Amplitude Response Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Amplitude Response

Since the frequency response is a complex-valued function, it has a magnitude and phase angle for each frequency. The magnitude of the frequency response is called the amplitude response (or magnitude frequency response), and it gives the filter gain at each frequency $ \omega$.

In this example, the amplitude response is

$\displaystyle \left\vert H(e^{j\omega T})\right\vert = \left\vert\frac{1 + g_1 e^{-jM_1\omega T}}{1 + g_2 e^{-jM_2\omega T}}\right\vert \protect$ (4.5)

which, for $ g_1=g_2=1$, reduces to

$\displaystyle \left\vert H(e^{j\omega T})\right\vert = \frac{\left\vert\cos\lef...
...a T/2\right)\right\vert}{\left\vert\cos\left(M_2\omega T/2\right)\right\vert}.
$

Figure 3.6a shows a graph of the amplitude response of one case of this filter, obtained by plotting Eq. (3.5) for $ \omega T \in[-\pi,\pi]$, and using the example settings $ g_1 = 0.5^3$, $ g_2 = 0.9^5$, $ M_1 = 3$, and $ M_2=5$.

Figure 3.6: Frequency response of the example filter $ y(n) = x(n) + 0.5^3 x(n-3) - 0.9^5 y(n-5)$. (a) Amplitude response. (b) Phase response.
\includegraphics[width=\textwidth]{eps/efr}


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (August 2006 Edition).
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]