right. No license is granted by implication or otherwise under any patent or patent rights of Memec Design Services.

Memec Design Services products are not intended for use in life support appliances, devices, or systems. Use of a Memec Design Services product in such application without the written consent of the appropriate Memec Design Services officer is prohibited.

All trademarks, registered trademarks, or servicemarks are property of their respective owners.

Table 1: Core Signal Pinout

Signal	Signal Direction	Description
MPU_DIN[7:0]	Input	Microprocessor Data In lines; used to program Data, Address, and Command Registers.
RESET	Input	Reset; active high.
RD_L	Input	Allows reads on MPU_DOUT when active "0" with proper read buffer/regis- ter is selected.
WR_L	Input	Rising edge of this signal registers data in internal reg- isters when proper address is selected.
WR_DATA	Input	When active "1" with WR_L strobes 8 Bits from MPU_DIN into Data Regis- ter for serial bus write cycle.
WR_ADDR	Input	When active "1" with WR_L strobes least significant 7 Bits of MPU_DIN into Ad- dress Register for all Serial Bus Operations.
CMD_STAT	Input	When active "1" with WR_L strobes least significant 5 Bits from MPU_DIN into Command Register, initiates serial bus cycle and clears the Interrupt line. When ac- tive "1" with RD_L reads status register.
WR_FREE_CNT	Input	When active "1" with WR_L strobes 8-bits from MPU_DIN into the BUSFREE_COUNT register, used to set the bus free peri- od.
WR_HI_CNT	Input	When active "1" with WR_L strobes 8-bits from MPU_DIN into HI_COUNT register, used to set number of CLK clock periods for low period of SCL and setup time for repeated start operation.
WR_LO_CNT	Input	When active "1" with WR_L strobes 8Bits from the MPU_DIN into LO_COUNT register used to set number of CLK clock periods for high count of SCL, hold time for start command, and setup time for stop command.

Table 1: Core Signal Pinout (cont)

Signal	Signal Direction	Description
TWSI_DATA	Input	Allows reads on MPU_DOUT when active "1"
CLK	Input	with RD_L. Primary clock.
SCL_OUT	Output	Serial clock with open collec- tor output.
SCL_IN	Input	Serial clock with open collec- tor input.
SDA_OUT	Output	Serial data with open collec- tor output.
SDA_IN	Input	Serial data with open collec- tor input.
MPU_DOUT[7:0]	Output	Returns read data after acti- vation of Interrupt pin and er- ror free status; lower three bits are also Status Register.
INTERRUPT	Output	Interrupt line set upon com- pletion or abort of serial cy- cle; active high.

Related Information

Xilinx Programmable Logic

For information on Xilinx programmable logic or development system software, contact your local Xilinx sales office, or:

Xilinx, Inc.		
2100 Logic Drive		
San Jose, CA 95124		
Phone:	+1 408-559-7778	
Fax:	+1 408-559-7114	
URL:	www.xilinx.com	

For general Xilinx literature, contact:

Phone:	+1 800-231-3386 (inside the US)
	+1 408-879-5017 (outside the US)
E-mail:	literature@xilinx.com

For AllianceCORE^m specific information, contact:

Phone:	+1 408-879-5381
E-mail:	alliancecore@xilinx.com
URL:	www.xilinx.com/products
	/logicore/alliance/tblpart.htm