

Registered Serial Adder

July 17, 1998

Xilinx Inc. 2100 Logic Drive San Jose. CA 95124

Phone: +1 408-559-7778
Fax: +1 408-559-7114
E-mail: coregen@xilinx.com
URL: www.xilinx.com

Features

- Drop-in modules for the XC4000E, EX, XL, XV and Spartan families
- · Clock Enable for internal registers
- High performance and density guaranteed through Relational Placed Macro (RPM) mapping and placement technology
- Available in Xilinx CORE Generator

Functional Description

This macro accepts up to 32 1-bit serial data pairs and performs a bit-serial add on each pair. The incoming data is composed of bit-serial data, presented LSB first. When the CLEAR CARRY-IN (CLRCI) signal is not asserted, the input data A(n) is added to B(n) along with the Carry-Out that was stored from the previous addition. The resulting sum and Carry-Out are registered internally, and the sum presented to the output. When the CLRCI is asserted, the input data A(n) is added to B(n), with the Carry-Out from the previous addition set to zero. The resulting sum, and carry are registered, and the carry is used on the next cycle.

Product Specification

The data is added from LSB to MSB. The CLRCI signal must be asserted during the LSB add. See Figure 2, Timing Diagram.

Table 1: Truth Table

CLRCI	CE	A[n], B[n]	С	SD[n]
Х	0	X		No Change
0	1	A[n], B[n]		A[n]+B[n]+CO[n]
1	1	A[n], B[n]	_/	A[n]+B[n]

Pinout

Port names for the schematic symbol are shown in Figure 1 and described in Table 2.

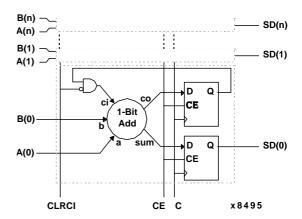


Figure 1: Core Schematic Symbol

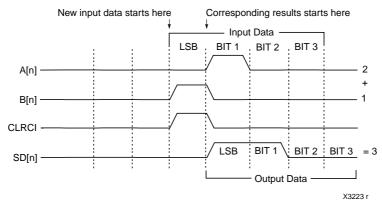


Figure 2: Timing Diagram

Table 2: Core Signal Pinout

Signal	Signal Direction	Description			
A[n:0]	Input	A DATA INPUT – N serial			
		data inputs.			
B[n:0]	Input	B DATA INPUT - N serial			
		data inputs.			
CLRCI	Input	CLEAR CARRY IN – Initializ-			
		es the internal ripple carry			
		logic to zero. This input			
		should be asserted when			
		LSB data is presented on the			
05		A and B inputs.			
CE	Input	CLOCK ENABLE – active			
		high signal used to enable the module's two internal			
		registers.			
С	Input	CLOCK - with the exception			
	IIIput	of asynchronous control in-			
		puts (where applicable), con-			
		trol and data inputs are			
		captured, and new output			
		data formed on rising clock			
		transitions.			
SD[n:0]	Output	SUM DATA REGISTERED			
		OUTPUT – N serial data out-			
		puts SD[x] corresponds with			
		addition of data presented on			
		A[x] and B[x] inputs.			

CORE Generator Parameters

The CORE Generator parameterization window for this macro is shown in Figure 2. The parameters are as follows:

• Component Name: Enter a name for the output files

- generated for this module.
- Port Width: Select a bit-width for the A, B and SD ports.
 Choosing a bit-width of, say n, implies the creation of n,
 1-bit serial adders.
- Create RPM: When checked, a columnar Relational Placed Macro is created.

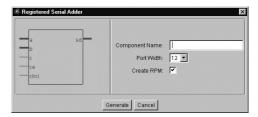


Figure 2: Parameterization Window

Core Resource Utilization

This module uses 1 CLB per data-bit, i.e. the CLB Count = Port Width.

Ordering Information

This macro comes free with the Xilinx CORE Generator. For additional information contact your local Xilinx sales representative, or e-mail requests to coregen@xilinx.com.

Parameter File Information

Parameter Name	Туре	Notes	
Component_Name	String		
Port_Width	Integer	2 - 32	
Create_RPM	Boolean	True/False	