

Outline

- The Value of IRL
- Creating an IRL System
 - Bitstream Delivery
 - Remote Reconfiguration
- Where to go for more information

Increasing Need for Upgradable Hardware

- Increase time in market
- Reduce cost of ownership
- Opportunity for new usage-based revenue

Useful Life of ASIC Based Product is Decreasing

- End-users driving more feature upgrades
- Need protection from "evolving" standards
- ASIC vendors no longer doing long life support

Why Field Upgradability?

- Support Emerging and Evolving Standards
 - Ship product prior to completion of specifications
- Ship functional subset today
 - Xilinx customer starts product integration earlier
- Algorithm Performance Upgrades
 - Use the software release/revenue model
- Bug fixes
 - Reduce or eliminate the need for Field Service Technician visits

Slide: 5

IRL Value Table

Customer	Customer's Customer
Product Life Cycle Control	Future Proofing
Reduce Maintenance Costs	Quick Updates
Time To Market	No Wait for Fulfillment
Release Optimized	Product Gets Better Over
Algorithms After Deployment	Time
Develops Customer Loyalty	Stands by Its Product

Agenda

- The Value of IRL
- Creating an IRL System
 - Bitstream Delivery
 - Remote Reconfiguration

Upgradable System Markets

Infrastructure	High Volume Applications / Appliances	
Big Iron	Thick	Thin
• Routers • Gateways • Switches	• Set Top Boxes • Serial I/O Cards	 Vending Machines Network Appliances
 Multiple Processor Proprietary OS 	 Microprocessor Commercial OS 	 Microcontroller OS design dependent
 Reduce Service Costs Value Added Service 	 Reduce Service Costs Upgrade Revenue Usage Revenue 	 Reduce Service Costs Upgrade Revenue Usage Revenue

Design Issues for IRL System

Components of IRL System

- Internet Reconfigurable Logic provides an API (PAVE) and specifies a set of XILINX design guidelines that define how remote devices can be updated via a network in a non-proprietary manner.
- There are four main components in the IRL system model. These are the
 - Host
 - Network
 - Target
 - Payload

A Fielded IRL System

IRL Application

For More Information

- irl@xilinx.com
- wallace.westfeldt@xilinx.com
- http://www.xilinx.com

Appendix: PAVE Details

PAVE

<u>P</u>LD <u>A</u>PI VxWorks

Provides a standard interface to VxWorks-based applications for the programming of Xilinx PLDs

Embedded systems

Interface to VxWorks

PAVE Features & Support

- Programmable Methods
 - JTAG
 - SelectMap
- Available for C, C++ or Java applications
- Design Guidelines

Aŗ	plication
PA De	VE evice API
V۶	Works RTOS
BS W R7	SP for RS VxWorks SOS
D.,,	

Provide a Scalable System Solution

Payload System Component

- The payload system component is a composite element that encapsulates the re-configurable functionality of the system.
- The payload can consist of a header, bitstream, and associated dynamically linkable software module.

Header	
Bitstream (for FP	GA)
Dynamically Loa Software Module (SW Device Driv	dable er for FPG/

