

HDLC Controller Solutions with Spartan-II FPGAs - Customer Tutorial

February 2000

Agenda

- Introduction
- HDLC Overview
- HDLC Controller Applications
- Spartan-II IP Solutions for HDLC Controllers
- HDLC Controller ASSPs
- Spartan-II Family Programmable ASSP
- Summary

Introduction

- Spartan-II FPGAs
 - 100,000 system gates at under \$10
 - Extensive features: Block RAM, DLL, Select I/O
 - Vast IP portfolio
 - Provide Density, Features, Performance at ASIC prices

A Spartan-II FPGA Based Programmable HDLC Controller Solution Competes Effectively Against Stand-alone ASSPs

HDLC - the Protocol

- High-Level Data Link Control (HDLC) Protocol:
 - ISO defined
 - Bit-oriented, synchronous data link layer protocol
 - Specifies data encapsulation on synchronous serial links
 - Uses frame characters
 - Performs checksums (CRC)
 - Is a group of several protocols responsible for transmitting data between network points (nodes)
 - Organizes data into units and sends it across a network to a destination that verifies its successful arrival
 - Commonly used protocol in layer 2 of the OSI
 - Different variations are used in different networks

HDLC - The Protocol

- + HDLC Protocol Structure:
 - Specifies a packetization standard for serial links
 - Supports several modes of operation, including a simple sliding window mode for reliable delivery
 - The Internet
 - Provides retransmission at higher levels (TCP)
 - Most Internet applications use HDLC's unreliable delivery mode, unnumbered information
- The Following Variations of HDLC Exist:
 - Both PPP and SLIP use a subnet of HDLC's functionality
 - ISDN's D-channel uses a slightly modified version of HDLC
 - Cisco routers' default serial link encapsulation is HDLC

HDLC - the Protocol

Flag Address CTRL Data FCS Flag

+ HDLC Protocol's Frame Structure:

- Flag characters
 - Marked at the beginning and end of HDLC frames 011111110 binary
 - Do not appear in intervening data (enforced in a transparent manner)

— FCS

- Used at the end of the frame, to verify data integrity
- Is a CRC calculated using the polynomial $x^{16} + x^{12} + x^5 + 1$
- Between HDLC frames, the link remains idle
- Synchronous links
 - Constantly transmit data
 - Transmit all 1s during the inter-frame period (mark idle), or all flag characters (flag idle)

What are HDLC Controllers?

- HDLC Controllers
 - Devices which perform the functionality of the HDLC Protocol
- General Functionality:
 - Handle bit oriented protocol structure
 - Format data as required by packet switching protocol
 - Transmit and receive data packets serially
 - Provide data transparency by zero insertion and deletion
 - Generate and detect flags that indicate HDLC status
 - Provide 16- or 32- bit CRC on data packets
 - Recognize the single byte address in the received frame

HDLC Controller Applications

- Frame Relay Switches (High Density Access & FRADs)
- ISDN (Basic-rate or primary-rate interfaces, D-channel)
- X.25 & V.35 Protocols
- High Bandwidth WAN Links:
 - Internet/Edge routers
 - Bridges and switches
- Cellular Base Station Switch Controller
- Error-Correction in Modems

HDLC Controller Applications

- T1/E1, T3/E3:
 - Channelized,
 - Clear channel (unchannelized)
- xDSL: Each Port can Support up to 10Mbps
- Dual HSSI
- SONET Termination
- Digital Sets, PBXs and Private Packet Networks
- C-channel Controller to Digital Network Interface Circuit
- Data Link Controllers and Protocol Generators

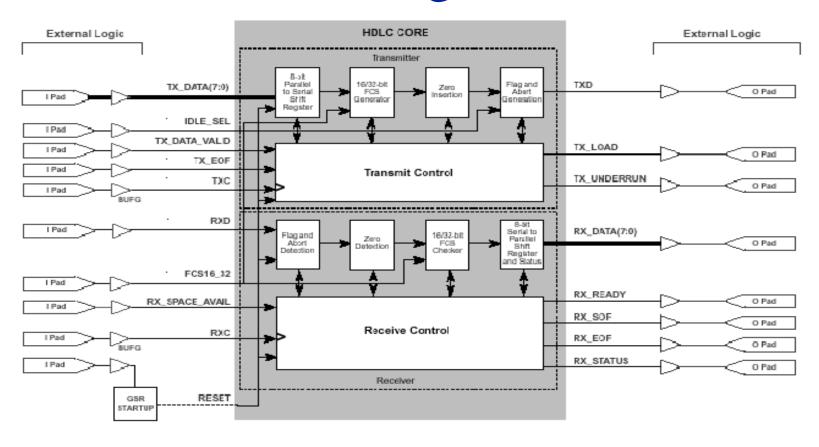
HDLC Controller Applications

- Inter-processor Communication
- Logic Consolidation
- CSU/DSU
- Protocol Converter
- Packet Data Switch
- Distributed Packet-based Communications System
- Multiplexer/Concenterators:
 - Remote Access
 - Multiservice Access

Spartan-II IP Solutions for HDLC Controllers

- AllianceCORE Partners
 - Memec Design Services
 - Single Channel XF-HDLC Controller core
 - CoreEl MicroSystems
 - PPP8 HDLC (CC318f) Controller core
- The Two IP Solutions are Crafted to Cater to Different Applications

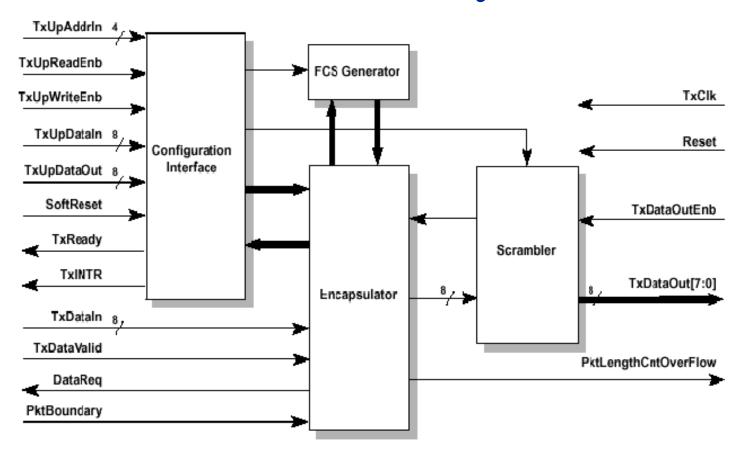
Spartan-II + HDLC Controller IP = Programmable HDLC Controller Solution



Spartan-II IP Solutions for HDLC Controllers

Xilinx IP Solutions for HDLC Controllers		
AllianceCORE Partners	Memec Design Services	CoreEl MicroSystems
Products/Cores	Single Channel XF-HDLC Controller	CC318f - PPP8 HDLC
Specification Standard	International ISO/IEC3309	RFC1619 PPP over SONET
Address Recognition	N.A.	N.A.
Data Rate	DC to 53Mbps (STS-1)	N.A.
CRC/FCS	16- & 32- Bit	16- & 32- Bit
FIFO customization	Yes	N.A.
DMA customization	Yes	N.A.
Multiple HDLC Scaling	Yes	Yes
Synchronous	Full	N.A.
Features	full duplex operation allowed	supports programmable address,
		control, protocol fields; supports
		8-bit pkt & framer interface; error
		detection statistics
Supported Family	Spartan-II, Virtex	Spartan-II, Virtex, XC4000XL(-8)
Performance	N.A.	80MHz

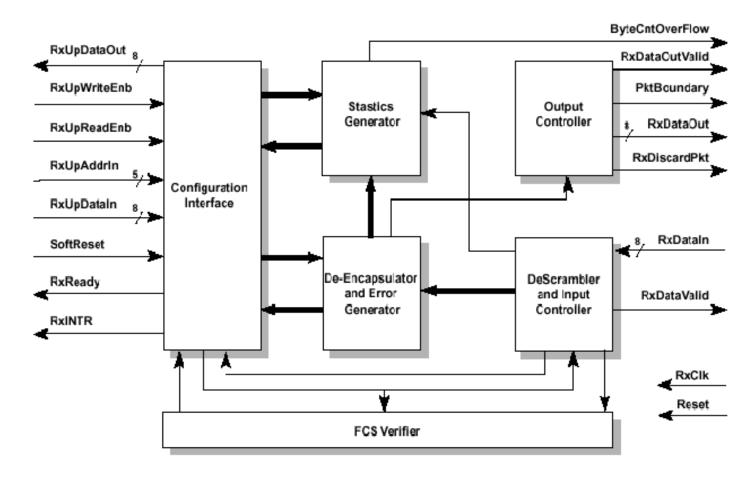
Memec Design Services



Single-Channel XF-HDLC Controller Block Diagram

Xilinx at Work in High Volume Applications

CoreEl MicroSystems



CC318f HDLC Controller (Transmitter) Block Diagram

Xilinx at Work in High Volume Applications

CoreEl MicroSystems

CC318f HDLC Controller (Receiver) Block Diagram

Xilinx at Work in High Volume Applications

HDLC Controller ASSPs

- Some Key Players in the HDLC Controller Market:
 - Dallas Semiconductor Corporation
 - Mitel Semiconductor
 - Conexant Systems, Inc.
 - Infineon Systems Siemens
 - PMC-Sierra, Inc.

Spartan-II Competitive Advantage

- Data Rate/Throughput for
 - Typical HDLC Controller ASSPs: ~ 2.5 8.192Mbps
 - Spartan-II HDLC Controller Solution: 53Mbps
- Flexibility in CRC Operation for
 - Typical HDLC Controller ASSPs: No flexibility
 - Spartan-II HDLC Controller Solution: 16- and 32-bit provided
- Cost (in 250k units) for
 - Typical HDLC Controller ASSPs: ~\$4.56 (single channel),
 ~\$60 \$120 (multi-channel)
 - Spartan-II HDLC Controller Solution: ~\$3.95 (single channel),
 ~\$10 (multi-channel)

Programmable ASSP - Value

- Benefits
 - Time to Market
 - Flexibility
 - Product Customization to meet customer needs
 - Adapt to Specification Updates
 - Feature Upgrades
 - Low risk evaluation of new market segments
 - Field Upgradability
 - Hardware and Software upgradability opens new applications
 - Efficiently Address Lower Volume Strategic Applications
 - Distribution and Inventory Management

Programmable ASSP Advantages

- Accommodate Specification Changes
 - Multiple standards and specification changes are accommodated
- Testing and Verification
 - What if the stand-alone ASSP does not perform as expected?
 - Being re-programmable, risk aversion is a tremendous valueadd

Programmable ASSP Advantages

- Xilinx On-line Field Upgradability
 - Remote update of Software and Hardware
 - Results in increased lifetime for a product
 - Enable product features per end-user needs
- Issues in Creating a Stand-Alone ASSP
 - Choosing the right ASSP
 - Product customization
 - Development cost and amortization
 - Spartan-II family has amortized cost by selling to the traditional PLD marketplace

Summary

- HDLC Controllers are Widely Used in a Range of Data Networking Applications
- The Spartan-II Family has Significant Strengths to Penetrate the Programmable HDLC Controller Marketplace:
 - Features
 - Performance
 - Scalability and Flexibility
 - Cost Effectiveness

Summary

A Programmable HDLC Controller Solution Competes Effectively Against Stand-Alone ASSPs

