DATA MINING
Desktop Survival Guide by Graham Williams |
|||||
> sub <- c(sample(1:150, 75)) # Random sampling > fit <- rpart(Species ~ ., data=iris, subset=sub) > fit n= 75 node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 75 47 virginica (0.2800000 0.3466667 0.3733333) 2) Petal.Length< 2.5 21 0 setosa (1.0000000 0.0000000 0.0000000) * 3) Petal.Length>=2.5 54 26 virginica (0.0000000 0.4814815 0.5185185) 6) Petal.Length< 5.05 29 3 versicolor (0.0000000 0.8965517 0.1034483) * 7) Petal.Length>=5.05 25 0 virginica (0.0000000 0.0000000 1.0000000) * > table(predict(fit, iris[-sub,], type="class"), iris[-sub, "Species"]) setosa versicolor virginica setosa 29 0 0 versicolor 0 23 6 virginica 0 1 16 |