Impulse Response Example Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search


Impulse Response Example

An example impulse response for the first-order recursive filter

$\displaystyle y(n)$ $\displaystyle =$ $\displaystyle x(n) + 0.9y(n - 1)$ (6.2)
  $\displaystyle =$ $\displaystyle x(n) + 0.9x(n - 1) + 0.9^2 x(n - 2) + \cdots
\protect$ (6.3)

is shown in Fig.5.2b. The impulse response is a sampled exponential decay, $ (1, 0.9, 0.81, 0.73,\ldots)$, or, more formally,

$\displaystyle h(n) = \left\{\begin{array}{ll}
(0.9)^n, & n\geq 0 \\ [5pt]
0, & n<0. \\
\end{array}\right.
$

We can more compactly represent this by means of the unit step function,

$\displaystyle u(n) \isdef \left\{\begin{array}{ll}
1, & n\geq 0 \\ [5pt]
0, & n<0 \\
\end{array}\right.,
$

so that

$\displaystyle h(n) = u(n)(0.9)^n, \quad n\in{\bf Z}
$

where $ n\in{\bf Z}$ means $ n$ is any integer.


Next  |  Prev  |  Up  |  Top  |  Index  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[How to cite this work] [Order a printed hardcopy]

``Introduction to Digital Filters with Audio Applications'', by Julius O. Smith III, (August 2006 Edition).
Copyright © 2007-02-02 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]