
Summary

Express Mode uses an eight-bit-wide bus path for fast configuration of Xilinx FPGAs. This application note provides
information on how to perform Express configuration specifically for the SpartanXL family. The Express mode signals and
their associated timing are defined. The steps of Express configuration are described in detail, followed by detailed
instructions that show how to implement the configuration circuit.

Xilinx Family

SpartanXL

Introduction
Express mode is a fast means for configuring the 3.3-Volt
SpartanXL family. This mode is able to configure an FPGA
quickly, since it uses an eight-bit bus to load one byte of
data for every cycle of the configuration clock (CCLK),
which is driven from an external source. In Express mode,
the FPGA acts as a “slave”. The “master” to which it
responds will typically be a processor, CPLD or some kind
of intelligent interface.

Express mode is one of four different ways to configure the
Volt SpartanXL family. The other methods are Slave Serial
mode, Master Serial mode and configuration via the JTAG
port.

Note that the XC4000XLA family also supports Express
mode. However, the 5-Volt Spartan family does not.

When to Use Express Mode
Express mode is the fastest means for configuring the
SpartanXL family and, therefore, should be used whenever
the FPGA must go from power-up to user operation in the
shortest possible time.

Express mode will configure a SpartanXL device eight
times faster than the slave serial, master serial and JTAG
methods, since Express mode transfers one byte of data
per cycle compared to one bit per cycle for the other three
modes.

The time it takes for the Express configuration of the largest
SpartanXL device available, the XCS40XL, is 387,848 bits
divided by 8 bits per cycle or 48,481 cycles, significantly
less than the 330,696 cycles required for serial configura-
tion. At the maximum allowable clock frequency of 8 MHz,
Express configuration takes about 6.1 ms compared to the
41.3 ms required for serial configuration.

Express mode requires an 8-bit bus to carry the configura-
tion data. If insufficient bandwidth is available (i.e. the bus
needs to be free for other tasks at the time of power-up or
board initialization), then one of the other three configura-

tion methods, all of which require only a single data bit, will
be preferable.

Express Mode Signals
An Express mode implementation can involve as many as
17 lines on the SpartanXL device including: M1, D0 through
D7, CCLK, PROGRAM, INIT, DONE, CS1, DOUT, HDC
and LDC. (The last three are not always used). The princi-
pal functions of the 17 lines are described in Table 1. Refer
to the Spartan Series Data Sheet for more detailed infor-
mation.

Steps in the Configuration Process
The Express mode consists of four steps:

1. Clearing Configuration Memory

2. Initialization

3. Configuration

4. Start-Up

Let’s have a look at each of these steps so that we may
understand how the 17 configuration signals work together
to program a SpartanXL device. Refer to the Spartan
Series Data Sheet for more details.

Clearing Configuration Memory
On power-up, once VCC reaches the Power-On-Reset
threshold, the device automatically begins clearing the con-
figuration memory. It is also possible to begin the clearing
operation by applying a Low-level pulse to the PROGRAM
input.

This line makes reconfiguration possible at any time during
device operation. It is particularly useful when the controller
needs to initiate configuration at a specific point in the
power-up sequence.

As long as PROGRAM is Low, the device continues to
cycle through the clearing step. After each pass through

The Express Configuration of
SpartanXL FPGAs

XAPP 122 November 13, 1998 (Version 1.0) Application Note by Kim Goldblatt

APPLICATION NOTE
XAPP 122 November 13, 1998 (Version 1.0) 1

/partinfo/spartan.pdf
/partinfo/spartan.pdf

the configuration memory, PROGRAM is sampled. If PRO-
GRAM is High, then one last clearing pass takes place,
which concludes with a Low-to-High transition on INIT.

Do not hold PROGRAM Low for more than 500µs. There-
fore, PROGRAM should not be used to delay the configu-
ration process for periods of this magnitude. Hold INIT Low
instead.

Initialization
Since INIT is an open-drain output, it requires a pull-up
resistor to achieve a High level. Now that INIT has gone
High, the internal memory is completely clear. At this point,
the device identifies the selected configuration mode by
sampling the level on the mode pins, after which it activates
the appropriate configuration logic. The device is ready to
begin the configuration step. Note that holding INIT Low
can be used to delay the entry to the configuration step.

To select Express mode, the mode select input, M1, is tied
Low. The other mode select input, M0 is a “don’t care”; it
makes no difference whether the pin is High or Low.

Configuration
After INIT goes High, it is necessary for the master (i.e.,
controller) to wait for a period of TIC = 5 µs before driving
the CCLK input on the device. CCLK is driven from an
external source. The clock oscillator internal to the device
is not used to transfer data; it is only used during Initializa-
tion.

The configuration data, in the form of bytes, enter the
device via D0-D7. One byte is clocked on the rising edge of
CCLK each cycle as shown in Figure 1. The data needs to
be set up for a period TDC before the rising edge and held
for the period TCD after the rising edge. Numbers for the set
up and hold times can be found in the Spartan Series Data

Sheet. Bytes are loaded until the configuration memory is
full, at which point DONE goes High, marking the beginning
of the Start-Up step.

Start-Up
The Start-Up step provides a smooth transition from config-
uration to user operation. Three major events occur during
Start-Up: The DONE output goes High, the I/Os go active
and the GSR (Global Set/Reset) net is released. Start-Up
takes place over a period of four cycles labeled C1, C2, C3
and C4. Options in BitGen, the bitstream generation pro-
gram in Xilinx development software, determine which
event takes place in which cycle. The menu for these
options can be located as follows:

1. Open the Design Manager.

2. Select Implement from under the Design menu.

3. Choose the Options button.

4. Click on Edit Template for Configuration.

5. Select the Startup tab. A menu will appear that permits
the three events to be assigned to different cycles.

As an alternative, BitGen options can also be selected
using Template Manager, which is found under the Utili-
ties menu of the Design Manager.

The Start-Up sequence discussed in this application note
uses CCLK for the purposes of synchronization. This
option is known as “CCLK_SYNC”. The customary default
BitGen settings are the most practical ones, since DONE
goes High in C1, disconnecting the data source to avoid
any contention, after which the I/Os go active and the GSR
is released in C2, ensuring stable internal conditions. The
CCLK is used to measure out the four start-up cycles. This
application note only considers the default option.

Table 1: Signals for Express Configuration

Signal Type Direction Description

M1 Mode selection Input Set Low for Express mode

D0 - D7 Data Input Write configuration data into the device

DOUT Data Output Status output connected to the CS1 input of the next FPGA in a dai-
sy-chain, enables loading of configuration data into the next FPGA

CCLK Clock Input Synchronizes configuration data on the rising edge

PROGRAM Control Input Begin clearing the configuration memory

INIT Control Open-drain output A transition from Low to High indicates that the configuration memo-
ry is clear and ready to receive the bitstream

DONE Status Open-drain output A High indicates that the configuration process is complete

HDC Status Output High throughout configuration, until the I/Os go active

LDC Status Output Low throughout configuration, until the I/Os go active

CS1 Control Input A High enables loading of configuration data for an FPGA in a daisy-
chain

Note: M0 is a Don’t Care for Express mode.
2 XAPP 122 November 13, 1998 (Version 1.0)

/partinfo/spartan.pdf

In Express mode, full configuration memory is the one con-
dition that determines when the Configuration step is fin-
ished. DONE goes High as a result of filling the
configuration memory completely. This marks the begin-
ning of the Start-Up step. DONE’s failure to go High gener-
ally indicates a problem with configuration such as the
incomplete loading of configuration data.

While a transition from Low to High on DONE indicates the
completion of the configuration step, the configuration pro-
cess, as a whole, ends with the last cycle of the Start-Up
step, C4. It is important to provide CCLK rising edges for all
four start-up cycles. This amounts to clocking the entire
configuration file, from the first byte of the header to the last
start-up byte.

Like DONE, the HDC and LDC outputs provide status on
the device’s progress to user operation. HDC is High during
configuration and takes on whatever I/O function is
assigned to it at the time when all I/Os go active, in the
Start-up step. Similarly, LDC is Low during configuration
and takes on its respective I/O function when the I/Os go
active as well.

Configuring Multiple SpartanXL FPGAs
It is possible to configure any number of SpartanXL devices
with a composite configuration data file. The devices are
connected to form a “daisy-chain” by connecting the DOUT
output of one device to the CS1 input of the next. M1 must
be tied Low for all devices so that Express mode is used
throughout the chain. The CS1 input of the first (left-most)
device in the chain is tied to VCC. The DOUT output of the

last (right-most) device in the chain is left open. See
Figure 2 for an example of how the devices are connected
together. D0-D7 is connected in parallel to all the devices in
the daisy chain.

The DONE output of all devices in the chain are tied
together, as are the INIT outputs. Both these outputs are
open-drain; therefore, they need to be pulled to Vcc for a
High logic level. A 470Ω pull-up resistor is recommended.

A device can only accept configuration data if two condi-
tions are met: CS1 is High and the configuration memory is
not full. The High level on the CS1 input ensures that the
first device is able to accept data. The INIT signal going
High causes the DOUT of the first device to go LOW, dis-
abling configuration of the rest of devices in the chain.
When the configuration memory of the first device is full, its
DOUT goes High, enabling the next device in the chain to
receive configuration data from the parallel bus.

The line that connects the DONE outputs of all devices will
not go High until all the configuration data has been loaded.
The assertion of DONE marks the beginning of the Start-
Up step.

For a daisy chain, the configuration data for the individual
devices need to be combined into a single file. For details,
see “Combining Files for a Daisy Chain” on page 8.

If the same configuration data file is to be loaded into more
than one FPGA, then the devices can be connected with
their configuration signals in parallel. See the Spartan
Series Data Sheet for more information on daisy chain and
parallel configuration.

X6710_k

BYTE
0

CCLK

FPGA Filled

INIT

TDC

TCD

TIC

D0-D7

DOUT

BYTE
1

BYTE
2

BYTE
3

Internal INIT

Figure 1: Loading the Bitstream in Express Mode

Note: CS1 is held High, enabling the device to receive configuration data.
XAPP 122 November 13, 1998 (Version 1.0) 3

/partinfo/spartan.pdf

The Controller Interface
One common way to implement Express configuration
uses a controller to send the configuration data to the Spar-
tanXL device(s) over the data bus. Aside from the
FPGA(s), this application typically uses three resources:

1. ROM to store the configuration data file.

2. A controller for coordinating configuration.

3. A free register (e.g., in a CPLD or an I/O port) can be
used as a synchronous interface between the controller
and the SpartanXL device.

See Figure 2 for a schematic diagram of the controller
interface.

Storing the Bitstream
A form of nonvolatile memory, such as ROM, is used to
hold the configuration data. Generally, the data will be
embedded in the processor’s firmware. See “Embedding
the Bitstream in Firmware” on page 8 for information on
how to prepare configuration data for inclusion in C or
assembly code.

As an alternative to the embedded approach, a free portion
of ROM can be set aside to store the bitstream in a table
that is independent from the firmware. During board initial-
ization, the firmware can then instruct the processor to
access the table.

Controlling Configuration
The controller supervises serial configuration by monitoring
status signals, issuing control signals, manipulating the bit-
stream, and providing for synchronization to a clock.

If insufficient continuous processing time is available for
configuration, then the task of writing the bitstream may be
interrupted so the controller can attend to other tasks, only
to be resumed at a later point in time. In this case, the task
of writing the bitstream exists as firmware subroutine, to
which an interrupt priority can be assigned.

In brief, the INIT line can be used to drive the interrupt line
on the controller. A suitably low priority level can be
assigned to this interrupt to ensure that the controller
spends sufficient time servicing its primary tasks. As previ-
ously described, the processor initiates Express configura-
tion by pulling PROGRAM Low. Once all the devices are
clear, INIT goes High, requesting an interrupt of the control-
ler. When the controller has no requests of higher priority
than that of the SpartanXL device, it begins accessing con-
figuration data from memory and writing them to the DIN
input, bit-by-bit. While the controller will break away from
configuration to attend to any higher priority requests, as
soon as these are complete, it will continue with configura-
tion until the DONE signal, monitored at the interface regis-
ter, goes High.

When using interrupts, it is important to use a unique
address for the SpartanXL device (or daisy chain). This
avoids potential address conflicts when switching tasks.
See the next section for how this is accomplished.

The Interface Register
A register is used to establish a synchronous interface
between the controller and the SpartanXL device(s). The
interface register is composed of two parts: the output reg-
ister and the input register, which store the bit values of the
configuration signals. In order to support the set of signals
commonly used for the Express mode (PROGRAM, D0-D7
and CCLK, INIT and DONE), the output register must be
ten-bits wide for write operations and the input register
must be two-bits wide for read operation. More bits can be
added for other control signals. For example, when using
the readback feature, add two bits for the READ_DATA and
READ_TRIGGER signals.

The interface register should have a unique address which
ensures that the configuration data on the processor’s bus
goes only to the register and nowhere else. It also ensures
that data on the bus intended for other purposes cannot be
written to the interface register.

A Practical Example
Let us look at a specific example of a processor configuring
SpartanXL FPGAs in Express mode. Figure 2 shows a
block diagram of a board with a processor. The µP Data
Bus and the µP Address Bus permit access to the ROM,
RAM and a CPLD with an interface register. The program
for the processor resides in the ROM. On reset or power-
up, the processor begins reading its instructions from here.

In addition to whatever primary tasks it may have to per-
form, the processor serves as the master for serial configu-
ration. In this role, the processor accesses the
configuration data, formats them, writes them to the inter-
face register and, otherwise, coordinates the act of config-
uration. The three FPGAs serve as slaves, so the M1 pin
on each is tied Low to select the Express configuration
mode. Note that once M1 is Low, M0, the other mode input
becomes a “don’t care”. M0 can be tied either High, Low or
left open.

The configuration data are stored in the ROM. They may be
embedded in the processor’s program (expressed in
assembly or C language) or they may exist as an indepen-
dent table.

The CPLD contains the interface register that holds the bit
values of the configuration signals. This example employs
the minimum required number of signals: PROGRAM,
CCLK, D0-D7, INIT and DONE. The interface register con-
sists of two parts, one called Out-Reg and the other called
In-Reg. The processor writes bit values for PROGRAM,
D0-D7 and CCLK into Out-Reg, which, in turn, applies
4 XAPP 122 November 13, 1998 (Version 1.0)

those values to the corresponding inputs of the SpartanXL
device(s). Also, on a regular basis, In-Reg samples INIT
and DONE from the device(s) and makes those bit values
available on the Data Bus for monitoring by the processor.
During Express configuration, the processor takes turns
writing control words to Out-Reg one instruction cycle and
reading status bits from In-Reg the next. The ten bit values
contained in the control word provide the logic levels that
drive Out-Reg’s PROGRAM, D0-D7 and CCLK signals.
The two values in the status bits communicate to the pro-
cessor the levels of In-Reg’s INIT and DONE signals.

A sample sequence of control words and status bits is
shown in Table 2. Each row in the table shows the bit val-
ues in the interface register at a given point in time. This is
just one of a number of different possible sequences. The
full sequence, from start to finish, passes through the four
steps of configuration: Memory Clear, Initialization, Config-
uration and Start-up. The processor initiates memory clear-
ing by issuing a control word with PROGRAM set Low. If

INIT is not already Low, it will go Low at this time. During
this step, CCLK can be High or Low, so long as there’s no
rising transition. Dummy bytes occupy the bit positions for
D0 through D7. The processor monitors In-Reg until it
detects INIT at a High level. At this point, the processor
needs to wait a period from 55 µs to 275 µs, during which
initialization takes place. With the beginning of the configu-
ration step, the processor begins to write control words
containing “real” data bytes while, at the same time, contin-
ues to monitor In-Reg.

Finally, the Start-up step readies the SpartanXL device for
user operation over a series of four CCLK cycles according
to the customary default settings in Bitgen (see “Start-Up”
on page 2): In C1, DONE goes High. In C2, the I/Os
become active. In C3, the GSR net is released. In C4, user
operation begins. It is important that a rising transition on
CCLK be provided for C1, C2, C3 and C4. The data
clocked during those cycles, Bn-3 through Bn, are dummy
bytes.

In
 -

R
eg

O
u

t-
R

eg

SpartanXL
FPGA

DOUTCS1
M1

INIT

CCLK
PROGRAM

DONE

SpartanXL
FPGA

DOUTCS1
M1

INIT

CCLK
PROGRAM

DONE

Storage for Spar-
tanXL configuration
file and processor
program

RAM ROM

CPLD

SpartanXL
FPGA

PROGRAM

D0-D7

CCLK

DONE

µP Data Bus

µP Address Bus

DOUTCS1
M1

System Clock

INIT

INIT

CCLK
PROGRAM

DONE VCC

Processor

470

SpartanXL board
with Processor
Interface

VCC

470

VCC

Dn DnDn

470

Figure 2: Express Configuration of SpartanXL FPGAs Using a Controller
Note: The M0 input on the SpartanXL devices is a “don’t care” and can be left open.

Open
XAPP 122 November 13, 1998 (Version 1.0) 5

Before the processor can send the configuration data file to
the SpartanXL devices, it is necessary to format them into
control words. The processor can accomplish this real-time
by reading a byte of configuration data from ROM and posi-
tioning it within the control word so that it lines up with D0-
D7 bits of the interface register. The processor also needs
to provide the appropriate logic levels for the PROGRAM
and CCLK bit positions in the control word.

The bit values for all ten signals need to be chosen in com-
pliance with the protocol summarized in “Steps in the Con-
figuration Process” on page 1 as well as the timing
requirements described in the Spartan Series Data Sheet.
For example, note in Table 2 that during the configuration
step, each data byte is repeated for two consecutive writes
to Out-Reg.is Low for the first occurrence, High for the sec-
ond. This ensures that the setup times for D0-D7 with
respect to CCLK are met. Note that the hold time for D0-D7
with respect to CCLK is zero for the SpartanXL family.
Thus, it is unnecessary to continue holding the byte for a
third control word.

It is important that the order of the control words, as written
to the Out-Reg, preserve the byte order of the original con-
figuration file. The first byte of the header (just after the title
declaration) needs to be the first byte received by the
FPGA. The first bit of each byte must line up with the D0
input on the SpartanXL device. Similarly, the eighth bit of
each byte must line up with D7.

Figure 2 shows three SpartanXL devices connected in a
daisy chain, though any number of Xilinx FPGAs can easily
be accommodated in such a loop. See “Configuring Multi-
ple SpartanXL FPGAs” on page 3 for an explanation of how
the daisy chain signals work.

The Configuration Data File
Express mode requires a special bitstream file that is not
compatible with any of the other configuration modes. This
file is created by specifying a BitGen option in the Xilinx
development software (version 1.5.25 or later). Note that
presently, the software only supports this option using com-
mand line entry. The following command produces a con-
figuration file for Express mode:

bitgen -g ExpressMode:Enable -g CRC:Disable -b filename

The “bitgen” command runs a program that produces con-
figuration files. A -g option followed by “Express-
Mode:Enable” instructs BitGen to produce an Express
configuration file.

Since Express mode does not support error detection using
CRC, it is necessary to disable this feature with the text: “-
g CRC:Disable”.

The data contained in the Express configuration file can be
represented in a number of different forms, including the
rawbits file (.RBT), the hex file (.HEX), the bit (.BIT) file.
Table 3 summarizes the distinguishing characteristics of

Table 2: State Sequence for the Interface Register

Configuration
Step

Contents of Interface Register

Control Word in
Out-Reg

Status
Nibble in

In-Reg

PROGRAM CCLK D0-D7 INIT DONE
Memory

Clear
1 NRT1 X2 03 04

0 NRT X 03 04

 INIT goes Low (if not already Low).
1 NRT X 0 0

Wait for TIC = 5 µs after INIT goes High

Initialization 1 NRT X 1 0
Configuration 1 0 B0

5 1 0

1 1 B0 1 0

1 0 B1 1 0

1 1 B1 1 0

1 0 B2 1 0

1 1 B2 1 0

Continue writing bytes.
1 0 Bn 1 0

1 1 Bn 1 0

When the configuration memory is full,
then the Start-Up step begins.

Start-Up6 1 0 X 1 0

1 1 (C1) X 1 0

DONE goes High.
1 0 X 1 1

1 1 (C2) X 1 1

I/Os become active and GSR is released.
1 0 X 1 1

1 1 (C3) X 1 1

1 0 X 1 1

1 1 (C4) X 1 1

Begin User Operation
Notes: 1. NRT means No Rising Transition.

2. X is a “don’t care” byte.
3. The level shown is for configuration after power

up. For configuration in mid-operation, prior to
driving PROGRAM Low, DONE will be High.

4. The level shown is for configuration after power
up. For configuration during operation, prior to
driving PROGRAM Low, INIT may be an active
I/O, in which case, it will be at a High or a Low.

5. Bi represents the sequence of configuration data
bytes i = 1 through n, where B1 is the first byte of
the header and Bn is the last byte for extending
write cycles.

6. This example shows the Start-up events ordered
according to the default settings in Bitgen when
CCLK is used to synchronize the Start-Up step.
6 XAPP 122 November 13, 1998 (Version 1.0)

/partinfo/spartan.pdf

these files. The default format for the command line shown
is the bit file. Other options can be added to the command
line to produce additional files in other formats. For exam-
ple, the -b option specifies a rawbits file. The “filename” is
the name of the .ncd file (i.e. the file that describes the
mapped, placed and routed design).

The Anatomy of a Configuration File
A distinct benefit of the rawbits format is that the binary
data can be easily viewed using a common text editor.
Figure 3 shows the internal organization of an Express
configuration file in the rawbits format. The same internal
organization applies to Bit and Hex files as well, except that
the latter does not have a title declaration. At the top of the
file is a title declaration, which provides information about
the configuration data such as:

• Configuration data file format
• Version of Xilinx development system in use
• The name of the design
• The target device
• The date the file was created
• The number of bits of actual configuration data

The title declaration is never loaded into the FPGA, only the
header and the data frames that follow enter the device
during configuration.

Following the title declaration, the actual bitstream begins
with a header, which consists the following parts:

• Two dummy bytes, all ones
• A preamble code of 11110010 (shown in bold)
• A dummy length count consisting of 24 bits
• A field check code of 11010010 (shown in bold)

Following the header is the first data frame, which, like all
data frames, begins with the start field 11111110 (shown in
bold). Each data frame ends with the eight-bit constant field
check code (11010010, shown in bold), followed by five
bytes of extended write cycles. (The second of these is a
repeat of the field check code, the other four consist of all
ones.) Unlike the configuration file for the other modes,
there is no post-amble code to terminate the configuration
file for Express mode. The file ends with six or more
dummy bytes, all ones. The first and second of these six
are fill bytes. The third, fourth, fifth and sixth bytes corre-
spond to the Start-Up cycles C1, C2, C3 and C4 (See

Table 2). If D0-D7 are outputs during user operation, be
sure to avoid any possible contention by disabling the con-
figuration source before the I/Os go active (i.e., before C2).
.

Table 3: Configuration Data Files

File Format
File

Extension
Title

Declaration Description
Rawbits .RBT Yes Bitstream is coded in ASCII, one byte for each configuration data bit
Hex .HEX No Each group of four consecutive configuration data bits is represented as one Hex

digit (i.e., 0 through F) which, in turn, is coded as one ASCII byte
Binary .BIT Yes Bitstream is coded in binary, one configuration bit after the next

Xilinx ASCII Bitstream
Created by Bitstream M1.5.25
Design name: s40xl.ncd
Architecture:spartanxl
Part: s40xlPQ208
Date: Wed Nov 11 11:37:02 1998
Bits: 387848
1111111111111111111100100000010111101
011000000011101001011111110111001111
11111110111111111111111110011001111111
11101100110111111111100111011111101110
11111111111011011111111111111001100111
11111110110011011111111110011101111110
11101111111111101101110111111111100110
01111111111011001101111111111001110111
11101110111111111111110111011111111110
0110011111111110110011011111111010010
11111111110100101111111111111111111111
11

.

.

.
1111111011100111111111110111111111111
11111001101111111111101100110111111111
10011101111110111011111111110011011111
11111111100110011111111110110011011111
11111001110111111011101111111111101101
11011111111110011001111111111011001101
11111111100111011111101110111111111111
11011101111111111001100111111111101100
1101111111101001011111111110100101111
11111111111111111111111111111111111111
11111111111111111111111111111111111111
1111111111111111

Figure 3: SpartanXL Express Configuration File
XAPP 122 November 13, 1998 (Version 1.0) 7

The Rawbits File
Before the configuration data can be written to the device, it
is necessary to first strip off the title declaration, then, con-
vert the header and data frames from ASCII to binary. Then
the binary version is segmented into bytes, starting with the
first eight bits of the header and ending with the last eight
bits for extending write cycles. An on-board controller can
accomplish this processing.

As mentioned earlier, the rawbits file can be displayed
using a text editor, though this advantage is offset by high
storage requirements. A rawbits file takes up eight times
the space of its binary version

The Hex File
The hex file is prepared for configuration in similar fashion.
It has an advantage over the rawbits file in that, with each
ASCII character representing four bits of binary data (one
hex digit), it takes up a quarter of the storage space
required for the rawbits version. On the other hand, the hex
file requires more processing to convert it into the binary
that is used to configure the device. Before loading the file
into a SpartanXL device, it is necessary to first convert
ASCII to hex (i.e., each ASCII byte becomes a single hex
digit), and then from hex to binary (i.e., each hex digit
becomes a nibble of binary). The Hex file does not have a
text title declaration, so nothing needs to be stripped away
from the file.

The Binary File
A binary format has two benefits over the other two file
types. First, it is the most compact of all, taking up half the
storage space of a hex file and one eighth the space of a
rawbits file. As a result, the format is ideal for storage on
board. Second, once in binary form, the header and data
frames require no further translation and can be written
directly to the device.

Because of the difficulty in identifying and removing the title
declaration, the binary (.bit) file created by BitGen is not
recommended for use. Instead, one should use BitGen to
create a hex file, which, in turn, is converted to binary as
described in the preceding section.

Embedding the Bitstream in Firmware
As an alternative to storing the configuration file in an ded-
icated segment of ROM space, it is also possible to embed
it in the controller’s firmware. To perform this task, use two
utilities called makesrc and pconfig which are available for
free downloading from the Xilinx web site, WebLINX. The
files can be found as follows:

1. Visit WebLINX at www.xilinx.com.

2. Perform a Xilinx site search by selecting Search.

3. In the blank denoted by the words “Search for:”, type the
name of the utility you are looking for followed by an

asterisk. (type makesrc* or pconfig*) The asterisk is a
wild card character that will allow for any file extension
the utility may have. Press enter to begin the search.

4. The browser will report the results of the search. Click on
any of the hypertext links found. This takes you to a page
from where the utility can be downloaded.

5. Click the file name (i.e., makesrc.zip for PCs and
makesrc.tar for Unix-based computers) to download the
file.

6. De-compress using the appropriate program (e.g.,
PKZip) and it is ready to use.

Since makesrc can only accept a file in the MCS PROM for-
mat as an input, it is necessary to convert the binary (or
rawbits) file produced by PromGen (part of the Xilinx devel-
opment software) first. The pconfig utility, which converts
.bit, .rbt, and .hex files to MCS format, performs this task.
The resulting MCS file is used as an input to makesrc,
which produces a HEX file with formatting customized to
suit the needs of different assemblers and compilers. For
additional information on how to use makesrc and Prom-
Gen, consult the accompanying read-me files.

Combining Files for a Daisy Chain

The integrated bitstream used for configuring a SpartanXL
daisy chain is not a simple concatenation of the
configuration files for the individual devices. PromGen
must be used to join the files. This utility only combines
binary (.bit) files, which the BitGen utility readily supplies.
PromGen takes the binary files for the different devices,
strips off the title declarations and the headers, merges the
data frames, and, finally, adds a new header at the top.
The output file is a hex file (no title declaration). If a rawbits
file is desired, then use the hex2bits utility. Hex2bits is
available in both zip and tar versions and can be
downloaded from WebLINX using the method that was
recommended for makesrc and pconfig in the preceding
section. Consult the accompanying read-me file for
information on how to use Hex2bits.

Verifying Configuration
The successful loading of the bitstream into the device can
be verified by reading back the configuration data in serial.
This is accomplished by instantiating a readback symbol
into the SpartanXL design. Refer to the Spartan Series
Data Sheet and XAPP015 for directions on how to use this
feature.

Bibliography
The Xilinx Spartan Series Data Sheet

(www.xilinx.com/partinfo/ds060.pdf)

The Xilinx Programmable Logic Data Book
(www.xilinx.com/partinfo/databook.htm)
8 XAPP 122 November 13, 1998 (Version 1.0)

/partinfo/ds060.pdf
/partinfo/databook.htm

XAPP015: Using the XC4000 Readback Capability
(www.xilinx.com/xapp/xapp015.pdf)

The Programmable Logic CompanySM

© 1998 Xilinx, Inc. All rights reserved. The Xilinx name and the Xilinx logo are registered trademarks, all XC-designated products are trademarks, and the Pro-
grammable Logic Company is a service mark of Xilinx, Inc. All other trademarks and registered trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described herein; nor does it convey any license under its patent, copy-
right or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described other than circuitry entirely embodied in its prod-
ucts. Products are manufactured under one or more of the following U.S. Patents: (4,847,612; 5,012,135; 4,967,107; 5,023,606; 4,940,909; 5,028,821; 4,870,302;
4,706,216; 4,758,985; 4,642,487; 4,695,740; 4,713,557; 4,750,155; 4,821,233; 4,746,822; 4,820,937; 4,783,607; 4,855,669; 5,047,710; 5,068,603; 4,855,619;
4,835,418; and 4,902,910. Xilinx, Inc. cannot assume responsibility for any circuits shown nor represent that they are free from patent infringement or of any other
third party right. Xilinx, Inc. assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made.

Headquarters

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
U.S.A.

Tel: 1 (800) 255-7778
or 1 (408) 559-7778

Fax: 1 (408) 559-7114

Net: hotline@xilinx.com
Web: http://www.xilinx.com

North America

Irvine, California
Tel: (949) 727-0780

Englewood, Colorado
Tel: (303) 220-7541

Sunnyvale, California
Tel: (408) 245-9850

Schaumburg, Illinois
Tel: (847) 605-1972

Nashua, New Hampshire
Tel: (603) 891-1098

Raleigh, North Carolina
Tel: (919) 846-3922

West Chester, Pennsylvania
Tel: (610) 430-3300

Dallas, Texas
Tel: (972) 960-1043

Europe

Xilinx Sarl
Jouy en Josas, France
Tel: (33) 1-34-63-01-01
Net: frhelp@xilinx.com

Xilinx GmbH
München, Germany
Tel: (49) 89-93088-0
Net: dlhelp@xilinx.com

Xilinx, Ltd.
Byfleet, United Kingdom
Tel: (44) 1-932-349403
Net: ukhelp@xilinx.com

Japan

Xilinx, K.K.
Tokyo, Japan
Tel: (81) 3-5321-7711
Net: jhotline@xilinx.com

Asia Pacific

Xilinx Asia Pacific
Hong Kong
Tel: (852) 2424-5200
Net: hongkong@xilinx.com
XAPP 122 November 13, 1998 (Version 1.0) 9

/xapp/xapp015.pdf

	Introduction
	When to Use Express Mode
	Express Mode Signals
	Steps in the Configuration Process
	Clearing Configuration Memory
	Table 1: Signals for Express Configuration

	Initialization
	Configuration
	Start-Up
	Figure 1: Loading the Bitstream in Express Mode

	Configuring Multiple SpartanXL FPGAs
	The Controller Interface
	Storing the Bitstream
	Controlling Configuration
	The Interface Register
	A Practical Example
	Figure 2: Express Configuration of SpartanXL FPGAs Using a Controller

	The Configuration Data File
	The Anatomy of a Configuration File
	Figure 3: SpartanXL Express Configuration File

	The Rawbits File
	The Hex File
	The Binary File
	Embedding the Bitstream in Firmware
	Combining Files for a Daisy Chain
	Verifying Configuration
	Bibliography

