Figure H.11 gives a listing of a matlab program for computing
the group delay of an IIR digital filter
using the
method described in §7.10.6.
In Matlab with the Signal Processing Toolbox installed, (or Octave with the Octave Forge package installed), say 'help grpdelay' for usage documentation, and say 'type grpdelay' to additionally see test, demo, and plotting code. Here, we include only the code relevant to computation of the group delay itself.
function [gd,w] = grpdelay(b,a,nfft,whole,Fs)
if (nargin<1 || nargin>5)
usage("[g,w]=grpdelay(b [, a [, n [,'whole'[,Fs]]]])");
end
if nargin<5
Fs=0; % return w in radians per sample
if nargin<4, whole='';
elseif ~isstr(whole)
Fs = whole;
whole = '';
end
if nargin<3, nfft=512; end
if nargin<2, a=1; end
end
if strcmp(whole,'whole')==0, nfft = 2*nfft; end
w = 2*pi*[0:nfft-1]/nfft;
if Fs>0, w = Fs*w/(2*pi); end
oa = length(a)-1; % order of a(z)
oc = oa + length(b)-1; % order of c(z)
c = conv(b,fliplr(a)); % c(z) = b(z)*a(1/z)*z^(-oa)
cr = c.*[0:oc]; % derivative of c wrt 1/z
num = fft(cr,nfft);
den = fft(c,nfft);
minmag = 10*eps;
polebins = find(abs(den)<minmag);
for b=polebins
disp('*** grpdelay: group delay singular! setting to 0')
num(b) = 0;
den(b) = 1;
end
gd = real(num ./ den) - oa;
if strcmp(whole,'whole')==0
ns = nfft/2; % Matlab convention - should be nfft/2 + 1
gd = gd(1:ns);
w = w(1:ns);
end
w = w'; % Matlab returns column vectors
gd = gd';
|