DATA MINING
Desktop Survival Guide by Graham Williams |
|||||
list.rules.rpart <- function(model) { if (!inherits(model, "rpart")) stop("Not a legitimate rpart tree") # # Get some information. # frm <- model$frame names <- row.names(frm) ylevels <- attr(model, "ylevels") ds.size <- model$frame[1,]$n # # Print each leaf node as a rule. # for (i in 1:nrow(frm)) { if (frm[i,1] == "<leaf>") { # The following [,5] is hardwired - needs work! cat("\n") cat(sprintf(" Rule number: %s ", names[i])) cat(sprintf("[yval=%s cover=%d (%.0f%%) prob=%0.2f]\n", ylevels[frm[i,]$yval], frm[i,]$n, round(100*frm[i,]$n/ds.size), frm[i,]$yval2[,5])) pth <- path.rpart(model, nodes=as.numeric(names[i]), print.it=FALSE) cat(sprintf(" %s\n", unlist(pth)[-1]), sep="") } } } |