Agenda

- Introduction
 - What is HAVi?
 - Advantages
 - Why does the world need HAVi?
- Technology
 - Requirements
 - System Model
 - Control Model
 - Device Classification
 - FAV
 - IAV
 - BAV
 - LAV
 - HAVi Compliance

Xilinx General Products Group

- Software Architecture
- User Interface
 - Level 1
 - Level 2
- Home Network Configuration
- Interoperability
 - Level 1
 - Level2
- IEEE 1394(FireWire)
- Xilinx Value
- Summary

- Legacy Device Support
 - The HAVi Architecture supports legacy devices
 - It is important since the transition to networked devices is going to be gradual
 - Characterized by the degree to which they support 1394 and industry standard protocols for 1394 such as IEC 61883
 - Non-1394 devices(most existing CE devices)
 - 1394 devices not supporting the HAVi Architecture

- Future-Proof Support
 - Great concern of the CE industry since new products should work with existing products
 - The HAVi Architecture supports future devices and protocols
 - Done through several software-based mechanisms which includes:
 - Persistent device-resident information describing capabilities of devices
 - A write-once, run-everywhere language (Java) used for software extensions
 - A device independent representation of user interface elements

- Each HAVi-compliant device may contain persistent data(Java Byte code) concerning its user interface and device control capabilities
- As manufacturers introduce new models with new features they can modify the byte code shipped with the device
 - Similarly new user interface elements can be added to the stored UI representation on the device.

- Plug-And-Play Support
 - In the HAVi Architecture, a device configures itself, and integrates itself into the home network, without user intervention
 - Low-level communication services provide notification when a new device is identified on the network
- Flexibility
 - The HAVi Architecture allows devices to present multiple user interfaces, adapting to both the user's needs and the manufacturer's need for brand differentiation

Agenda

- Introduction
 - What is HAVi?
 - Advantages
 - Why does the world need HAVi?
- Technology
 - Requirements
 - System Model
 - Control Model
 - Device Classification
 - FAV
 - IAV
 - BAV
 - LAV
 - HAVi Compliance

Xilinx General Products Group

- Software Architecture
- User Interface
 - Level 1
 - Level 2
- Home Network Configuration
- Interoperability
 - Level 1
 - Level2
- IEEE 1394(FireWire)
- Xilinx Value
- Summary

Control Model

- Devices may exchange control information and data in a peer-to-peer fashion
 - This ensures that, at the communication level, no one device is required to act as a master or controller for the system
- A controller is said to host a "Device Control Module" (DCM) for the controlled device
 - The control interface is exposed via the API of this DCM
- DCMs are a central concept to the HAVi architecture and the source of flexibility in accommodating new devices and features

Control Model

- DCMs can be distinguished as:
- Embedded DCM A DCM that is part of the resident software on a controller
- Uploaded DCM A DCM that is obtained from some source external to the controller and dynamically added to the software on the controller
- Native DCM A DCM that is implemented for a specific platform, it may include machine code for a specific processor or access platform specific APIs

Xilinx General Products Group

Control Model

- Bytecode DCM A DCM that is implemented in Java bytecode
- Standard DCM A DCM that provides the standard HAVI APIs
 - Such a DCM provides basic functionality but is able to control a wide range of devices

Agenda

- Introduction
 - What is HAVi?
 - Advantages
 - Why does the world need HAVi?
- Technology
 - Requirements
 - System Model
 - Control Model
 - Device Classification
 - FAV
 - IAV
 - BAV
 - LAV
 - HAVi Compliance

Xilinx General Products Group

- Software Architecture
- User Interface
 - Level 1
 - Level 2
- Home Network Configuration
- Interoperability
 - Level 1
 - Level2
- IEEE 1394(FireWire)
- Xilinx Value
- Summary

HAVi Device Classes

Full AV device (FAV)

- Download and execute all HAVi applications
- Download and execute DCM

Intermediate AV device (IAV)

- Ability to communicate with other HAVi device
- Ability to execute limited applications
- Offers own control service
- Ability to host other known device

Base AV device (BAV)

Offers own information in ROM

Legacy AV device (LAV)Conventional devices withNO HAVi SDD data (ROM)

Controller Devices

Full AV Device

- Has a rich set of resources and is capable of supporting a complex software environment
- The primary distinguishing feature of an FAV is the presence of a runtime environment for Java bytecode
 - This allows an FAV to upload bytecode from other devices
 - It provides enhanced capabilities for their control
- Likely candidates for FAV devices:
 - STB
 - DTV,
 - General purpose home control devices
 - Home PC's

Xilinx General Products Group

Intermediate AV Device

- IAV devices are generally lower in cost than FAV devices and more limited in resources
- They do not provide a runtime environment for Java bytecode
 - They cannot act as controllers for arbitrary devices within the home network
- IAV may provide native support for control of particular devices on the home network.

Base AV Device

- Devices that choose to implement future-proof behavior by providing uploadable Java bytecode
 - But do not host any of the software elements of the HAVi Architecture
- These devices can be controlled by an FAV device via the uploadable bytecode or from an IAV device via native code
- Communication between a FAV or IAV device and a BAV device requires that HAVi commands be translated to and from the command protocol used by the BAV device

Legacy AV Device

- LAV devices are not aware of the HAVi Architecture
- These devices use proprietary protocols for their control, and quite frequently have simple control-only protocols
- Such devices can work in the home network but require that FAV or IAV devices act as a gateway
- Communication between a FAV or IAV device and legacy device requires that HAVi commands be translated to and from the legacy command protocol

HAVi Compliance

- Each HAVi compliant device (FAV, IAV and BAV) shall:
 - Support one or more of: 1394-1995, 1394-a or 1394-b
 - Provide HAVi SDD data in a IEEE 1212 configuration ROM
 - If the device sources or sinks a stream type for which IEC 61883 transmission has been specified, then the device should support:
 - The PCR and CMP rules for isochronous connections as defined in IEC 61883.1
 - The CIP protocol as defined in IEC 61883.1
 - The CIP format specific definition in the corresponding part of IEC 61883

HAVi Functional Component Module (FCM)

Agenda

- Introduction
 - What is HAVi?
 - Advantages
 - Why does the world need HAVi?
- Technology
 - Requirements
 - System Model
 - Control Model
 - Device Classification
 - FAV
 - IAV
 - BAV
 - LAV
 - HAVi Compliance

Xilinx General Products Group

- Software Architecture

- User Interface
 - Level 1
 - Level 2
- Home Network Configuration
- Interoperability
 - Level 1
 - Level2
- IEEE 1394(FireWire)
- Xilinx Value
- Summary

- A set of software elements along with the protocols and APIs needed to achieve interoperability
- Device abstraction and device control models
- An addressing scheme and lookup service for devices and their resources
- An open execution environment supporting visual presentation and control of devices, and providing runtime support for third party applications

- Communication mechanisms for extending the environment dynamically through plug-and- play capabilities
- The HAVi architecture is:
 - Open
 - Scaleable in implementation complexity
 - Platform-independent and language neutral
 - HAVi can be implemented in any programming language and on any CPU or real-time operating system

HAVi Architecture (FAV)

HAVi Architecture (IAV)

- 1394 Communication Media Manager
 - Allows other software elements to perform asynchronous and isochronous communication over 1394
- Messaging System
 - Responsible for passing messages between software elements
- Registry
 - Serves as a directory service, allows any object to locate another object on the home network

Event Manager

- Serves as an event delivery service
 - An event is the change in state of an object or of the home network
- Stream Manager
 - Responsible for managing real-time transfer of AV and other media between functional components
- Resource Manager
 - Facilitates sharing of resources and scheduling of actions

Device Control Module (DCM)

- A software element used to control a device
- DCMs are obtained from DCM code units
- Within a DCM code unit are:
 - Code for the DCM itself
 - Code for Functional Component Modules (FCMs) for each functional component within the device

DCM Manager

 Responsible for installing and removing DCM code units on FAV and IAV devices

Content of Home Network HAVi Device

- Application Module
 - Is a software element that may provide a DDI(Data Driven Interaction) interface and/or a havlet
 - Havlet is a HAVi Java application that is uploaded on the request of a controller from a DCM or application module
- Self Describing Device (SDD) data
 - Contains descriptive information about the device and its capabilities
 - Follows the IEEE 1212 addressing scheme used for Configuration ROM
 - May include a DCM code unit and vendor-specific data for constructing user interface elements

Xilinx General Products Group

XILINX®

Content of Home Network HAVi Device

- Java Runtime Environment
 - Provides an execution environment for uploaded DCMs and applications implemented using Java bytecode
- DDI Controller
 - A software element involved with user interaction
 - The DDI (Data Driven Interaction) Controller handles user input and interprets (renders) DDI elements

Agenda

- Introduction
 - What is HAVi?
 - Advantages
 - Why does the world need HAVi?
- Technology
 - Requirements
 - System Model
 - Control Model
 - Device Classification
 - FAV
 - IAV
 - BAV
 - LAV
 - HAVi Compliance

Xilinx General Products Group

- Software Architecture
- User Interface
 - Level 1
 - Level 2
- Home Network Configuration
- Interoperability
 - Level 1
 - Level2
- IEEE 1394(FireWire)
- Xilinx Value
- Summary

User Interface Support

Level 1 UI

- Intended for IAVs and is called Data Driven Interaction(DDI)
- DDI elements can be loaded from a DDI Target(typically DCM) and displayed by a DDI controller

Level 2 UI

- Constructed by bytecode applications running on FAVs
 - Support for different pixel aspect ratios, screen aspect ratios and screen sizes
 - Support for alpha blending and video / image layering
 - Support for remote control input

Agenda

- Introduction
 - What is HAVi?
 - Advantages
 - Why does the world need HAVi?
- Technology
 - Requirements
 - System Model
 - Control Model
 - Device Classification
 - FAV
 - IAV
 - BAV
 - LAV
 - HAVi Compliance

Xilinx General Products Group

- Software Architecture
- User Interface
 - Level 1
 - Level 2
- Home Network Configuration
- Interoperability
 - Level 1
 - Level2
- IEEE 1394(FireWire)
- Xilinx Value
- Summary

- It defines APIs and messaging protocols so that interoperability is assured
- It defines how future devices and services can be integrated into the architecture
- The HAVi Architecture makes no restrictions on what types of devices must be present in the home network
 - Networks without FAV devices
 - Networks with multiple FAV devices
 - Networks with LAV and BAV devices only

IAV or FAV as Controller

- IAV and FAV devices act as controllers for the other device classes and provide a platform for the system services comprising the HAVi Architecture
- FAVs may host Java bytecode DCMs
- The primary role of a controller is to provide a runtime environment for DCMs

- IAV or FAV as display
 - IAVs and FAVs will have an associated display device that is used for display of AV content and GUIs
 - Devices without display will cooperate with other IAV or FAV devices with display capability
 - A display capable IAV is required to support a DDI Controller
 - A display capable FAV is required to support a DDI Controller and a

- Peer-to-peer Architecture between FAVs & IAVs
 - If there are more than one FAV or IAV, each controller cooperates with other controllers to ensure that services are provided to the user
 - An example: a device without display capabilities uses a remote device to display DCM user interfaces
- IAVs as Controller and Display
 - Embedded DCMs can be implemented as native applications on the IAV device and can use native interfaces to access the IAV's display and other resources

Agenda

- Introduction
 - What is HAVi?
 - Advantages
 - Why does the world need HAVi?
- Technology
 - Requirements
 - System Model
 - Control Model
 - Device Classification
 - FAV
 - IAV
 - BAV
 - LAV
 - HAVi Compliance

Xilinx General Products Group

- Software Architecture
- User Interface
 - Level 1
 - Level 2
- Home Network Configuration
- Interoperability
 - Level 1
 - Level2
- IEEE 1394(FireWire)
- Xilinx Value
- Summary

Interoperability

- The first and foremost goal of the HAVi Architecture is to support interoperability between AV equipment
- Level 1 Interoperability
 - Defines and uses a generic set of control messages (commands) that enable one device to talk to another device
 - Defines and uses a set of event messages that it should reasonably expect from the device

Interoperability (Level 1)

- Following mechanisms are required:
- Device Discovery
 - Each device in the home network needs a well-defined method that allows it to advertise its capabilities to others
 - SDD data contains information about the device which can be accessed by other devices
 - The SDD data contains, as a minimum, enough information to allow instantiation of an embedded DCM
 - This results in registration of device capabilities with the HAVI Registry

XILINX®

Interoperability (Level 1)

- Communication
 - A general communication facility is needed to access the capabilities of another device on the network
 - This service is provided by the HAVI Messaging Systems and DCMs
 - The application sends HAVI messages to DCMs, the DCM then engages in proprietary communication with the device

Interoperability (Level 1)

- HAVI Message Set
 - A well defined set of messages that must be supported by all devices of a particular class
 - This ensures that a device can work with existing, as well as future devices, irrespective of the manufacturer
 - The HAVI message set includes those messages used for the DDI protocol and so allows DCMs (and applications) to construct a UI on display-capable IAVs and FAVs

Interoperability(Level 2)

- Level 2 Interoperability
 - Allows a device to communicate to other devices any additional functionality not present in embedded DCMs
 - The HAVi Architecture allows uploaded DCMs as an alternative to embedded DCMs
 - To support non-standard features of existing products
 - To support future products
 - Level 2 only requires that one device provide a runtime environment for the uploaded DCM obtained from the new device

Agenda

- Introduction
 - What is HAVi?
 - Advantages
 - Why does the world need HAVi?
- Technology
 - Requirements
 - System Model
 - Control Model
 - Device Classification
 - FAV
 - IAV
 - BAV
 - LAV
 - HAVi Compliance

Xilinx General Products Group

- Software Architecture
- User Interface
 - Level 1
 - Level 2
- Home Network Configuration
- Interoperability
 - Level 1
 - Level2

- IEEE 1394(FireWire)

- Xilinx Value
- Summary
- Summary

IEEE 1394(FireWire)

- A hardware and software standard for transporting data at 100, 200, 400, or 800 megabits per second (Mbps)
- A digital interface there is no need to convert digital data into analog and tolerate a loss of data integrity
- Physically small the thin serial cable can replace larger and more expensive interfaces
- Easy to use there is no need for terminators, device IDs, or elaborate setup

IEEE 1394 (FireWire)

- Hot pluggable users can add or remove 1394 devices with the bus active
- Inexpensive priced for consumer products
- Scaleable architecture may mix 100, 200, and 400 Mbps devices on a bus
- Flexible topology support of daisy chaining and branching for true peer-to-peer communication
- Non-proprietary there is no licensing problem to use for products

IEEE 1394 Data Transfer

- There are two types of IEEE 1394 data transfer:
- Asynchronous
 - Data is sent in one direction followed by acknowledgment to the requestor.
- Isochronous
 - Data channels provide guaranteed data transport at a predetermined rate
 - This is especially important for time-critical multimedia data where just-in-time delivery eliminates the need for costly buffering

Multimedia Bandwidth Requirements

- High Quality Video
 - Digital Data = (30 frames / second) (640 x 480 Pixels) (24-bit color / pixel) = 221 Mbps
- Reduced Quality Video
 - Digital Data = (15 frames / second) (320 x 240 Pixels) (16-bit color / pixels) = 18 Mbps
- High Quality Audio
 - Digital Data = (44,100 audio samples / sec) (16-bit audio samples) (2 audio channels for stereo) = 1.4 Mbps
- Reduced Quality Audio
- Digital Data = (11,050 audio samples / sec) (8-bit audio Samples) (1 audio channel for monaural) = 0.1 Mbps

IEEE 1394 Usage & Growth

1394 Market Forecast

IEEE 1394 Protocol Stack

www.xilinx.com

XILINX®

IEEE 1394 Operation

- To transmit data, a 1394 device first requests control of the physical layer
- With asynchronous transport, the address of both the sender and the receiver is transmitted followed by the actual packet data
- Once the receiver accepts the packet, a packet acknowledgment is returned to the original sender
- To improve throughput, the sender may continue transmission until 64 transactions are outstanding

IEEE 1394 Operation

- With isochronous transport, the sender requests an isochronous channel with a specific bandwidth
- Isochronous channel IDs are transmitted followed by the packet data
- The receiver monitors the incoming data's channel ID and accepts only data with the specified ID

