ISDN Modems

ISDN Overview

www.xilinx.com

XILINX®

Understanding ISDN Equipment

Terminal Equipment (TE1) - ISDN ready Terminal Equipment (TE2) - Non ISDN Terminal Adapter (TA) - Analog to ISDN

Network Terminator (NT1) - Subscriber Line Isolation Network Terminator (NT2) - Network Switch (PBX)

ISDN Integrated Digital Services Network

- High-speed, fully digital telephone service
 - Upgrades today's analog telephone network to a digital system
- Can operate at speeds up to 144Kbps
 - 5 or more times faster than today's analog modems
 - Dramatic speed up of information transfer over the Internet or over a remote LAN connection
 - Rich media like graphics, audio, video or other applications
- Widely available

ISDN

- The Original Digital Service
 - Technology was defined in the mid-80s
- Uses circuit switched technology to support
 - D (Delta) channels are used for signaling
 - Data is transported over 64 Kbps B (Bearer) channels
 - Channels may carry voice, packet data, video

Two Major Variants

• BRI (Basic Rate Interface)

- Targeted at home and small business users
- Provides 2 B channels over a single twisted pair

PRI (Primary Rate Interface)

- Targeted at larger corporate customers
- Provides 23 B channels over T1 in North America
- Provides 30 B channels over E1 in Europe

ISDN Model

www.xilinx.com

iedrwhit1

Functional Groupings

- TE2 (Terminal Equipment 2)
 - Non-ISDN equipment such as personal computers
- TA (Terminal Adapter)
 - Interfaces non-ISDN equipment to the ISDN
- TE1 (Terminal Equipment 1)
 - ISDN terminal equipment such as ISDN phones
- NT1 (Network Termination Equipment, Layer 1)
 - Terminates the ISDN network connection at the physical layer
- NT2 (Network Termination Equipment, Layer 2)

Terminates the ISDN network connection at the data link layer

XILINX®

Reference Points

- R (Rate) Reference Point
 - Non-ISDN interface between non-ISDN user equipment and terminal adapter
- S (System) Reference Point
 - Interface between Terminal Adapters (TA) or terminal and Network termination
- T (Terminal) Reference Point
 - Interface between Network Termination (NT) equipment
- U (User) Reference Point
 - Interface between customer and central office

U Reference Point

- Connects subscriber to Central Office (CO)
- Point to point connection with a 5.5 km maximum distance
- 2 wire interface
- 2B1Q line coding
 - 2B1Q in North America
 - 4B3T in Europe
- Adaptive equalization, echo cancellation
- Data is scrambled
 - Improve clock recovery & spectral characteristics

S/T Interface

- Interconnects customer premises equipment (CPE)
- Bus topology
- 4 wire interface
- 1 km maximum distance
- Alternate Space Inversion (ASI) line coding

Proprietary TDM interfaces

- Used to connect ISDN devices inside equipment
- 4 to 7 wire interfaces
 - Clock
 - Data In
 - Data Out
 - Start of frame indicator
- Several versions defined by ASSP vendors
 - CHI (Concentration Highway Interface): Lucent
 - IOM-2 (ISDN Oriented Modular Interface): Infineon, AMD
 - IDL (Inter-chip Digital Link): Motorola

ISDN In the Real World

External ISDN Modem

- Includes processor for protocol processing
- Optional POTS interface
- System glue
 - Interface glue for ASSPs
 - ISDN TA functions

Internal ISDN Modem

- Uses host for protocol processing
- Voice features use host's sound card
- System glue
 - Host bus interface
 - ISDN TA functions

Always On ISDN

- Provides continuous Internet connectivity
- Forwards IP traffic over the D channel
 - 16 kbps bandwidth
 - X.25 encapsulation
- Requires support from
 - ISP
 - Phone company
 - Hardware (modem/router)

IDSL

- IDSL = ISDN Digital Subscriber Loop
- Developed by Ascend
- Uses ISDN transport
 - 2B+D 144 kbps
 - Static connections, no signaling
- Does not support ISDN voice calls
 - Requires VoIP instead

ASSP Providers

Supplier	Device	Function	
Motorola	MC145572	U-Interface Transceiver	
	MC145574	S/T-Interface Transceiver	
	MC145575	Passive ISDN Terminal Adapter	
	MC145576	Single-Chip NT1	
AMD	Am79C30A/32A	Digital Subscriber Controller	
Lucent	T7234	Single-Chip NT1	
	T7256	Single-Chip NT1 with Microprocessor and TDM Interface	
	T7237	U-Interface 2B1Q Transceiver	
	T9000/T9001	ISDN Network Termination Node (NTN) Devices	
	T7250	S/T-Interface with HDLC	
National	TP3410	U-Interface Transceiver	
	TP3420A	S/T Interface Device	
Infineon	PEB 2091	U-Interface Transceiver	
	PEB 2086	S/T Interface Device	
	PEB 8090	Single-Chip NT1	
	PEB 8191	Single-Chip NT1 with Microprocessor and TDM Interface	
Yamaha	YTD423	HDLC with Microprocessor Interface	
	YTD421	S/T Interface Device	
Asahi Kasei	AK520S	Single-Chip NT1	

Design Example: ISDN PCMCIA Modem

- Design objectives
 - Lowest possible total product cost
 - Target < \$30 for complete solution
 - Fastest time-to-market solution
 - Use available intellectual property as possible
 - PCMCIA core Mobile Media Research, Xilinx Alliance Partner
- Spartan/XC9500 support solution
 - Spartan FPGAs implement system glue functions & PCMCIA interface
 - XC9500 manages memory interface
 - Spartan/XC9500 very cost effective

ISDN PCMCIA Modem

- PCMCIA standard PC laptop interface
 - Implemented using IP core
- Requires system glue
 - Motorola MC145572 U transceiver to PCMCIA interface

XILINX®

Memory control in CPLD

ISDN PCMCIA FPGA

XILINX®

ISDN PCMCIA FPGA Block Diagram

Spartan Functionality

ASSP	Manufacturer / Part Number	Spartan System Glue - Functions
ISDN U–Interface	Motorola	Handshaking
Transceiver	MC145572	ASSP Interface
		IDL Data Multiplexing
		IDL Data Demultiplexing
Host: PCMCIA	Xilinx	PCMCIA Interface Functions
	XCS40XL-4VQ100C &	Function Control Register
	Mobile Media Research	Files
	(PCMCIA IP Core)	
CPU	Philips	System Initialization
	8051 Microcontroller	Functions

Xilinx - The Super Glue of System Logic

ISDN Summary

Perfect match for use in ISDN modems

- Faster Time-To-Market with programmable logic
- Easily integrates system logic functions
 - Interface, control, decode, state machines, etc.
- Extremely cost effective
- Customer benefits using Xilinx in ISDN modems
 - Most efficient way to integrate standard ASSPs
 - Hits both price & performance targets
 - Speeds Time-To-Market (TTM)
 - Maximizes new product revenue
 - "Off-the-shelf" IP further accelerates TTM
 - Provides total IC / Software / IP solution

