
by Alan Ma
Senior Corporate Applications Engineer, Synopsys, Inc.
alanma@synopsys.com

In general, multiplexers can be implemented
by using Look Up Tables (LUTs). To obtain
the best quality of results (QoR), Synopsys
FPGA Compiler IITM and FPGA ExpressTM

(FCII/FE) take it one step further by utiliz-
ing the built-in multiplexer resources in
high-density FPGAs, which produces signif-
icantly better results in both area and speed.

The Process

During elaboration, the process of translat-
ing the text-based description of a design to
an architecture-independent gate-level repre-
sentation, FCII/FE infers a generic primitive
called MUX_OP when it encounters multi-
plexers in the Hardware Description
Language (HDL). It is during optimization
where MUX_OPs are mapped to architecture-
specific multiplexer resources. The following
sections describe the requirements for
MUX_OP to be inferred.

General Implementation

Our research indicates that using architec-
ture-specific multiplexer resources is only

beneficial when the number of inputs meets
certain requirements. Table 1 illustrates the
multiplexer sizes and the primitives FCII/FE
utilizes for Xilinx Virtex-II, Virtex, and
XC4000 FPGAs (and their derivatives).
FCII/FE automatically maps to these hard-
ware resources (primitives) when you follow
the recommended coding guidelines.

Coding Guidelines

Synopsys recommends the use of CASE
statements to describe multiplexer logic.
When the requirements on the number of

inputs for the target architecture are met (as
shown in Table 1), FCII/FE maps the design
to architecture-specific multiplexer resources
if at least 75% of all possible cases are speci-
fied.

Figure 1 shows an example of an eight-to-
one multiplexer in Verilog. Figure 2 illus-
trates its VHDL equivalent. Note that the
control signal sel has three bits so there can
be as many as eight possible cases. As a result,
at least six (75% of eight) cases need to be
specified for multiplexers to be inferred.

How to get better results by automatically inferring multiplexers that fully
utilize architecture -specific FPGA resources.

Inferring Multiplexers
in FPGA Compiler II
and FPGA Express

Architecture Min. Inputs Max. Inputs Primitives Used

Virtex-II 4 256 LUT, MUXF5, MUXF6

Virtex 4 256 LUT, MUXF5, MUXF6

XC4000 4 256 FMAP, HMAP

Table 1 - Multiplexer size requirements for automatic inference

Applications Software

11

mailto:alanma@synopsys.com

Using the infer_mux Directive

Figure 3 shows a similar eight-to-one
multiplexer with the addition of sever-
al arithmetic operators; Figure 4 shows
its VHDL counterpart. To allow oper-
ator sharing, multiplexers are generally
not automatically inferred for CASE
statements which contain more than
one operator (regardless of the number
of cases specified). However, you have
the option to override FCII/FE by
using the infer_mux directive.

The infer_mux directive forces
FCII/FE to infer multiplexers as long
as at least 50% of all possible cases are
specified. It can be used when:

• The requirements on the number of
inputs (as shown in Table 1) are not
met.

• The CASE statement contains more
than one arithmetic operator.

It is important to understand that
FCII/FE generally makes intelligent
decisions on multiplexer inference
based on the cost of doing so. For
example, it may choose not to infer
multiplexers, to allow operator sharing
for better performance. As a result,
QoR is likely to suffer if you override
that decision by using infer_mux.
Please use this directive with caution.

Conclusion

FPGA Compiler II and FPGA Express
take advantage of Xilinx-specific mul-
tiplexer resources to deliver the best
quality of results. The tools automati-
cally infer multiplexers if the design
complies with the coding guidelines
and meets the requirements for the
target architecture. You also have the
option to force multiplexer inference
by using the infer_mux directive.

Visit the Synopsys FPGA website at
www.synopsys.com/fpga for other
information on the latest FPGA
synthesis technologies.

library ieee;
use ieee.std_logic_1164.all;

entity mux_8to1 is port (
a, b, c, d, e, f: in std_logic;

sel: in std_logic_vector(2 downto 0);
mux_out: out std_logic

);
end mux_8to1;

architecture rtl of mux_8to1 is
begin

process (sel, a, b, c, d, e, f)
begin
case sel is

when "000" => mux_out <= a;
when "001" => mux_out <= b;
when "010" => mux_out <= c;
when "011" => mux_out <= d;
when "100" => mux_out <= e;
when others => mux_out <= f;

end case;
end process;
end rtl;

module mux_8to1 (
a, b, c, d, e, f, sel,

mux_out
);

input a, b, c, d, e, f;
input [2:0] sel;
output [1:0] mux_out;

reg [1:0] mux_out;

always @(sel or a or b or c or d or e or f)
case (sel)// synopsys infer_mux

3’b000 : mux_out = a + b;
3’b001 : mux_out = a + c;
3’b010 : mux_out = d - e;
default : mux_out = d - f;

endcase
endmodule

library ieee;
use ieee.std_logic_1164.all;

entity mux_8to1 is port (
a, b, c, d, e, f: in std_logic;
sel: in std_logic_vector(2 downto 0);
mux_out: out std_logic_vector(1 downto 0)
);

end mux_8to1;

architecture rtl of mux_8to1 is
begin

process (sel, a, b, c, d, e, f)
begin
case sel is -- synopsys infer_mux

when "000" => mux_out <= a + b;
when "001" => mux_out <= a + c;
when "010" => mux_out <= d - e;
when others => mux_out <= d - f;

end case;
end process;
end rtl;

module mux_8to1 (
a, b, c, d, e, f, sel,

mux_out
);

input a, b, c, d, e, f;
input [2:0] sel;
output mux_out;

reg mux_out;

always @(sel or a or b or c or d or e or f)
case (sel)

3’b000 : mux_out = a;
3’b001 : mux_out = b;
3’b010 : mux_out = c;
3’b011 : mux_out = d;
3’b100 : mux_out = e;
default : mux_out = f;

endcase
endmodule

Figure 1 - Using CASE statements for
multiplexers in Verilog

Figure 2 - Using CASE statements for
multiplexers in VHDL

Figure 3 - Using infer_mux for multiplexer
inference in Verilog

Figure 4 - Using infer_mux for multiplexer
inference in VHDL

Applications Software

12

http://www.synopsys.com/fpga

