

Summary This document describes a procedure for implementing embedded In-System Programming
(ISP) using a simplified binary file. This simplified binary file is produced by the XPLA™ ISP
software tool and removes the requirement for detailed understanding of ISP programming
algorithms. At this time, this method only supports Bulk Erase and Programming of devices;
Verify, UES operations, ID Code and other ISP procedures are not supported.

Introduction In-System Programming was initially created to remove the dependence that non-volatile
programmable logic had upon stand-alone programming hardware. With the advent of ISP
devices, engineers were provided with an enabling technology, providing a new method of
programming which has resulted in faster time to market design cycles. The traditional benefits
of ISP include rapid prototyping changes, decreased component inventory, reduced handling
related component damage (such as pin non-coplanarity), programming at time of board test
(ATE) and generic system modules that may be modified without the need for PCB redesign.

This ability to modify a product without hardware redesign is a benefit that additionally allows
system manufacturers to update their existing (in the field) products with corrected or enhanced
algorithms in a rapid and relatively benign fashion. There are different methods for
implementing these changes, varying from "sneaker net" technician supervised programming,
to fully automated remote programming. While deploying technicians to update and maintain
hardware in the field can not be entirely eliminated, this practice is obviously costly. In some
environments, such as in process control or remote monitoring, there may be risk of injury to
the technician, risk of damage to the system, or issues related to "down time" associated with
manual maintenance. "Smart systems" that are capable of self maintenance and automatic
updates are becoming more popular; many systems now update their programmable logic
automatically whenever new software is released to the end user. Other systems update via
modem or telemetry, and internet reconfigurable ISP systems are poised to make an
impressive entrance. The cost associated with these "auto configuration" systems is a burden
of increased complexity to the system, which may mean that more engineering hours are
initially required to get the product to market. Once the configuration technique is learned and
implemented however, the overall cost margin of including auto configuration in systems is
relatively trivial. This document describes an innovative approach to simplifying embedded
programming.

Traditional
Embedded ISP
Programming

In order to fully appreciate the ease of use that the simplified binary format method provides, it
is important for a user to understand how traditional ISP programming is accomplised. While
the physical JTAG port used by ISP devices is well defined by the 1149.1 standard, the actual
ISP algorithms implemented by various semiconductor manufacturers vary tremendously.
Programming differences are required in order to support multiple memory technologies such
as Flash, EE, or SRAM, and architecture of ISP components (storage array size and
configuration, and feature set) also varies, even within same product families of a single
manufacturer. ISP algorithms are noted for being complex and rather difficult to learn and
implement, and the hardware and firmware required to embed ISP programming can be
technically substantial.

Application Note: CoolRunner®

XAPP326 (v1.1) August 6, 2000

Simplified "In-System Programming" for
Embedded Systems Using CoolRunner
Devices

R

XAPP326 (v1.1) August 6, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Simplified "In-System Programming" for Embedded Systems Using CoolRunner Devices
R

For an example of a typical programming algorithm, refer to Table 1. This table shows the steps
required to perform the programming of a CoolRunner CPLD. Figure shows the 1149.1 TAP
controller state diagram which may be referenced as an aid for tracing the JTAG commands
during operation. JTAG commands do not occur until the Run / Test / Idle state is entered.

Figure 1: IEEE 1149.1 JTAG TAP Controller

Test Logic/
Reset

Run Test/
Idle

0

Select
DR-Scan

Capture-DR

0

0

0

0

01

Note: 1 or 0 are values of TMS at each transition.

0

0

1

1 1

1

1

1

1

1

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select
IR-Scan

Capture-IR

0

0

0

0

01

0

1

1

1

1

1

1

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Table 1: 128 Macrocell ISP Programming Algorithm

Step Transition Conditions TAP State CPLD Event Description Programmer Action

0 TMS = 1 Test-Logic/Reset BEGIN BEGIN

loop0 TMS = 1, TCK = ↑ Test-Logic/Reset Ensure device in Test-
Logic/Reset State

Loop five times

1 TMS = 0, TCK = ↑ Run-Test/Idle

2 TMS = 1, TCK = ↑ Select DR-Scan

3 TMS = 1, TCK = ↑ Select IR-Scan

4 TMS = 0, TCK = ↑ Capture-IR

5 TMS = 0, TCK = ↑ Shift-IR

loop1 TMS = 0, TCK = ↑ Shift-IR Shift-in instruction bits [0-2] TDI = 010 (Preload)

6 TMS = 1, TCK = ↑ Exit1-IR Shift-in instruction bit 3 TDI = 0 (Preload MSB)

7 TMS = 1, TCK = ↑ Update-IR Load the Instruction Register
2 www.xilinx.com XAPP326 (v1.1) August 6, 2000
1-800-255-7778

http://www.xilinx.com

Simplified "In-System Programming" for Embedded Systems Using CoolRunner Devices
R

8 TMS = 1, TCK = ↑ Select DR-Scan

9 TMS = 0, TCK = ↑ Capture-DR

10 TMS = 0, TCK = ↑ Shift-DR

loop2 TMS = 0, TCK = ↑ Shift-DR Shift-in bits [0-278] TDI = bit 0 – bit 278 = 0

11 TMS = 1, TCK = ↑ Exit1-DR Shift out bit 279 TDI = bit 279 = 0

12 TMS = 1, TCK = ↑ Update-DR Load JTAG B/S update register

13 TMS = 1, TCK = ↑ Select DR-Scan

14 TMS = 1, TCK = ↑ Select IR-Scan

15 TMS = 0, TCK = ↑ Capture-IR

16 TMS = 0, TCK = ↑ Shift-IR

loop3 TMS = 0, TCK = ↑ Shift-IR Shift-in instruction bits [0-2] TDI = 100 (Enable)

17 TMS = 1, TCK = ↑ Exit1-IR Shift-in instruction bit 3 TDI = 1 (Enable MSB)

18 TMS = 1, TCK = ↑ Update-IR Load the Instruction Register;
set Enable flip-flop

19 TMS = 1, TCK = ↑ Select DR-Scan

20 TMS = 1, TCK = ↑ Select IR-Scan

21 TMS = 0, TCK = ↑ Capture-IR

22 TMS = 0, TCK = ↑ Shift-IR

loop4 TMS = 0, TCK = ↑ Shift-IR Shift-in instruction bits [0-2] TDI = 110 (Program)

23 TMS = 1, TCK = ↑ Exit1-IR Shift-in instruction bit 3 TDI = 1 (Program MSB)

24 TMS = 1, TCK = ↑ Update-IR Load the Instruction Register

loop5 TMS = 1, TCK = ↑ Select DR-Scan

loop5 TMS = 0, TCK = ↑ Capture-DR

loop5 TMS = 0, TCK = ↑ Shift-DR

loop6 TMS = 0, TCK = ↑ Shift-DR Shift-in Data bits [1027-0] TDI = Data bits [1027-0]

loop7 TMS = 0, TCK = ↑ Shift-DR Shift-in Address bits [6-1] TDI = Address bits [6-1]

loop5 TMS = 1, TCK = ↑ Exit1-DR Shift-in Address bit 0 TDI = Address bit 0 (LSB)

loop5 TMS = 1, TCK = ↑ Update-DR

loop5 TMS = 0, TCK = ↑ Run-Test/Idle Program data in EEPROM
(10 ms)

Wait 10 ms

Execute loop5 82 times to PROGRAM the entire device.

36 TMS = 1, TCK = ↑ Select DR-Scan

37 TMS = 1, TCK = ↑ Select IR-Scan

38 TMS = 1, TCK = ↑ Test-Logic/Reset

TMS = 1 Test-Logic/Reset DONE DONE

Table 1: 128 Macrocell ISP Programming Algorithm (Continued)

Step Transition Conditions TAP State CPLD Event Description Programmer Action
XAPP326 (v1.1) August 6, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

Simplified "In-System Programming" for Embedded Systems Using CoolRunner Devices
R

Notice that instructions and data are loaded on the rising edge of TCLK. The internal state
machine of the JTAG port is controlled by the TMS line; precise control of the TAP controller is
required for proper configuration and use of ISP devices. The algorithm in Table 1 details the
steps required for programming only. Other In-System Programming functions may be
performed in a similar manner.

The above algorithm is an example of a typical programming algorithm such as the one used
for XPLA3 devices. Each device will have a unique algorithm; If an engineer were to change
devices and go to a lower density device, or change families, several modifications would need
to be made to the algorithm in order to correctly program the new device.

Embedding the necessary control algorithm along with the configuration data can be a complex
and time consuming task. Nevertheless, many designs exist that implement ISP in this fashion.
Thankfully, an easier method now exists to perform embedded ISP.

Simplified
Binary
Programming

All programmable logic manufacturers who offer ISP products also have download and
configuration software to assist in the implementation of In-System Programming. ISP software
typically takes a source file (typically a JEDEC file) and converts it into a binary file, which is
then accessed during the programming of the ISP device. These download tools are
traditionally PC based, although workstation and ATE solutions also exist. These tools relieve
end users from the requirement of intimate knowledge of the ISP algorithms, however, these
PC based tools do not port easily into embedded systems.

The XPLA ISP software outputs a specialized binary file that may be used for simplified
embedded programming. This file consists of both data and control information interleaved into
two bit groups. These two bit groups form bytes in the binary file; data is arranged by least
significant nibble and least significant pair. To use this binary file to perform ISP programming,
the user must assign the first bit in each pair to the TMS pin of the CoolRunner device, and the
second bit in each pair to the TDI pin. Once this data has been applied, a rising edge on the
TCLK is required to complete the transfer. Bytes are then sequentially used in ascending order
until the file is exhausted. The following line shows how bytes are used. As an example of the
proper decoding order of each byte, please refer to Table 2.

The following line may be data from a simplified binary file that is output from the ISP download
tool:

Byte = Bit7(MSB), Bit6, Bit5…Bit0(LSB)

Table 2: Byte Data Sequence Order

Sequence Order TMS TDI

1 Bit 1 Bit 0

2 Bit 3 Bit 2

3 Bit 5 Bit 4

4 Bit 7 Bit 6

Line # 0000:0000 Data AA 4A 0A C1 2A 10 9B 42 B4 A9 AA etc.
4 www.xilinx.com XAPP326 (v1.1) August 6, 2000
1-800-255-7778

http://www.xilinx.com

Simplified "In-System Programming" for Embedded Systems Using CoolRunner Devices
R

This data is decoded in Table 3.

Table 3: Example of Binary File

Nibble TMS TDI TAP State / Instruction

A 1 0 At least five clocks with TMS = 1 will reset the tap controller

1 0

A 1 0

1 0

A 1 0

1 0 Reset completed

4 0 0 Run Test/Idle

0 1 Run Test/Idle

A 1 0 Select DR-Scan

1 0 Select IR-Scan

0 0 0 Capture-IR

0 0 Shift-IR

1 0 1 Shift-in Enable instruction = 1001

0 0 ..

C 0 0 ..

1 1 ..

A 1 0 Update Instruction Register

1 0 Select DR-Scan

2 1 0 Select IR-Scan

0 0 Capture-IR

0 0 0 Shift-IR

0 0 Shift-in Erase instruction = 0101

1 0 1 ..

0 0 ..

B 1 1 ..

1 0 Update IR

9 0 1 Run Test/Idle: (delay pattern present here)

1 0 Select DR Scan

2 1 0 Select IR Scan

0 0 Capture IR

4 0 0 Shift IR

0 1 Shift-in "Init" instruction = 1011

4 0 0 ..

0 1 ..

B 1 1 ..

1 0 Update IR

9 0 1 Run Test Idle; (delay pattern present here)

1 0 Select DR-Scan
XAPP326 (v1.1) August 6, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Simplified "In-System Programming" for Embedded Systems Using CoolRunner Devices
R

Note that at certain points in the programming of the device a delay is required. This is the
delay necessary to erase or program the EE array. The first time the delay pattern is
encountered, a 100 ms pause is required; subsequent occurences of this pattern require only
a 10 ms pause. A pause of greater than the required time will not affect the device negatively.
A pause of shorter than the required time may result in improper programming.

This delay is required any time the following conditions occur:

1. By monitoring the TMS/TDI binary pair and testing for a "11" followed by a "01".

2. By monitoring the TMS/TDI binary pair and testing for a "10" followed by a "01" .

Generating the Binary File

To create the simplified binary file, launch version 4.05 or later of the XPLA ISP tool. Configure
the opening GUI to reflect the type of part that will be programmed, and indicate which JEDEC
file is to be used. Refer to Figure 2 for an example of the configured GUI.

Once the ISP Download tool has been configured with device, operation (program only) and
file, pull down the "Help" file which is located on the main GUI (not shown in Figure 2) and
select the Output / Debug options. Select "Offline Programming", and acknowledge with "OK".

Pull down the "File" menu and "Save" a JCD file as a [jcdfilename].jcd. When the binary
file is generated, it will be named [jcdfilename].bif, and it will reside in the same directory
as the saved JCD file. Select the ATE Output menu, and highlight the "Binary JTAG File" as the
output option. Click on "Execute" to generate the binary file.

A 1 0 Select IR-Scan

1 0 Test-Logic/Reset

A 1 0 Test-Logic/Reset

1 0 Test-Logic/Reset

A 1 0 Test-Logic/Reset

1 0 Test-Logic/Reset

Figure 2: Configured ISP Tool

Table 3: Example of Binary File (Continued)

Nibble TMS TDI TAP State / Instruction
6 www.xilinx.com XAPP326 (v1.1) August 6, 2000
1-800-255-7778

http://www.xilinx.com

Simplified "In-System Programming" for Embedded Systems Using CoolRunner Devices
R

Conclusion The application of In-System Programmable devices enables engineers to prototype and
debug more quickly, allows for shortened development cycles, and promotes the
implementation of generic modules that can be configured as needed to satisfy system
requirements. The ability to remotely program via embedded ISP adds an additional dimension
to the required flexibility of today’s engineering solutions, and the CoolRunner devices and
software provide a simple solution to a technical issue that was once time consuming to learn
and even more difficult to master.

Revision
History

 The following table shows the revision history for this document.

Date Version Revision

02/18/00 1.0 Initial Xilinx release.

08/06/00 1.1 Added TAP diagram, modified binary pattern, updated ISP screen
shot.
XAPP326 (v1.1) August 6, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

	Summary
	Introduction
	Traditional Embedded ISP Programming
	Simplified Binary Programming
	Generating the Binary File

	Conclusion
	Revision History

